Polymorphic Encryption and Pseudonymisation of
IP Network Flows

1%t Abraham Westerbaan
Digital Security
Radboud University
Nijmegen, The Netherlands
bram @westerbaan.name

Abstract—We describe a system, PEP3, for storage and re-
trieval of IP flow information in which the IP addresses are
replaced by pseudonyms. Every eligible party gets its own set of
pseudonyms. A single entity, the franscryptor, that is composed
of five independent peers, is responsible for the generation of,
depseudonymisation of, and translation between different sets of
pseudonyms. These operations can be performed by any three of
the five peers, preventing a single point of trust or failure. Using
homomorphic aspects of ElGamal encryption the peers perform
their operations on encrypted —and potentially- pseudonymised
IP addresses only, thereby never learning the (pseudonymised)
IP addresses handled by the parties. Moreover, using Schnorr
type proofs, the behaviour of the peers can be verified, without
revealing the (pseudonymised) IP addresses either. Hence the
peers are central, but need not be fully trusted. The design of
our system, while easily modified to other settings, is tuned to
the sheer volume of data presented by IP flow information.

Index Terms—Network Flows, Polymorphic Encryption and
Pseudonymisation.

I. INTRODUCTION

The concept of network flow monitoring is well known and
widely deployed by network operators. The payload of the
packets, and thus the contents of the communication itself,
is discarded in this aggregation process: a flow usually only
contains the number of packets and bytes that were observed,
the start and end time of that flow, and the 5-tuple1 it was
aggregated on.

Most routers commonly deployed by network operators can
perform this flow aggregation, and export the flow statistics
(often using either Cisco’s NetFlow [1], or IPFIX [2], an IETF
standard) towards a collector. The collector then stores, with a
certain retention time, the received flow records either on disk
or in a database, which allows the operator to query the data.

Even without the actual payload, flow measurements contain
sufficient information for a plethora of use cases, such as
keeping traffic statistics for network operators, large-scale
measurement studies for researchers, or forensic activities
by security teams. On the flip side flow information may
reveal very sensitive information, despite not containing the
actual contents of the communication. Consider for example

This work is part of the research programme VWData with project number
400.17.605, which is (partly) financed by the Netherlands Organisation for
Scientific Research (NWO).

ISource and destination addresses and ports, and protocol type.
Annex to ISBN 978-3-903176-28-7© 2020 IFIP

27 T yuk Hendriks

Design and Analysis of Communication Systems

University of Twente
Enschede, The Netherlands
luuk.hendriks @utwente.nl

the IP address of a server hosting only one website, about
a rare disease. Whence we propose to reduce risk without
sacrificing too much usability by replacing the IP addresses in
the flow data by pseudonyms, and, moreover, to use a unique
set of pseudonyms for every eligible party (storage facility,
researcher, investigator, etc., further explained in Section II-B).
This might be achieved by (deterministically and symmetri-
cally) encrypting IP addresses destined for a certain party by
a secret key unique to—but not shared with—that party. We
hold that the transcryptor, the entity that keeps these secret
keys, and is thus responsible for generating and translating the
pseudonyms,

1) should not learn the IP addresses it processes;

2) should not have a single point of failure; and

3) should be verifiable.

In this paper we describe PEP3, a system that fulfils these
requirements by:?

1) having the transcryptor deal with encrypted pseudonyms
only, and leveraging homomorphic aspects of
ElGamal[4] encryption, noted earlier in [3] (and
arguably [5], [6]), to perform the required operations
on these encrypted pseudonyms;

2) breaking the central secret keys held by the transcryp-
tor into ten shares each, and dividing those shares
over five independent peers—which together form the
transcryptor—in such a way that every triple of peers,
but no pair, together has all ten shares; and

3) verifying the honesty of the peers by (occasionally
retroactively) requiring a Schnorr type proof (see Sec-
tion III-B) for the performed operation.

We envision that an organisation wishing to run PEP3 would
collaborate with multiple (up to five) independent and possibly
geographically diverse hosting providers to run the peers, and
would arrange by contract that the shares are not disclosed,
even to the network operator itself.

In the design of any complex system there are a lot of knobs
to turn, and dials to watch. We do not pretend that our system
is optimal, nor that we have defined what optimal should mean
in this context. We have, however, preferred simplicity and

2The name “PEP3” is a contraction of “PEP” the precursor to this system,
[3], and “P3”, our project’s designation within the VWData programme.

494

speed over cleverness and additional features. Where possi-
ble, we have chosen tried and trusted cryptographic systems
(curve25519, ElGamal encryption, Schnorr type proofs) over
exciting new techniques (such as pairing based cryptography).

a) Contributions: PEP3 builds on the PEP system[3]
designed to store medical research data. Our system differs
in several ways from PEP, most notably in that we divide
the three different roles (transcryptor, access manager, key
server) in PEP over five peers. The general idea of splitting
a global secret into shares, and dividing it over several peers,
so that only a subset of them is needed to perform the action,
is well-known[7] and fundamental to fields such as threshold
cryptography and secure multiparty computation, as is the use
of Schnorr-type proofs in this context. Our contribution lies
primarily in finding a combination that fits our application.
Nonetheless, the derivation scheme discussed in III-C and
the “lizard” encoding scheme from IV appear to be technical
novelties. We believe that the security, privacy, verifiability,
and especially the simplicity offered by our combination may
certainly find application to other situations as well.

b) Demonstrator: An interactive demonstration of the
most important features of PEP3 can be found at https:
/Ivwdata-p3.github.io/demo.html. Its source code is available
at https://github.com/vwdata-p3/webdemo.

c) This paper is organised as follows: In Section II we
describe the basic functioning of the transcryptor as a single
entity, and then built it from five peers in Section III. We end
the paper with the technical issue of encoding of IP addresses
as points on curve25519 in IV.

II. TRANSCRYPTOR
A. Polymorphic Encryption and Pseudonymisation

a) The group: We base PEP3 on curve25519, an elliptic
curve introduced by Daniel Bernstein in [8], and named after
the prime p := 2255 — 19, because it is both fast, and has
stood up to the scrutiny caused by its popularity. Using Mike
Hamburg’s decaf-technique[9] curve25519 gives rise to the
ristretto255[10] group G, a special way to represent the cyclic
group Z/¢Z of integers modulo the prime

{ = 2252 -+ 27,742,317,777,372,353,535,851,937,790,883,648,493.

Although Z/¢Z and G are isomorphic as groups, the number 1
of Z/¢Z being send to a specific non-zero base point B, there
is no known efficient algorithm to find given an element A
from G the unique number n of Z/¢Z with nB = A.
In other words, the discrete log problem is difficult in G.
We also assume it to be hard to solve the more difficult
decisional Diffie—-Hellman problem (see [11]) in G, that is,
to determine whether a triplet (A, M, N) of elements of G
is a so-called Diffie—Hellman triplet, that is, whether writing
(A,M,N) = (aB,mB,nB) we have am = n. We will
see that such hardness assumptions can be used to show
that cryptosystems based on G are resistant to several simple
attacks. The actual security provided by these cryptosystems
is, however, much more difficult to capture formally, see
Section 3 “Security” of [8].

b) IP addresses: For now we will represent an IP address
by a non-zero element A of the group G. We will show
in Section IV how to encode 128 bit IP addresses (thus
supporting both IPv6 and IPv4) as elements of G.

¢) ElGamal Encryption: For the encryption of IP ad-
dresses we use the following scheme based on [4]. For any
scalar r € Z/{Z the triple (rB, M + rsB, sB) represents
the encryption of a message M & G for the private key
s € Z/VZ. The public key associated with s is the element sB
of G. In general, a cyphertext is a triple (3,7, 7) of elements
of G, where [is the blinding, v is the core, and 7 is
the target> To encrypt a message M € G for a public
key 7 € G, one picks a random scalar r € Z/¢Z, and
computes & (M, r,r) := (rB, M + r7, 7). To decrypt a
cyphertext (3,7, 7) one computes Z((3,7,7), s) := yv—s0
given a private key s € Z/{Z. Note that 2(&(M,T,1),5) =
M + r(t — sB) equals M when 7 = sB. On the other hand,
if 7 # sB, and r is chosen randomly, 2(& (M, T,r), s) could
be any element of G.

Note also that a triple (3,,7) is the cyphertext of some
message M if and only if (8,7, — M) is a Diffie-Hellman
triplet. Conversely, a triplet (A, M,N) € G? is a Diffie-
Hellman triplet iff (4, N,M) = &(0,M,r) for some r €
Z /7. So deciding whether a triple (3, , 7) is the cyphertext
for some message M (without additional information such as
the secret key) is thus just as difficult as the decisional Diffie—
Hellman problem. Decrypting a cyphertext without additional
information might be even harder.

d) Pseudonyms: A pseudonym for an IP address repre-
sented by a non-zero group element A € G is simply nA,
where n € Z/{Z is a scalar called the pseudonym key. Note
that depending on the pseudonym key, the pseudonym for A
could be any element of G.

In PEP3, the transcryptor keeps track of an encryption key
sp and a pseudonym key n p, both non-zero scalars from Z/¢Z,
for every party P. The encryption key sp is shared with P,
while the transcryptor keeps np to herself. The pseudonym
for P of an IP address A € G is then npA, and an encrypted
pseudonym for P of A is a triple of the form (rB,npA +
rspB,spB) = &(npA, spB,r) for some scalar r € Z/{Z.

e) Translation: The transcryptor has the following three
elementary operations on cyphertexts at her disposal, where
s,n,r € ZJUZ, cf. [3].

rekeying: Hs(Byy,T) = (s_lﬁ, v, ST)
reshuffling: In(B,7v,7) == (nB, ny, 7)
rerandomisation: R (B,v,7) == (B+rB,y+rr, T)

To translate an encrypted pseudonym for party P to an
encrypted pseudonym for party (), the transcryptor ap-
plies %/SQS; yngnlgl ., where ' is some random scalar
from Z/{Z. Note that J,s;' changes the target of the
encryption, sending &(M,spB,r) to &(M, SQB,SpsélT‘),

3We include the target 7 in the cyphertext so that we can define the
rerandomisation operation, %, below.

495

while %t changes the target of pseudonyms, sending
EmpM,T,7) to E(ngM, T, nQnI_Dlr).

The purpose of %, is more technical, and threefold. To
begin, it prevents spoofing of the target in the cyphertext:
if the triple (rB,M + rsB,s'B), which pretends to be a
cyphertext intended for s’ B, but is actually decryptable by sB,
is rerandomised, the result ((r+r')B, M+rsB+r's'B, s'B)
does not reveal M to someone not knowing s’. It also prevents
a party P from obtaining the unencrypted pseudonym for @) of
an IP address A by sending (0,npA, spB) to the transcryptor
for translation from P to (). Finally, it makes the translation
operation non-deterministic, reducing the risk of linkability.

f) (De)pseudonymisation: To translate a for party P
encrypted IP address to a for party @ encrypted pseudonym,
the transcryptor applies 571 S5, %y, Where 7' is some
random scalar. Depseudonymisation is performed similarly.

g) Polymorphism and homomorphism: The (ElGamal)
encryption scheme we use is ‘polymorphic’ in the sense that
a message encrypted for one party can be rekeyed to be de-
cryptable by another party (without the need for intermediate
decryption). Pseudonymisation is polymorphic in a similar
sense. The fact that the translation between pseudonyms can be
performed on cyphertext makes the encryption ‘homomorphic’
with respect to this translation operation. At this point the tran-
scryptor, knowing the secret keys of the parties, can sidestep
the polymorphism and homomorphism by first decrypting,
then translating, and finally encrypting again. However, when
the transcryptor is split into five peers in the next section,
this trick is no longer possible, and the advantage of the
polymorphic and homomorphic aspects of the encryption
become clear.

B. Parties

Before we explain the way the transcryptor is built (from
five peers), we will sketch how we intend her services be used
by the different parties.

a) Metering and storage: The two most basic parties to
PEP3 are the metering process (MP) generating flow records,
and the storage facility (SF) storing the flow records. Recall
that both parties get their own encryption keys syp and
sgrp from the transcryptor, respectively. After the metering
process has produced a batch of flow records aggregated from
packets going over the network, it encrypts the associated IP
addresses in these flow records using its own encryption key,
smp, and sends them to the transcryptor for translation to
encrypted pseudonyms for ssp, which the transcryptor returns
to the metering process. The metering process replaces the IP
addresses in the flow records by these encrypted pseudonyms,
and sends them along to the storage facility. Note that the
metering process does not learn the pseudonyms for the
storage facility, since they are returned by the transcryptor
to the metering process encrypted for the storage facility’s
key, ssr. The storage facility, having received and decrypted
the encrypted pseudonyms in the flow records, stores the
pseudonymised flow records in its database.

b) Retrieval: A party wishing to consult the records held
by the storage facility may form a query in terms of their
own set of pseudonyms, and then replace their pseudonyms by
corresponding encrypted pseudonyms for the storage facility
obtained from the transcryptor. Having received and performed
the query, the storage facility returns the result, but only after
having encrypted the pseudonyms (from the storage facility’s
set) with its encryption key, ssr. Having received the flow
record with encrypted IP addresses, the querying party consults
the transcryptor again, this time to translate the encrypted
pseudonyms from the storage facility’s set to its own set.

c) Authorisation: To prevent free translation between
pseudonyms and IP addresses (defeating the pseudonymi-
sation) a specific permit (signed by some predetermined
certification authority) could be required by the tran-
scryptor for a party wishing to perform a translation or
(de)pseudonymisation. For example, the metering process only
could be given a personal permit to pseudonymise into storage
facility pseudonyms. A party wishing to retrieve records from
the storage facility, such as a researcher, would need a permit
to translate pseudonyms from its own set to the set of the
storage facility (and back). Note that if such a researcher
was to collude with the metering process, they could link IP
addresses with their own pseudonyms.

III. FIVE PEERS
A. Ten Shares

In PEP3, the transcryptor is split into five peers, named
A, B, C, D, and E. As a general rule, three out of five peers
should be able to act as transcryptor. To this end, each
pseudonym key np for a party P, is defined to be a product
np = nABE pABC pBCD ;,CDE 1 ADE [ACD) BDE p ACE p ABD) BCE
of 10 = (3) shares, one for each triple of peers. Of course,
the share n2EE is given to the peers A, B, and E, and so on.
Note that no two peers (such as D and E) have access to all
shares (D and E do not have the share of ABC.) However,
every triple does have access to all shares, because any two
triples drawn from five peers must have at least one peer
in common. The encryption key sp for a party P is split
similarly into ten shares. For brevity’s sake, let 7 := { ABE,
ABC,BCD, CDE, ADE, ACD, BDE, ACE, ABD, BCE }
denote the set of all ten triples of peers.

a) Translation: An encrypted pseudonym for a party P
can be translated to an encrypted pseudonym for party () by
applying the operations 7 (sT)=1 SnT (nT)~t #,r, Where rT
is a random scalar, and 7" ranges over 7, in sequence. The
order in which these operations are performed does affect the
(random component of the) cyphertext, but not the resulting
pseudonym (if the input was valid). Naturally, any of the three
peers in the triple 7' can perform this operation.

A translation can also be performed by three operations
instead of ten, as follows. Choose three peers, say A, C, and D,
and split the triples among them, by, say,

T4 := {ABE, ABC, ADE, ACD, ACE, ABD }
7¢ := {BCD, CDE, BCE} Tp := {BDE}.

496

Then define, for each X € {A,C, D},

ny = H nk and e H sE,
TeTx TeTx
and have A, C, and D perform the operations
A (s3)71 LX)t Hpx for all three X € {A,C, D},

in sequence, on the encrypted pseudonym for P.
(De)pseudonymisation can be performed similarly.

b) Alternative constellations: Our choice to divide the
secrets of the transcryptor over the triples drawn from five
peers is to some extend arbitrary. We could instead have
chosen a system where the secrets are, for example, shared
among pairs drawn from three peers (which is not resistant
against collusion of two peers.)

B. Verification

Note that if one peer is offline, the transcryptor still
functions. Nevertheless, a single peer can presently disrupt
the system in another way, by producing erroneous results,
possibly without being detected. One might argue that it is
possible to prevent this by having multiple peers perform the
same operation, and compare the results. This comparison
is, however, complicated by the random component in the
encryption. We propose a different method of verifying the
peers’ operations, namely by having the peers attach non-
interactive[12] Schnorr type[13] proofs of correctness to their
results. To keeps things simple we create these proofs from
the following basic building block.

1) Certified Diffie—Hellman triplets: Recall that it is con-
sidered infeasible in general to determine whether a triplet
(A, M, N) of group elements of G is a Diffie—Hellman triplet,
that is, whether writing (A, M,N) = (aB,mB,nB) we
have am = n. If the scalar a is known, however, the
matter is easily settled by checking whether aM = N. We
will describe a method by which a prover knowing a can
prove to a verifier that (A, M, N) is a Diffie-Hellman triplet,
without revealing a, using two group elements Ry;, Rp,
and one scalar s. We will say that (A4, M,N) is certified
by (RM, RB, S).

a) Creating the proof (Rar, Rp, s): The prover picks a
random scalar r € Z/{Z, and defines Rp := rB, Ry := rM,
and s := r + ha, where h := Hash(A, M, N, Ry, Rg) for
some appropriate hash function Hash: G® — Z//(Z.

b) To verify a proof (Ra, Rp, s): for the alleged Diffie—
Hellman triplet (A, M, N), the verifier computes h :=
Hash(A, M, N, Ry, Rp), and checks whether

sB = Rg+hA and sM = Ry + hN. (1)

c) Infeasibility of fraud: To deceive the verifier into be-
lieving a triplet (A, M, N) is a Diffie-Hellman triplet verified
by (R, Rp,s) a deceiver needs to solve the two equations
in (1). Since the value of the hash h changes erratically
depending on its inputs, it might as well be any scalar as far as
the deceiver is concerned. Solving (1) can thus be considered
a game, in which the deceiver first chooses A, M, N, Ry,
Rp, then gets a random h as challenge, and must finally pick s

such that the two equations in (1) hold. Having chosen A, M,
N, Ry, Rp, the deceiver has a winning strategy if and only if
she has a function s: Z/¢Z — Z/{Z with, for all h € Z/{Z,

s(h)B = Rp+ hA s(h)M = Ry + hN. 2)

Taking h = 0, we see that s(0)B = Rp and s(0)M = Ryy.
Substituting this result back into (2) for all i # 0,

WosO g — A and 2RO pp = N,

Hence (A, M, N) is indeed a Diffie-Hellman triplet.

d) Acknowledgement: The certified Diffie-Hellman
triplets are essentially the same as the non-interactive version
of protocol in Figure 5.7 of [14].

2) Certifying Ky %,: Such certified Diffie-Hellman
triplets can be used by a peer wishing to show to a party (via
a non-interactive Schnorr type proof) that a triple (3,7, 7’)
is the result of performing the operation 7;.7,%, on a
triple (3,7, 7), that is, that (8',7',7) = (ns~ (38 + rB),
n(y+rr), s7) = H;.5,%- (8,7, 7). Indeed, the peer would
need only certify the five Diffie—-Hellman triplets

(ns™'B, +7rB, B),
(sB, ns 'B, nB),

and

(nB, y+rr, 7)), (sB,7,7),

and (rB,7,rT).

It’s assumed here that the party can know what sB and nB
should be. If, as in the case of translation of a pseudonym,
s is a composite, such as s = sg(sg)_l, then additional
proof must be provided for this to the peer, for instance a
certified Diffie-Hellman triplet (s%(s3,) ' B, s B, spB) in
our example.

C. Derivation of pseudonym and encryption keys

A triple T of peers derives the pseudonym key n% and
encryption key s for a party P from a master pseudonym
key n”, and a master encryption key s, respectively. We
thereby circumvent the troubles of having to generate, store
and synchronise keys s% and n’ for every new party P, on
demand. The keys are derived as follows: assuming that each
party P has some unique identifier idp from some set Z, and
given a hash function H: Z — Z/(¢ — 1)Z, we set

T — (ST)H(idp).

L and Sp

nb = (nT)H(idp)

We derive the keys in this particular manner in order to make
it possible for a peer to give proof that nLB was derived
from n” B, using thre 253 group elements nT B, (n)?B,
(n)*B, ..., (nT)?¥" B, by, writing H(idp) = > ,_, 2%
where 0 < iy < 19 < --+ < 1, < 252, certifying the Diffie—
Hellman triplets
("B (")"B
((") 7B, (T)"B

, (TP)

L)P
((TLT)21'1+~~~+21'nle7 (nT)zinB7 n}TjB).

Such a proof for nL B is needed by peers and parties wishing
to check a proof (from Section I1I-B) in which n% B appears.

497

Any party () should be able to request such a proof for nL B
from a peer in the triple 7. In particular, the party P can
pass along a proof of n5B to a peer not in T needing proof
of nL B to verify, for example, a depseudonymisation request.
In this way, the peer does not need to contact the other peers.

Regarding the security of this derivation scheme: we
conjecture that recovering n? from the group elements
(T2’ B, ..., (n"T)?” B is essentially as difficult as com-
puting the discrete log for one of 253 random group elements.

D. Setup and enrolment

We assume that the peers and parties can authenticate one
another and communicate securely, e.g., by using TLS and
certificates. To start PEP3 each triple 1" of peers needs to
decide on secrets nT and sT, and the public parts nTB,
(nT)?B, ...and sTB, (s7)2B, ...need to be shared with the
other peers. How this setup could be performed reliably and
verifiably is beyond the scope of this short paper. To add a
party P to the system, by a process called enrolment, P simply
requests the public keys n” B, (n7)?B, ... and s B, (s7)?B,
... from every peer, and the secret s5 from every peer in
the triple 7', with proof for sLB from s” B, (s7)%B, If
two peers in a triple send incorrect values for s}@, then if the
other three peers are honest, P can detect the correct value
for sL, and thus which peers were dishonest, by following the
majority’s claim for the value of s” B, (s7)?B,

I'V. ENCODING IP ADDRESSES

One technical problem we encountered when using the
ristretto255 group G was the lack of a direct way to encode a
128 bit piece of data w (such as an IPv6 or IPv4 address) as an
element w of G in such a way that the data w can cheaply be
recovered from w. Such an encoding is useful for encrypting w
using the ElGamal scheme described in Section II-A.

The other direction presents no problem: there is a canonical
and reversible way to encode an element of G as a 32-byte
string, but only £/225 ~ 6.25% of all 32-bytes strings are a
valid encoding of an element from G. So what is usually done
(circumventing the need to encode a message as group element
before encrypting it) is to pick a random group element and
use its 32-byte encoding to encrypt the message symmetrically.

This solution is not viable for our system, because reran-
domisation and reshuffling cannot be applied to the symmetric
cyphertext. Instead we would like to use elligator 2[15],
which does give a reversible map ell2: Z/pZ — G, but
each element of G can have up to 16 preimages under ell2.
Since ell2(z) = ell2(—x) we can discard half the preimages by
considering only the elements of Z/pZ whose minimal posi-
tive representative is even. Thus ell2’: {0,1}?°3 — G defined
by €||2/(b1 cee b253) = e||2(b121 +b222 +--- +b2532253) is
reversible, and the preimage ell2’ 71(A) of an element A € G
has at most 8 elements. Now, define lizard: {0,1}!?8 — G
by4 Iizard(b1 s blgg) = e||2’(b1 s b128h1 s h125), where

4Implementations of (a trivial variation on) lizard can be found on https:
//github.com/vwdata-p3/webdemo/blob/master/ed25519.py and https://github.
com/bwesterb/go-ristretto/blob/master/ristretto.go.

hy---hyos are the first 125 bits of the SHA-256 hash
of by - - - b12g. Then lizard is easily computable, and reversible,
and, the preimage lizard(A) of an element A € G almost al-
ways contains at most 1 element. Indeed, assuming that the bits
of a word w in the preimage ell2’(A) are distributed randomly,
the chance that the last 125 bits of such a word match the first
125 bits of the SHA-256 of w should be 2%0 Thus the chance
that given w € {0,1}'*® the preimage lizard™"(lizard(w))
contains only w is at least (1 — 55)7. So even if 10
computers would apply lizard to 10'° unique IP addresses/s
for 300 years (=~ 1019 s), all ~ 210 IP addresses will map to
a group element with a unique preimage with probability of at

1 \7.2100 100 _1 1 999,999
least(l—m) 21—72 '2125 Zl—ﬁZm

V. CONCLUSION

We have described PEP3, a system for pseudonymising IP
flow data built on curve25519 via the ristretto255 group G.
An important feature of PEP3 is a robust transcryptor (con-
sisting of five peers) that functions even when two peers act
dishonestly. Moreover, the peers do not learn the pseudonyms
they process, and the the peers’ actions can be verified.

REFERENCES

[1] B. Claise, “Cisco systems netflow services export version 9,” RFC 3954,
October 2004, doi: 10.17487/rfc3954.

[2] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP flow
information export (IPFIX) protocol for the exchange of flow informa-
tion,” RFC 7011, September 2013, doi: 10.17487/rfc7011.

[3] E. Verheul, B. Jacobs, C. Meijer, M. Hildebrandt, and J. de Ruiter, “Poly-
morphic encryption and pseudonymisation for personalised healthcare,”
Cryptology ePrint Archive Report 411, 2016, https://eprint.iacr.org/2016/
411.

[4] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469-472, 1985, doi: 10.1109/TIT.1985.1057074.

[5] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” in EUROCRYPT 98, ser. LNCS, vol. 1403, 1998,
pp. 127-144, doi: 10.1007/BFb0054122.

[6] J. Camenisch and A. Lehmann, “(un)linkable pseudonyms for
governmental databases,” in CCS’I15, 2015, pp. 1467-1479, doi:
10.1145/2810103.2813658.

[71 A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979, doi: 10.1145/359168.359176.

[8] D. J. Bernstein, “Curve25519: new Diffie-Hellman speed records,”
in PKC 2006, ser. LNCS, vol. 3958, 2006, pp. 207-228, doi:
10.1007/11745853_14.

[9] M. Hamburg, “Decaf: Eliminating cofactors through point compression,”

in CRYPTO 2015, ser. LNCS, vol. 9215, 2015, pp. 705-723, doi:

10.1007/978-3-662-47989-6_34.

H. de Valence, “The ristretto group [homepage],” https:/ristretto.group,

accessed: April 28 2019.

D. Boneh, “The decision Diffie—Hellman problem,” in ANTS 1998, ser.

LNCS, vol. 1423, 1998, pp. 48-63, doi: 10.1007/BFb0054851.

A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to

identification and signature problems,” in CRYPTO’86, ser. LNCS, vol.

263, 1986, pp. 186-194, doi: 10.1007/3-540-47721-7_12.

C.-P. Schnorr, “Efficient identification and signatures for smart cards,” in

CRYPTO’89, ser. LNCS, vol. 435, 1989, pp. 239-252, doi: 10.1007/0-

387-34805-0_22.

B. Schoenmakers, “Lecture notes [on] cryptographic protocols,” Febru-

ary 2019, version 1.4, available at https://www.win.tue.nl/~berry/

CryptographicProtocols/LectureNotes.pdf.

D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator:

Elliptic-curve points indistinguishable from uniform random strings,” in

CCS’13, 2013, pp. 967-980, doi: 10.1145/2508859.2516734.

[10]
[11]

(12]

[13]

[14]

[15]

498

