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Abstract—Management of virtual network function (VNF)
service chaining for a large scale network spanning across
multiple administrative domains is difficult due to the decen-
tralized nature of the underlying system. Existing session-based
and software-defined networking (SDN) oriented approaches to
manage service function chains (SFCs) fall short to cater to
the plug-and-play nature of the constituent devices of a large
scale eco-system such as the Internet of Things (IoT). In this
paper, we propose Amalgam, a composition of a distributed SDN
control plane along with a distributed SFC manager, that is
capable of managing SFCs dynamically by exploiting the in-
network processing platform composed of plug-and-play devices.
To ensure the distributed placement of VNFs in the in-network
processing platform, we propose a greedy heuristic. Further, to
test the performance, we develop a complete container driven
emulation framework MiniDockNet on top of standard Mininet
APIs. Our experiments on a large scale realistic topology reveal
that Amalgam significantly reduces flow-setup time and exhibits
better performance in terms of end-to-end delay for short flows.

Index Terms—Service function chaining, Virtual network func-
tion, In-network processing, Programmable network, software
defined network

I. INTRODUCTION AND RELATED WORKS

Due to the rapid deployments of connected environments,
large-scale Internet of Things (IoT) networks ! have become
prevalent in recent years. Management of such large-scale
heterogeneous ecosystems requires various network services
such as network address translator (NAT), firewall, proxy,
and local domain name server (DNS); these network services
are called network function (NF)s. Generally, the network
functions are deployed using virtual machines (VM)(s)
to provide service isolation and reduce CapEx and OpEx;
therefore, they are termed as virtualized network function
(VNF) [1]. VNFs execution require computation platform to
host the VM and execute the NF within the VM. Depending
on network management policies, the application messages
require steering through an ordered set of VNFs known as
service function chaining (SFC) [2].

Among various existing architectures to execute VNFs over
a network infrastructure [3]-[5] relies on software-defined
network (SDN) [6] to steer flows from one VNF to another.
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On the other hand, [7], [8] takes a session-based approach
where the end hosts control the SFC. Session-based ap-
proaches achieve lower host-based state management of VNFs,
where SDN-based approaches achieve fine-grained quality of
service (QoS). However, for a large-scale network spanning
across multiple administrative domains, both of the SFC
management (SCM) approaches fall short in several aspects
as follows.

(a) Lack of scalability: Existing SCMs [6], [9] use a central
controller that monitors the resource usage of the devices and
use as the basis for the VNFs deployment. The use of a central
controller for VNF deployment becomes challenging, espe-
cially when the network spans across multiple autonomous
administrative domains that interconnected through different
network service providers. On the other hand, the VNF
placement is A/P-hard [10]. Existing distributed heuristics for
VNF placement [11] require multiple rounds to deploy VNFs,
which increases flow initiation delay leading to reduced IoT
application performance since the majority of the IoT flows
are short-lived [12].

(b) Dynamic service chaining: Usually, VNFss modifying the
headers are common in a large-scale network. Consequently,
the participating VNFs can change the SFCs during the life-
time of a flow based on the flow characteristics. For instance,
a classifier VNF can add a load balancer based on the arrival
rate of the packets in a flow. Existing scalable distributed
VNF placement methods [11] and IP based traffic steering
proposals [13] are not suitable for dynamic service chaining.
On the other hand, [7] ascertains dynamic service chaining by
adding an agent in each device, including hosts. Installation
of agents on a large scale IoT becomes infeasible, where the
devices with plug-and-play capability can dynamically enter
and exit the ecosystem.

(c) Issues of flow monitoring over multi-administrative
platforms: To steer the traffic through proper service chains
while ensuring QoS, requires fine-grained flow monitoring.
Existing flow identification methods using packet header fields
are insufficient in the presence of a header modifying VNF
in the SFC (such as NAT, load balancer, and proxy). Exist-
ing SDN-based flow monitoring schemes like FlowTags [9],
Stratos [14] utilize “vlan/mpls” tagging which does not work
through multiple administrative domains. On the other hand,
the use of packet encapsulation in session-based approaches
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Fig. 1: Component diagram of Amalgam
[8] also fails to ensure QoS.

Therefore, in this paper, we propose Amalgam to provide a
scalable SFC orchestration platform to provide fine-grained
QoS over multiple administrative domains and dynamic SFC.
The SCM Amalgam provides significant performance im-
provement in terms of flow initiation delay. The step by step
contributions is as follows.

o Amalgam achieves distributed state management while
ensuring fine-grained QoS by coupling distributed SDN
and distributed SCM.

e We develop a distributed heuristic for the distributed

deployment of VNFs, which provides performance im-

provement in terms of flow initiation delay.

Amalgam design exploits the “micro-service”(uS) archi-

tecture of the in-network processing platform [15] to

support dynamic service chaining and “zero-touch
deployment” to support the plug and play nature of
the devices.

o For performance evaluation, we develop an emulation
framework MiniDockNet for VNF deployment using
“docker” 2 over in-network processing, as the existing
network name-space oriented mininet 3 emulator is not
sufficient for in-network processing.

« Based on the experimental results over a realistic large-
scale system (with 70 devices and 6 different service
chain scenarios), we found that Amalgam can ensure fine-
grained QoS without significant increase of resource uti-
lization of the devices. After comparing the performance
of Amalgam with two state-of-the-art distributed SFC
platform “Dysco” [7] and “WGT” [11] we found that,
Amalgam is capable of a significant reduction in the flow
initiation delay and improves the performances of short-
duration flows in terms of end-to-end delay.

This paper is organized as follows. Section II describes the
architecture of proposed Amalgam. Section III describes the
design choices taken during the development of Amalgam.
We describe the experimental setup details, results and our
observations in Section IV before concluding in Section V.

II. ARCHITECTURE

The proposed Amalgam* is constructed on the top of

Aloe [16] framework. Aloe provides an orchestration frame-

Zhttps://www.docker.com/
3http://mininet.org/
“https://github.com/subhrendu1987/NFV_MiniDockNet

work for a fault-tolerant self-stabilizing distributed control
plane on top of the in-network processing platform using pCs
(microcontrollers) instead of the standard SDN controller. Like
Aloe, Amalgam supports 3 operating modes for each device;
(a) Host/(default) mode: if the device executes only the
client/server application, (b) Forwarding mode: If the device
has multiple active network interfaces, (c) ©C mode: based on
the topology, if Aloe selects the device as a uC. At any instant,
each device is in “at 1east” any one of the above modes and
each mode is a component of Amalgam framework as shown
in Fig. 1. A mode selector module in “forwarder” component
identifies the mode of operation and activates the respective
components. Apart from the mode functional components, we
add a seperate “policy manager” component in the Amalgam
framework. Policy manager is a distributed database with a
“REST” driven interface which contains (i) the flow identifier
(i.e., “OpenFlow” match field) and (ii) ordered list of the
types of VNF (service chain) through which the flow should be
steered. This component is consulted by the mode functional
components at time of determination of SFC.

Among the mode functional components, the host is the
simplest. This component is responsible for traffic generation
through the “App” module, which represents the client/server
applications. Additionally, this module can request the nearest
1C to change the SFC for the flows generated by the host.
The “mode selector” module elevates the mode of the device
with multiple active interfaces to “forwarder”. The forwarder
component consists of “software switch”, “VNF runner”,
and a “resource monitor”. The software switch module is
responsible for forwarding data from one interface to another.
On the other hand, the “VNF runner” block is reserved for
execution of VNFs (e.g., Vi, V5 etc. as shown in Fig. 1).
This VNF runner block from each device constructs the in-
network processing framework. During the execution of the
VNFs “resource monitor” module periodically monitors the
available resources in the device. The resource monitor module
forwards the collected resource utilization statistics to the uC
component.

The ©C component is composed of three functional blocks
namely Service chain identifier (SCI), ““VNF manager””,
and “Aloe ;1C”. The tasks of these blocks are as follows.

1) Service Chain Identifier: At the startup phase of the C,
SCI caches the policy in a local cache. The local cache is
updated whenever the policy manager database is updated.
SCI module is consulted when an “OpenFlow” “packet
in” event is initiated at the pC. From the list of VNFs
in the service chain, SCI chooses the first VNF, and it’s
execution status in the local domain. If the VNF is executing
inside a forwarder connected to the pC, the SCI consults
the path management module to establish the data flow path
by installing flow table entries via standard “OpenFlow”
protocol. Otherwise, it sends a search query to the other pCs
to identify the target VNF address. If the address of the VNF
is not found, then SCI consults the VNF manager module
(Section II-2) to start the execution of the VNF. This procedure
is iterated for all the VNFs in the service chain.
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2) VNF Manager: The VNF manager module (VMM)
works in a distributed fashion and communicates with the
neighbor ;/Cs. VMM tries to answers the following two ques-
tions; (a) should the VNF be placed in any of the forwarders
associated with the 4C? (b) which forwarder should take care
of the VNF?. The detailed protocol to find an answer to these
questions is described in next section. Additionally, VMM
also takes care of the dynamic addition or removal of the
VNFs to an ongoing flow.

3) Aloe uC: The Aloe ;1C module is the containerized SDN
1 controller module as described in [16]. “Aloe” provides
a distributed fault-tolerant controller module suitable for in-
network processing frameworks that are responsible for path
management. Use of Aloe ensures quick flow initiation along
with fault and partition tolerance in Amalgam. However,
during the design of Amalgam, we face several challenges
exclusive to SFC deployment of IoT

III. CHALLENGES AND DESIGN CHOICES

The goal of Amalgam is to provide a highly dynamic in-
network processing platform. In this section, we describe
the implementation challenges and the proposed solutions to
overcome the scalability issues without affecting the dynamic
behavior of the platform.

(a) Plug-and-Play Capability:A typical IoT platform is
composed of plug-and-play devices where “zero-touch
deployment”? is highly desired. It is necessary to configure
a new device as soon as it enters the eco-system. To avoid indi-
vidually configuring the devices, we design each component of
Amalgam (except the host component) as Docker containers.
Once a device enters the eco-system, it assumes the host mode
of operation. Since the host mode does not require anything
more than the IoT applications (clients and servers), they
can work smoothly. Whenever the device wishes to change
its mode, it can pull the container image of the Amalgam
component from the nearest forwarder.

(b)Distributed VNF Placement: In a short-lived flow heavy
system, minimization of the flow initiation delay is critical.
The flow initiation delay consists of following components
namely (a) Controller consultation delay (b) SFC deployment
delay, and (c) path setup delay. The proposed VNF placement
reduces the SFC deployment delay. A SFC for a particular
flow is composed of multiple VNFs, which requires resource
consumption. Each device of a IoT in-network processing
platform has residual resources that can be used for de-
ployment of these VNFs’s. The proposed VNF placement
identifies the set of devices where the VNFs of the SFCs
can be placed for a given network and flow profile while
satisfying the capacity constraints of the devices. Maintaining
capacity constraints in a multi-domain system is non-trivial
since the residual capacity of a device residing in a different
administrative domain is difficult to collect. Therefore, we
propose the greedy heuristic as given in the Algorithm 1.

Shttps://www.etsi.org/technologies/zero-touch-network-service-management

Algorithm 1: Distributed Placement of VNF

1 Function GreedyPlace (Path: P®, Service Chain: Cj, pC:l):
2 Find ordered set of unplaced VNFs from C7;

3 I {i:i€ P" ¢; =1}

4 Place as many VNFs as possible among I;

5 return number of VNFs placed;

6 Function Main (Flow: f7,uC: 1): )
/+ Find VNF placement profile for fJ in ¢; =/

7 Find set of paths (P) from s; to d; by querying “Path Management”
module of [;
8 maximize GreedyPlace (P%,C7,1);
Pacp
9 if 3cj kv Cj jman MOt placed then
/* All devices under [ x/
10 Obtain the list of adjacent pC of [ and store it in N puforeach
I’ € Nudo
11 L Main (f7,1');
12 return;

Each pC in the end-to-end path (P) executes the proposed
heuristic for each flow (f’ represents jth flow) from source
(s;) to destination (d;). We denote SFC of f7 with C7. Certain
1C with ID | maintains the topology information as the list of
devices (D;) and list of links (E;) where each link ¢; » € E;
represents the physical connection between two devices (¢ and
1). For the sake of simplicity, we denote the uC associated
with ¢as ;. The proposed heuristic identifies a path P
between s; to d; from the set of P such that, most of the VNFs
of C7 are placed near s; in a distributed fashion. This way,
one pC does not need the resource utilization of devices from
other administrative domains. Once the flow is established,
the resource utilization of devices in the path (info) is
piggybacked with the data packets. The VNF manager can
re-solve the Algorithm 1 and find a new allocation of VNF
with updated utilization.

(c)Migrations of the VNFs: A VNF may be relocated during
(a) VNF readjustment due to prior sub-optimal placement and
(b) addition or removal of the device. The pC nearest to the
source node of the flow decides the VNF readjustment after
it receives the piggybacked resource utilization of the devices.
On the other hand, the addition and removal of devices trigger
“topology_change” event, and the local pC initiates the
decision about the VNF deployment. In both cases, the decider
w1C starts the migration process at the source device. Initially,
the source device saves a snapshot of the executing container,
and the snapshot is transferred and restored in the target
device. Finally, the ;C updates the existing flow table entries
accordingly.

(d)Dynamic management of service chains: Amalgam pro-
vides support for dynamic service chaining. Dynamic service
chaining enables VNFs to meet changing service requirements.
For instance, consider a flow passes through a firewall VNF.
Based on the signature of the flow, the firewall conditionally
decides to steer the flow through an additional deep packet
inspector (DPI) without interrupting the flow. To implement
this, Amalgam allows the VNFs to interact with the local uC
via “REST” interface. The local uC can deploy the DPI if it
is not available and sends the “OFPT_FLOW_MOD” events to
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the forwarder component to enable the flow steering without
terminating the flow.

(e)Flow Tags for Monitoring: Once the VNFs are placed, the
path management module of uCs set-up the flow table entries
of the participating forwarders via OpenFlow protocol. One
issue regarding path management through service chains is
to identify an end-to-end flow that arises in the presence of
the “5-tuple” changing VNFs (e.g., Load balancer, web proxy
cache, and NATs). Since such VNFs may alter the packets in
unpredictable ways, fine-grained management and monitoring
of the flows passing through becomes difficult. To avoid this
issue, Amalgam attaches a “VLAN” tag to the packets before
it enters the VNF. The nearest ;4C of the VNF maintains
a table for flows like f“, which keeps track of the original
match field of the flow and the modified field (alias).
(f)Providing QoS: Amalgam is developed on top of the SDN
decentralized control plane, which enables us to ensure flow
specific QoS guarantees. On the other hand, since the VNF
deployment is done using containers, using “cgroups’can
ensure the VNF specific QoS like reservation of CPU, Mem-
ory, etc. The policy server module contains the “cgroups”
parameters for each VNFs of a service chain, which is used
to ensure VNF specific QoS.

IV. PROTOTYPE AND EXPERIMENTAL RESULTS

The existing namespace oriented emulation frameworks
(e.g. Mininet) is not suitable for VNF migration and in-
networking platform emulation. Therefore, we develop docker
based MiniDockNet which mimics real-life VNFs using the
“Docker-in-Docker” configuration. This feature ensures rapid
deployment from MiniDockNet emulation to real in-network
processing environment. To implement the VNF migration,
we use standard live container migration using CRIU®. For
the emulation of the links between any two nodes, we use
“DRtp”

A. Experimental Setup

For experimental purpose, we use “rocketfuel
topology”’. Each link is configured to emulate 3ms of
delay and 10M bps of bandwidth using linux “tc” utility. We
use “iperf” to generate long flows; for shorter flows we
use “ping”. The clients and server applications are hosted
on the diameter of the topology. For background traffic we
use python based “HTTP” client and server.

We use “Apache cassendra” to implement the policy
server module. Rest of the Amalgam modules targeted for
uC are implemented on top of “Ryu”®, a python based SDN
controller framework. For experiments, we use 3 different
VNFs (NAT (N), Load Balancer (L) and Web Proxy(W)) to
create 6 different combination of service chain as given in
Fig. 5. In order to ensure the confidence on the results, each
experiment is repeated atleast 30 times.

Ohttps://criu.org/Live_migration
"http://tiny.cc/nv70mz
8https://ryu.readthedocs.io/en/latest/

B. Results

We compare the performance of Amalgam with the exist-
ing “P4”° based distributed session-oriented service function
chaining framework called Dysco [7]. Since, Dysco ensures
session related performance and does not provide any VNF
placement strategy, the performance evaluation of the proposed
distributed VNF placement algorithm is done with another
existing work WGT [11] which proposes a distributed heuristic
for VNF placement for the multi-domain network.

1) Session Related Performances: Fig.2 shows the compar-
ison between Dysco and Amalgam in terms of flow initializa-
tion delay. We found that Amalgam is capable of quicker flow
initialization than Dysco. This reduction in flow initialization
delay comes from the parallel deployment of VNFs as opposed
to the hop by hop deployment of VNFs in Dysco. The
advantage of flow initialization delay becomes much evident
in the case of longer service chains like C° than the smaller
service chain like C'!.

Since Amalgam uses containers to deploy the VNFs as
opposed to the P4 applications used in Dysco, the deployment
of VNFs using Amalgam incurs greater latency, as shown in
Fig. 3. The increase in VNF deployment time for Amalgam
depends on the VNF container size. Therefore, the deployment
latency is higher for C°® in compared to C'. However, in a
large scale network, VNF deployment events are far rare than a
flow generation event. On the other hand, the use of containers
provide greater flexibility as the creation of new middlebox ap-
plication using container requires less programming overhead
than the creation of a new P4 application. As a result, state
management during the migration of VNFs from one node to
another becomes easy when they are running inside a container
as compared to the P4 applications of Dysco. However, these
management benefits of containers come at the cost of resource
utilization.

The placement of VNFs requires resource occupancy in the
deployed devices, which is an important aspect of resource
constraint IoT devices. In Fig. 6, we compare the performance
of Amalgam with Dysco in terms of CPU utilization of
devices due to the placement of VNFs. In order to normalize
the additional resource consumption of Amalgam due to the
use of containers, we also compare the resource utilization
of Amalgam without using docker. Similarly, we provide a
comparison of memory utilization for Amalgam and Dysco in
Fig. 7. Based on these two experiments, we observe that Dysco
incurs less utilization of resources than the proposed Amalgam
with the container. However, based on the “Wilcoxon Rank
Sum test” we find that, the difference of resource utilization
of Amalgam without Docker and Dysco is statistically insignif-
icant (i.e. p—wvalue > 0.05) for C4, C° and C®. Fig. 8 shows
the comparison of throughput between Amalgam and Dysco.
The Wilcoxson rank sum test reveals that the throughput
between Amalgam and Dysco are statistically indistinguishable
(Here our alternate hypothesis H, is Amalgam provides less
throughput than Dysco).

https://p4.org/
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2) Performance of Distributed VNF Placement: To measure
the performance of distributed VNF placement heuristic used
in Amalgam, as mentioned earlier, we deploy WGT [11] on
top of Dysco. However, it is difficult to deploy a centralized
controller for a large scale multi-domain system. Therefore,
we place the WGT in the micro-Controller («C) nearest to the
source device. We measure and compare the effect of delay for
all the service chains when the flow duration increases. Based
on the experimental results, we found that the effect of delay
for single VNF does not change since Amalgam and WGT
provides the same results for VNF placement. Hence, we omit
the plots for C, C2, C3. For multiple VNF oriented service
chains like C*, C® and C%, we provide the average end-to-
end delay in Fig. 9. Based on the results, we can observe that
Amalgam can perform significantly well for shorter flows as
the iterative WGT requires a significant amount of feedback
rounds to find the proper placements of VNFs.

C. QoS Provisioning

Amalgam is capable of showing QoS provisioning by re-
serving resources limiting CPU, memory, bandwidth, and link
delay. We perform two experiments for each resource type,
one with no provisioning and another with resource reservation
limit set as the mean value found in the previous experiment.
Based on the Wilcoxson rank-sum test on these results we
found that, except the memory utilization (P-value = 0.42)
rest of the resource reservation works significantly well (with
P-value< 0.05). We also find that the resource reservation can
reduce the jitter of the flow, as shown in Fig. 4.

V. CONCLUSION

In this paper, we present Amalgam, which integrates the
distributed SDN orchestration framework with the distributed
service chain management framework. The proposed Amalgam
is suitable for large scale multi-domain IoT in-networking
platforms. We also provide a distributed heuristics for the
placement of constituent VNFs of service chains. The lack
of an existing emulation platform for container oriented VNF
service chain has motivated us to develop “MiniDockNet”.
Using this emulation platform, we found that Amalgam incurs
a lesser flow initialization delay than that of a very recent
distributed service chain management framework (Dysco). We
also show that Amalgam is capable of ensuring less end-to-end
delay for short flows.
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