Poster: Seamless Client Integration for Fast
Roaming in Wireless Mesh Networks

Martin Backhaus and Markus Theil and Michael Rossberg and Guenter Schaefer
Technische Universitit [lmenau, Germany
[martin.backhaus, markus.theil, michael.rossberg, guenter.schaefer][at]tu-ilmenau.de

Abstract—IEEE 802.11s enables rapid deployment of Wireless
Mesh Networks (WMNs) to supply basic wireless connectivity
for client hardware. However, if state-of-the-art routing protocols
are up to the task in practice is not systematically evaluated,
especially when considering seamless client integration without
using central Wi-Fi controllers. This paper analyzes and enhances
the Babel routing protocol for WMNs with attached clients. In
particular, we improve roaming times by enhancing client route
handling and integrating clients as if they were announcing
themselves. We present client roaming performance based on
real-world experiments leveraging a 20-node testbed.

Index Terms—Wireless Mesh Networks, Mobility

I. INTRODUCTION

While Wireless Mesh Networks (WMNs) have been an active
research area for many years, a huge discrepancy exists
between systems laid out in research publications and practical
approaches using current IEEE 802.11 compliant hard- and
software. Installations equipped with many clients and mesh
routers are still unfeasible due to missing integration of non-
mesh clients into mesh networks [1].

The distributed nature of WMNs cannot appropriately be
translated into an available network architecture as most mesh
solutions from companies like Cisco or Aruba use Wi-Fi
controllers to handle client associations and build tunnels from
mesh routers to the controller, which potentially poses a Single
Point of Failure (SPOF). Even if the controller itself does not
fail, mesh nodes can lose their controller connection, if mesh
links or nodes on the path to the controller are hit by an outage.
In a decentralized network, even in case of network partitions,
a node can still communicate with every other node in its
partition.

Existing open mesh routing protocols like OLSR [2] or
B.A.TM.A.N. [3] provide no means to support fast client
mobility and robustness, i.e., fast and proactive route repair
mechanisms. But WMNs might be valuable for first responder
scenarios or industrial installations like mines or oil fields.

Given the sketched deficits, this paper studies the well-
established Babel routing protocol [4] and provides enhance-
ments which enable fast client mobility. We decided to enhance
and fine-tune Babel over designing a completely new routing
protocol, because it already provides a good starting point.
Babel already employs distance vector mechanisms combined

This work was supported by RWTUV-Stiftung (Essen, Germany) under grant
number S0189/10033/2018.

Annex to ISBN 978-3-903176-28-7 © 2020 IFIP

with an efficient update mechanism. It is also flexible, due to
using Type Length Values (TLVs), and provides built-in hooks
for extensions. Therefore, we decided to base our work on
Babel and to systematically analyze and enhance it for fast
routing convergence after roaming events. In particular, we
suggest improvements for client prefix handling to yield fast
re-convergence for mobile clients and evaluate our approach
using real-world experiments using a 20-node testbed.

II. REQUIREMENTS, PRESUMPTIONS & RELATED WORK

To work in real-life environments, a robust WMN has to work
decentralized, i.e., there is no SPOF like a Wi-Fi controller.
As a quantitative requirement, we want clients to finish the
transition between Access Points (APs) in much less than 1
second — including time for routing re-convergence.

We assume that every router can learn the IP addresses of
(mobile) Stations (STAs) immediately after they are connected
to reduce the time which would occur when using dynamic
address configuration. Fast mobility without central coordina-
tion is otherwise not achievable given current protocols. In
the following, we will refer to this as fixed IPs. Furthermore,
we assume every router to have a synchronized clock with
an offset #; < 50ms (less than a Wi-Fi client’s re-association
time) to every other router, e.g., by using [5], [6].

Babel [4] is a distance vector routing protocol using
sequence numbers to guarantee route information freshness,
thus, preventing the count-to-infinity phenomenon. It has no
explicit client mobility support — especially for the case of
fixed IP addresses. A client’s disassociation would most likely
result in a retracted route, to be re-announced from the new AP.
The new route will have a different router ID (as it originates
from a new mesh router; these IDs identify Babel speakers).
Changing router IDs may indicate formation of a routing loop,
requiring reactive measures to resolve [4]. This measure takes
one complete round trip to regain connectivity.

State-of-the-art routing protocols like modified protocols
stemming from ad-hoc networks, e.g., Hybrid Wireless Mesh
Protocol (HWMP) [7], assume a high degree of node mobility,
but (implicitly) assume all nodes are mesh capable. WMM [§]
caches the client location and updates it on mobility. Flooding
is used, when the location of a client is unknown. IP options
are used to store and learn location information of the
client. B.A.T.M.A.N. advanced [9] uses roaming advertisement
messages to update client associations in the corresponding
table of the last router. To sum up, there is no protocol that

637



efficiently provides convergence speedup for the subset of
routes from mobile clients.

III. BABEL-MC FOR SEAMLESS MOBILITY SUPPORT

Our enhancements to Babel, called Babel-MC (short for Mobile
Clients), convert client routes into virtual sources and announce
them as if a client is an independent Babel instance for seamless
client integration. Babel can cause short routing loops, if the
same prefix is announced by multiple routers at the same
time [4]. Mobile clients with fixed addresses (as presumed in
this work) trigger this situation frequently, if the last router has
not detected that a station moved to the next router — which
already announces the client’s prefix.

Furthermore, the Babel RFC [4] states that synchronizing
sequence numbers between different routers originating the
identical prefix is cumbersome and should not be pursued.
Instead, Babel enables to announce the same prefix from
different routers using distinct router IDs — therefore, sequence
number synchronization is superfluous. As mentioned, mobile
clients will cause multiple prefix announcements (from different
routers), leading to update distribution for the same client
using different router IDs. While announcing the same prefix
on different routers is perfectly viable in case it is actually
reachable (e.g. default routes or multiple adjacencies to the
same subnet), announcing a client prefix from multiple points in
the network, while it is only reachable from a single router with
a Wi-Fi connection, renders the client temporarily unreachable
from some parts of the network. Furthermore, a changing router
ID may indicate a routing loop in formation and Babel may

interpret it as a retraction — as explained before (see Sec. II).

A new route will then be formed after the routing information
is explicitly refreshed, resulting in at least one more round trip
time of delay prior to successful client roaming.

This behavior is unsuitable for seamless client integration. To
improve the mechanism, we choose consistent router IDs (for
client routes only) which would result in the above-mentioned
issue of sequence number synchronization. Omitting sequence
numbers and replacing them with timestamps automatically
resolves this issue. This creates two tasks: 1) Choosing a
consistent router ID for each client route and 2) integration of
timestamps associated with these routes.

1) Consistent Virtual Router IDs: As we presume clients
to have a fixed IP address no matter to which router they are
associated, we can announce this IP as a /32 prefix in case
of IPv4 (and a /128 prefix for IPv6). A SHA-256 hash of
this prefix can be truncated to obtain a router ID, a so called
Virtual Router ID (VRID), resulting in a consistent router ID
for each client that can be easily derived from every router in
the network without any overhead. The VRID is then used to
announce the client prefix containing only a single IP address.
This way, it seems as if a client represents an independent
Babel instance announcing itself, no matter to which router a
client is actually associated.

2) Client Updates w/ Timestamps: Using timestamps instead
of sequence numbers for virtual client routes automatically
grants useful properties for roaming, which sequence numbers

Ping ) =
Src.
-
:
N high attenuation
¥ P
pll=ll ) @
_ STA _ —_—
é
&=

Fig. 1. Real-world testbed with client (incl. its trajectory) and a ping source.
The highlighted red area in the middle (restrooms and a supply duct) inhibits
Wi-Fi signals of our test APs passing trough it.

cannot. In particular, all events within one roaming process and
different roaming processes themselves can be chronologically
compared. As long as these events result in routing updates,
each node will be able to determine their freshness. Timestamp
encoding uses two unsigned 64-bit numbers for seconds and
nanoseconds. Using timestamps requires synchronized clocks
(see Sec. IT). As we continue to use sequence numbers between
mesh routers, a time synchronization protocol can rely on
established mesh routes in order to reach a time server or other
mesh nodes. As each Babel TLV should be uniquely decodable
based on its type, we added a TLV called ClientUpdate for
these timestamps.

If a client is detected to be lost, Babel-MC announces the
client’s prefix with an “expensive” metric — which is not as
severe as a route retraction. Choosing an expensive metric
implies other routes (as soon as they come up) to be better
and therefore preferred in the future. The reason not to send
a definite retraction in case of roaming is that the client will
be most likely reachable again after a very short transient
phase. Therefore, explicit retractions are too harsh, especially
if roaming events are restricted to a small area of the network,
i.e., client roaming between neighboring mesh nodes. Finally,
if a client connects to a new router, we announce the client
with its precise metric to update information on other nodes.
Leveraging timestamps in this process leads to seamless client
roaming without explicit retractions in case of fixed client IPs.

Concerning fixed IP addresses of clients, our real-system
implementation uses a small helper tool, which adds client
routes to announce when a client signaled his IP address(es).
In our implementation, this requires X.509 certificates on each
mobile client, which includes an IPv4 and/or IPv6 address, but
it is also possible to achieve by other means.

IV. EVALUATION

We discuss our mechanism qualitatively first, before giving
quantitative results of Babel-MC using a real-world experiment.
Numerical results are averaged over 32 repetitions with 99%
confidence intervals.

Our developed approaches meet initially stated functional
requirements. Clients are seamlessly integrated; we were able to

638



reuse and extend Babel functionalities to do so. The presented
approach requires no centralized instance, therefore, no SPOF
exists. Using VRIDs, routes of clients never need to be retracted
completely in case of roaming and they are announced to work
together with Babel’s mechanisms to deliver feasible routes
without the need for explicit sequence number requests or route
requests (as they would occur in Babel’s usual operation with
roaming clients carrying the same IP address). This provides
seamless client reachability when roaming.

In our experiment, we measure the total time of a roaming
process in the routing protocol, i.e., the client moves from
one node to another and the new route is available in the
network (such that the client is reachable again). A mobile
client (smartphone) carried by a pedestrian moves in our testbed
while being pinged from a stationary notebook, see Fig. 1.
Measurements are done in a simplified fashion using ICMP
echo requests and replies between the ping source and the
client. We record and examine ping traces, which will give an
upper bound for the time required for successful client roaming
when counting the quantity of lost replies. As it is not obvious
how many replies = will be lost when trying to distinguish
client roaming and regular packet loss, we show results for
varying values of x. We compared our approach to babeld [10]
as a reference. This standard Babel implementation uses a
rather large TLV flush interval of 2.0 s by default, which we
patched to 100 ms to match our approach.

Because we are performing measurements within our testbed,
some specifics to this real-world scenario have to be discussed.
As our approach should be usable with off-the-shelf Wi-Fi
devices, we test with an unmodified Samsung Galaxy S8
smartphone. Therefore, its roaming decisions are hard to
anticipate. Samsung lists multiple criteria for its Android-based
smartphones, like lost beacons, low RSSI, or high channel
utilization [11]. As we cannot completely control these criteria,
the smartphone roams with a different frequency between runs.
We therefore only measure the outage after a successful roaming
event and cannot use or anticipate its exact point in time. The
ping source is a Lenovo Thinkpad T470s running Linux 4.15.
Babel-MC is implemented as a C++ daemon running on Linux-
based 1GHz x86_64 embedded PCs (PC Engines APU2C4).
We leverage NTP for clock synchronization in our prototype.

The client roaming time should be as fast as possible, but
some restrictions apply. As we use EAP-TLS for exchanging
certificates with IP addresses, the STA requires at least
50-70ms to roam to a new AP, after it has scanned its
environment. Additionally to the client roaming to another
AP, Babel-MC has to recognize the newly attached STA in
form of a new client route and distribute this route. Therefore,
we can estimate the overall roaming time (until echo replies can
be received again), to be at least the STA Wi-Fi roaming time
of 50-70 ms and several seconds as a maximum. Fig. 2 shows
the achievable end-to-end roaming time assuming a varying
quantity of consecutive lost pings, which were send in 10 ms
intervals. As transmissions over Wi-Fi naturally experience
some packet loss, we should not consider one or two lost
packets as an interesting roaming timespan candidate. Being

@ . . : :
© 25 Babel 3 [i--- . - - i i i e, . i
E |

F ol B :

> : g

£

E 15

©

i

- |

2

8]

L 05

@

a0

1 2 3 4 5 6 7 8 9 10 M
No. of Consecutive Missing Replies to Assume a Roaming Event

Fig. 2. Predicted time for client roaming events.

conservative, we consider outages to originate from roaming
events in case of at least seven consecutively missing echo
replies. This yields a mean roaming time of 118 ms for our
implementation, while babeld roams in 1.99s. If we compare
118 ms with our estimate, it is residing in the lower end of the
possible spectrum and can therefore be considered fast. Babeld
is slower as it involves more steps to move the client IP prefix
to another router.

V. CONCLUSION AND FUTURE WORK

In this article, we presented Babel-MC, an extension of Babel
that seamlessly integrates clients into distributed WMNs. Our
evaluation with real-world experiments proved its ability to
provide fast client roaming times. This work is only one of
many building blocks needed for large and scalable, distributed
mesh networks. Future work is necessary in automatic multi-
channel selection strategies along with distributed client roam-
ing assistance, e.g., estimated neighbor lists for fast scans from
wireless clients.

REFERENCES

[1] S. Sampaio, P. Souto, and F. Vasques, “A Review of Scalability and
Topological Stability Issues in IEEE802.11s Wireless Mesh Networks
Deployments,” International Journal of Communication Systems, 2016.

[2] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC 3626, 2003.

[3] D. Johnson, N. Ntlatlapa, and C. Aichele, “Simple Pragmatic Approach
to Mesh Routing Using BATMAN,” in IFIP Intl. Symposium on Wireless
Communications and Inf. Techn. in Developing Countries, 2008.

[4] J. Chroboczek, “The Babel Routing Protocol,” RFC 6126, 2011.

[5] J. So and N. H. Vaidya, “A Distributed Selfstabilizing Time Synchro-
nization Protocol for Multi-Hop Wireless Networks,” Technical report,
UIUC, Tech. Rep., 2004.

[6] M. Rossberg, R. Golembewski, and G. Schaefer, “Attack-Resistant
Distributed Time Synchronization for Virtual Private Networks,” in Intl.
Conference on Computer Communications and Networks, 2012.

[7]1 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specification, IEEE Std. 802.11, 2016.

[8] D.-W. Huang, P. Lin, and C.-H. Gan, “Design and Performance Study
for a Mobility Management Mechanism (WMM) Using Location Cache
for Wireless Mesh Networks,” IEEE Transactions on Mobile Computing,
2008.

[9] Open Mesh, “B.A.T.M.A.N. advanced,” 2020.

[10] The Babel Routing Daemon Git Repository. Accessed: 20-Jan-2020.
[Online]. Available: https://github.com/jech/babeld

Samsung: Enhanced Roaming Algorithm. Accessed: 21-Jan-2020.
[Online]. Available: https://support.samsungknox.com/hc/en-us/articles/
115013403768-Enhanced-Roaming- Algorithm

(11]

639



