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Abstract—The Fork-Join (FJ) model has been extensively 
studied in the past due to its natural ability to capture com-

putation and communication systems that employ split and 
merge techniques, i.e., boosting performance through splitting 
and parallelizing the input and finally merging the results. This 
model finds applications ranging from multipath communications 
to distributed databases.

In this work, we explore the effect of batching within FJ sys-

tems, i.e., when servers collect the input to benefit from a so-called 
speedup, observed as a service time reduction due to batching. 
We numerically compare the performance when the speedup 
assumes different analytical forms. Our numerical evaluation 
shows that the steady-state waiting time of such an FJ system is 
heavily dependent upon the form of the speedup achieved through 
batching while the optimization thereof is non-trivial.

I. INTRODUCTION

With the advent of multipath communication and large-scale
data processing, there has been a rising interest in modelling
such systems in order to provide performance guarantees. 
A large class of parallel systems employs split-and-merge
techniques to enhance performance where incoming jobs are
split into tasks which are served by the parallel servers and the
served tasks are merged in the end to complete the process.
While such systems benefit from parallelization, the gain from 
it is not unmitigated, owing to the output synchronization
constraint these systems pose. FJ models have been in the
forefront among the modelling frameworks due to its natural
ability to account for the dynamics of this class of parallel
systems [1] [2]. One of classical examples of a classical
system under the split-and-merge paradigm is MapReduce [3]
and its implementations, e.g., Hadoop and Spark [4], are
indispensable part of the modern IT world.

Service batching has long been known as a key tech-
nique to cutback overhead, especially in communication and 
computing systems. This involves accumulating incoming re-
quests/packets to form a batch which is served as a single
entity. Due to overhead amortization, service batching has been
found to have favourable impact on the system throughput and
a varied impact on the delay of the incoming requests, strongly
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influenced by the underlying dynamics of the system and the
size of the batch. Prominent examples where service batching
facilitated enhanced throughput are: data-packet batching in
Linux-based systems [5] and query-batching in databases [6].

In this work, we seek to model an FJ system which employs
batching of tasks to enhance the performance further. To this
end, we ascribe certain analytical forms to the gain obtained
from service batching, termed as speedup in the following,
and analyze the resultant waiting time. Such technique might
prove to be useful in distributed databases where after splitting
a complex query into smaller queries for constituent servers,
smaller tasks can be batched to enhance performance further.
We simulate an FJ system with high utilization and observe
the pattern of the steady state waiting time as the batch
size grows and the speedup form and the size of the system
is varied. While the formal model is given in Sect. II, the
numerical results of the experiments are presented in Sect. III.
We also discuss the related work in Sect. IV and summarize
our findings in Sect. V.
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Fig. 1: Sketch of an FJ system with task-batching: Incoming
jobs (dark grey units) arrive according to a renewal process
and upon arrival are split into N tasks of equal size (light
grey atoms). In each server, k tasks are batched and served
together. Batches of tasks are finally merged and jobs with
tasks from the same batch leave together.

II. BATCHING IN A FORK-JOIN SYSTEM

We schematically depict the general FJ model of a par-
allelized communication / computation system in Fig. 1. In
such a system, jobs arrive to the splitting station according
to a certain arrival process. These jobs may resemble data
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chunks that need to be transported over different paths or
computations that are spilt and mapped to multiple servers for
execution. The jobs are split into tasks and sent to the parallel
servers for processing. The servers extend service according
to independent service processes and once processed, the
completed tasks are finally merged in the merging station and
the job is said to leave the system. In this work, we restrict our
attention to the case where incoming jobs have unit size and
are equally split among the homogeneous servers. Note that
equal split, which happens to be proportional split for the case
with homogeneous servers, might be favoured over adaptive
allocation due to its ease of implementation.

With the description above, we aim to evaluate the per-
formance of FJ systems when the tasks are batched in each
server after being split. Batching is a technique that is often
employed to boost performance, e.g., throughput, and can be
found in many applications ranging from packet transmission
and reception on network cards to database query executions.
This is because service batching is seen to reduce the total
service time. This phenomenon is loosely termed as service
speedup. In the following, we assume that the batch size is
kept fixed over time and across servers, motivated by the fact
that keeping batch size fixed makes it easier to implement in
real-world systems. It is also seen to be beneficial in other type
of batch-processing systems such as databases where cached
batch queries might be utilized for fixed batch sizes.

Let us denote the service time of a batch consisting of k

tasks of unit size as Sk. Now, without loss of generality, we
can assume E(S1) = 1 and scale other relevant variables for
the system. For the sake of brevity, we express the speedup
through the function g : N 7! R+ where g(k) = E(Sk).
Formally put, the speedup is equivalent to sub-additivity, i.e.,
g(k1 + k2)  g(k1) + g(k2). In this work, we consider the
following forms of speedup function:

• g1(k) = ak + b with 0 < a < 1 and a+ b = 1,
• g2(k) = 1� log(c+ 1) + log(c+ k) with c > 0,
• g3(k) = k

↵ with ↵ < 1.
Note that the parameters are chosen appropriately so that the
subadditivity criterion is met. We investigate the effect of
batching in terms of throughput of the system and the waiting
time of jobs in the steady state which, we assume, is attained.

Let us further assume that the jobs arrive according to a
renewal process, i.e., the interarrival times Ti’s are i.i.d. with
P (Ti > 0) = 1 8i. Let us denote this common distribution
by F (�), while � being the parameter of the distribution.
As stated earlier, jobs of unit size are split into N tasks
of size 1/N , where N denotes the number of available
servers/paths. If we denote the service time at the nth server
for the jth batch consisting of k such tasks by S

k
j,n, we have

S
k
j,n ⇠ G(µk/N), n 2 [N ]. Here, [N ] = {1, 2, . . . , N} and

E(Sk
j,n) = g(k)/N = E(Sk)/N and G denotes the common

service distribution which satisfies G(µ/x)
D
= G(µ)/x.

Note that the families {Ti} and {Sk
j,n} are assumed to be

independent. Further, we assume the splitting and batching
process to be instantaneous.

To account for the batching of tasks, we can formulate an
equivalent system where the every kth arrival is considered an
arrival of a job of size k and the service process is described
by the same family {Sk

j,n}. Let us assume the interarrival
times {Bi} of the equivalent system are i.i.d. with distribution
H(k,�), i.e., H(k,�)

D
=

Pk
i=1 Fi, with Fi ⇠ F (�). Let us

denote by Ul the waiting time of the lth job in the equivalent
system. If we take U1 = 0, i.e. we start the system with first
incoming job, we have,

Ul = max
�
0, max

1ml�1

�
max
n2[N ]

� mX

i=1

S
k
l�i,n �

mX

i=1

Bl�i

   
,

(1)

where
P0

i=1 Bi equals 0 by convention. Further, if we denote
the waiting time of the lth job in the original system as Wl,
we have Ul = Wl whenever l is a multiple of k. Otherwise,

Wl = Ubl/kc +
lX

i=bl/kck+1

Ti. (2)

If we average over uniformly chosen values of mod(l, k), the
average waiting time is given by

W̄◆ = U◆ +
1

k

kX

j=1

j�1X

i=1

Ti, (3)

where ◆ = bl/kc and
P0

i=1 Ti equals 0 by convention. Note
that the usual interpretation of 1/k

Pk
j=1

Pj�1
i=1 Ti is batch

formation time whereas U◆ is the waiting time after batch
formation. In line with [7], the steady state waiting times of
the equivalent system can be written as

U
D
= max

m�0

�
max
n2[N ]

� mX

i=1

S
k
i,n �

mX

i=1

Bi

  
.

Hence, following (3), the average steady-state waiting time for
the original system can be written as

W̄
D
= U +

(k � 1)

2
T1.

Observe that the second component of W̄ increases linearly
in expectation with batch size k whereas the relation of U with
k depends on the speedup and the distribution of interarrival
and service times as well. For a strong enough speedup, the
reduction in E(U) can even offset the increment in E((k �
1)T1/2), at least for a certain range of the batch size k.

III. EVALUATION

In this section, we first describe our evaluation setup and
subsequently present our observations on the numerical per-
formance of the system under different forms of batching
speedup. Although our framework is valid for any interar-
rival and service distribution, for simulating the FJ system,
we assume the families {Ti} and {Sk

j,n} are exponentially
distributed. Note that, since F is Exp(�), H ⇠ �(k,�), see
Chap. 6 of [8] for details. Further, the parameter � is suitably
chosen to have 0.95N arrivals/second, indicating high arrival
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(a) W̄◆ for a system with 2 servers.
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(b) W̄◆ for a system with 6 servers.
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(c) W̄◆ for a system with 10 servers.

Fig. 2: Average steady state waiting time for a job in an FJ system when the service speedup assumes linear form: The waiting
time gets longer as the batch size increases. The rate of increase diminishes with an increasing number of constituent servers.
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(a) W̄◆ for a system with 2 servers.
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(b) W̄◆ for a system with 6 servers.
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(c) W̄◆ for a system with 10 servers.

Fig. 3: Average steady state waiting time for a job under power form of service speedup: On average, the waiting time reaches
a minimum and increases subsequently, although the rate of increase flattens as the number of constituent servers grows.

regime, N being the number of servers in the system. Servers
are assumed to be homogeneous and the service time of a job
is assumed to be Exp(1) distributed. Note that jobs are split
into tasks of equal size and for a system with N servers, task
service times are distributed as Exp(1)/N .

For our evaluation, we take N = 2, 6, 10 to illustrate the
effect of batching on performance as the number of servers
grows. As described in Sect. II, we run experiments separately
for three forms of speedup, namely linear, logarithmic and
power. The exact forms for these speedups used for the first
set of experiments are:

• g1(k) = 0.95k + 0.05,
• g2(k) = log k + 1,
• g3(k) = k

0.8,

respectively. We simulate the job arrivals, splitting of jobs, in-
stantaneous batching in each server given appropriate amount
of available tasks, task service and finally instantaneous merg-
ing of tasks. We assume the steady state is attained after
105 arrivals and look at the throughput of the system and
the average job waiting time W̄◆ as defined in (3). We also
compute the component expressing the waiting time after batch
formation denoted as U◆ in (3). Simulation runs are repeated
500 times to generate the distribution of the waiting time. The
batch sizes for each run are given by {1, 2, 4, 8, 16, 32}.

We observe that the average steady state throughput equals

the arrival rate and that the dispersion around the mean
decreases fast as the batch size is increased, irrespective of the
form of service speedup and the number of parallel servers.
The waiting time W̄◆, however, shows a different pattern
depending upon the the form of the speedup and the number
of servers and, hence, is more interesting as a performance
metric. In Fig. 2, we see that, for linear form of speedup, the
waiting time increases as the batch size grows. This is because
both the batch formation time and the waiting time of the
batch grow with increasing batch size under linear speedup.
This, however, changes when the speedup assumes logarithmic
or power form. Note that the average batch formation time
is the same for all cases and grows linearly in batch size
irrespective of the form of the speedup. The batch waiting
time U◆, however, decreases for both power and logarithmic
speedup and even overcompensates until a threshold batch size
depending on the experiment parameters.

In Fig. 3 and Fig. 4, we see that the rate at which the waiting
time initially changes or eventually increases with batch size is
naturally dependent upon the number of constituent servers.
Further, in Fig 3, the deviation of the waiting time around
mean increases with batch size beyond the minima. We see
a similar centrality pattern for the waiting time even for
logarithmic speedup as seen in Fig. 4, although the dispersion
around mean steadily decreases with increasing batch size.
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(a) W̄◆ for a system with 2 servers.
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(b) W̄◆ for a system with 6 servers.
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(c) W̄◆ for a system with 10 servers.

Fig. 4: Average steady state waiting time for a job under logarithmic service speedup also reaches a minimum and then
increases on average as the batch size grows. Unlike the power speedup, the variance of waiting time goes down sharply.
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(a) W̄◆ for a system with 2 servers
under power speedup.
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(b) U◆ for a system with 2 servers
under power speedup.
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(c) W̄◆ for a system with 2 servers
under logarithmic speedup.
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(d) U◆ for a system with 2 servers
under logarithmic speedup.

Fig. 5: The waiting time W̄◆ obtains a minimum due to two offsetting factors: The increasing batch formation time with
increased batch size and the reduced waiting time after batch formation U◆ due to service speedup. For logarithmic speedup,
U◆ dies down to zero, leading to comparatively shorter waiting times and visibly lower variance.

This can be attributed to the fact that U◆, the waiting time after
batch formation, diminishes much faster in case of logarithmic
speedup which happens to be major source of variance in
the total waiting time W̄◆. We depict this behaviour in Fig. 5
where both the total waiting time W̄◆ and the batch waiting
time U◆ are compared for logarithmic and power speedup. We
see in Fig. 5d that the batch waiting time eventually dies
down which is not the case for the power speedup as seen
in Fig. 5b. Although the average waiting time gets shorter,
it shows comparatively higher variance, resulting in higher
variance of the total waiting time in Fig. 5a.

To understand the consequence of the speedup form, we
run another set of experiments with a different parametrization
given below:

• g1(k) = 0.5k + 0.5,
• g2(k) = 1� log(2) + log(1 + k),
• g3(k) = k

0.98.

The remaining setup is kept same as before. Our experiments
show that while logarithmic speedup is strong enough to retain
the similar pattern for the variation of the waiting time with
respect to batch size, the variation is strongly dependent on the
parametrization in case of linear and power speedup. E,g., this
particular power speedup fails to produce an optimum batch
size for waiting time while the linear speedup yields one.

IV. RELATED WORK

Literature related to ours can be segregated into two dif-
ferent areas, namely (i) analysis of queueing systems with
batching execution and (ii) the performance analysis and
applications of FJ systems.

One of the earliest examples of batching in the queueing
literature is [9] where the author derives the expected value
of steady state queue length and waiting time assuming
exponential inter-arrival and Chi-squared service time. In
[10], the authors consider a queueing system with Poisson
arrivals and general batch service time independent of the
batch size. Certain forms of holding and serving cost are also
assumed. Batching in the context of running a shuttle service
between two end points where customers arrive according to
independent Poisson processes has been investigated in [11].
The author provides an optimal batching policy for minimizing
the expected total discounted cost over infinite horizon. In
[12], the authors consider a system where the incoming jobs
have a strict delay guarantee. Given a certain form of serving
cost incentivizing batching and a particular distribution of the
arrivals, they prescribe a strategy that minimizes expected long
term cost per unit time. Further, a queueing system with bulk
service at scheduled times has been considered in [13] where
the customers can pick the arrival time to minimize the waiting
time. Under certain conditions, the authors establish that it is
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(a) W̄◆ under linear speedup.
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(b) W̄◆ under logarithmic speedup.
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(c) W̄◆ under power speedup.

Fig. 6: The waiting time W̄◆ for a system with 6 servers under the second set of speedup forms: The linear case shows similar
pattern to the logarithmic form due its strong speedup implication whereas the power form fails to produce an optimum.

optimal to arrive just the instant before a service starts. Further,
in [14], order batching in a synchronised zone order picking
system has been analyzed to design and formulate the selection
process in such a system. Note that, unlike our work, none of
these articles consider batching in the context of a queueing
system that employs split-and-merge technique.

Although there are useful results on adaptive allocation in
FJ systems, we restrict our attention here to non-adaptive
allocation which has been the focus of our work. It has been
long known that exact analysis of FJ systems is hard [15].
Exact results are only known for joint workload distribution
when there are two queues and under the assumption of
Poisson arrival and independent exponential service times [16].
Hence, most of the results aim to bound the tail distribution
of the waiting time for single stage [7], [17], [15] or multi-
stage systems [18]. FJ system with batch arrivals have been
looked into in [19], although task batching has been largely
unexplored to the best of our knowledge.

V. CONCLUSION

In this work, we have looked at a Fork-Join model of
parallel computation/communication systems where the input
jobs are split into tasks that are batched for performance
enhancement. This is a natural extension to the observation
that task-batching has been observed to be beneficial for
simpler non-parallelized systems. We have explored three
different analytical forms for speedup, i.e., the batching gain,
namely, linear, logarithmic and power law gain and looked at
the corresponding steady state performance of the system in
the high utilization regime. While there is not much effect on
the average throughput, there exists an optimal batch size for
which the job waiting time is minimized for a strong enough
speedup. This optimal batch size is, however, non-trivial as
it may vanish for some combinations of the arrivals and the
batching configuration.
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