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Abstract—Unimodal functions appear ubiquitously in resource
allocation problems. They arise whenever the expected value f(z)
of the metric to be optimized has a single peak as a function of
the available control variable x. The exact shape of f is often not
known in advance, hence it can only be learned via sampling. For
this purpose, we exploit the formalism of multi-armed bandits
to design a learning algorithm that i) converges in probability to
the optimal arm maximizing f and ii) does not require to know
the learning horizon in advance, i.e., it is anyfime. Moreover, it
adapts naturally to the scenario where iii) prior knowledge on the
location of the peak is available, even if the prior is inaccurate.
We also present an efficient heuristic that can use explicitly the
prior belief on the location of the optimal arm. We demonstrate
the applicability of our approaches to a basic resource allocation
problem for cloud computing, where the orchestrator adapts the
resources allocated to a client to its dynamic requests.

Index Terms—multi-armed bandits, unimodal, online learning,
cloud computing, resource allocation

I. INTRODUCTION

Unimodal functions f(z) are univariate functions with a
single peak, i.e., increasing for x < x* and decreasing for
x > x*, for some (optimal) value z*. They generalize the
concept of concave functions with a single variable, and appear
ubiquitously in the realm of communication network control.
In fact, unimodal functions often arise when an optimal trade-
off must be stricken between two opposite forces. In such
cases, the unimodal function f(x) describes the expected value
of the metric of interest to be maximized, and x denotes the
control variable. However, in a number of cases the function f
is unknown, and only the realizations of the metric of interest
can be observed.

In this general scenario we propose LSE-backtrack, the first
learning algorithm that converges in probability to the optimal
(in the multi-armed bandit jargon) arm x* and is oblivious to
the time horizon (i.e., it is anytime). It zooms in and out an
interval [#¥, 2] containing x* with high probability, and its
convergence properties are insensitive to the initialization of
[#L, xH] itself. Thus, it adapts well to scenarios where a prior
belief on the location of x* is available.

One important application scenario for our approach, work-
ing on general stochastic environments and relying on few
basic assumptions, is cloud computing. There, the main chal-
lenge faced by the cloud orchestrator is to allocate the “right”
amount of resources (memory and/or CPU, typically) to each
user, without knowing in advance its dynamic needs. To be
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concrete, one can think of a container orchestration module
like Kubernetes [1], promising to scale a cloud infrastructure
based on users’ demand, by dynamically adding or removing
pods on the computing nodes via the so-called autoscaling
procedure [2]. The orchestrator has two conflicting objectives:
avoiding to waste resources and satisfying the clients. More
specifically, the trade-off faced by the orchestrator is between
the resource running cost, proportional to the amount of
allocated resources x, and the expected Quality of Service
E[QoS(z)] perceived by the user. Typically, E[QoS(x)] is a
concave function of x. For instance, consider that a small
Response Time (RT) is an indicator for good QoS: since
queueing theory teaches us that E[RT(z)] is convex decreasing
in the number of computing resources x (e.g., see Kingman’s
formula [3]), then we come up with the unimodal objective
function f(z) = —z — vE[RT(x)], with v > 0. As another
example, let us consider that the user has a QoS target that
is met only if the allocated resources z is not inferior to the
user’s resource request, as in Section VI. There too, under
weak assumptions, the resulting objective function f(z) is
unimodal.

However, the objective function f is generally unknown,
since the orchestrator can only observe the realizations of
the instantaneous QoS perceived by the users, but not its
expected value. For this reason, the orchestrator needs to
learn the optimal allocation policy via experience, and quickly
converge to the optimal trade-off via a learning algorithm.
Most importantly, the time duration of the user connection is
not known in advance, from which the need of an anytime
algorithm stems in this scenario.

Main contributions. We design LSE-backtrack, a bandit algo-
rithm on a continuous arm space that exploits the knowledge of
the unimodal structure of the average arm reward to converge
to the optimal arm z*. We prove in Theorem 2 that LSE-
backtrack i) converges to the optimal arm z* in probability.
Moreover, ii) it does not need to be parametrized with respect
to the time horizon of interest, thus LSE-backtrack is anytime,
i.e., it is able to provide performance guarantees at any
time step. This is crucial in realistic applications where the
algorithm runs indefinitely and still needs to perform provably
well at all times. In order to achieve this, LSE-backtrack
exploits a dichotomy algorithm that shrinks and expands the
interval of search to make up for wrong decisions. Such
feature also lets our algorithm iii) adapt naturally to scenarios
where a prior knowledge on the location of the optimal arm
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interval and still be able to converge to z* in probability
even when the initialization is wrong (see Corollary 2.1).
LSE-backtrack extends an elegant existing algorithm called
LSE [4] which does not enjoy the three crucial properties
above though. Finally, iv) LSE-backtrack is characterized by a
low computational complexity, as it only requires to compute
the average reward at six arms and make simple comparisons
at each iteration. We also present the heuristic LSE-weight
that naturally exploits the prior distribution on z*. LSE-weight
has weaker theoretical guarantees than LSE-backtrack (see
Lemma 1) but it performs well in practice (see Section VI).
Paper organization. We describe our model and the related
works in Sections II and III, respectively. We present our
LSE-backtrack algorithm and its convergence properties in
Section IV. We introduce LSE-weight, a variant that exploits
historic data, in Section V. Finally, we show how to apply our
algorithms to a cloud computing scenario in Section VI, along
with extensive numerical simulations.

II. OUR MODEL

We consider a stochastic multi-armed bandit problem where
the expected reward is unimodal over partially ordered arms.
More specifically, we consider a continuous arm space over
the interval of reals X’ = [a, b]. The environment sets a reward
function X — M (R), where M(IR) is the space of probability
distributions over the reals. We denote the reward distribution
assigned to arm xz € X as M, and we call f(z) the expected
reward associated to the arm x.

A decision maker interacts with the environment. At each
step t = 1,2,..., she selects an arm x; € X and observes a
reward Y (x;,t) randomly drawn at from the distribution M, .
The random variables (Y (z,))zeq,5],¢>0 are independent, and
for a given arm z, (Y(x,t));>o are independent and identi-
cally distributed. Our main assumption is that the decision
maker knows in advance, before starting interacting with the
environment, that the function f is bounded and unimodal.

Assumption 1 (unimodality). The function f : [a,b] — R is
bounded and unimodal, i.e., there exists x* € [a,b] such that
f is increasing on [a,x*] and decreasing on [x*,D].

We further assume that the bounds of f are known. Hence,
without loss of generality, we can suppose f : [0,1] — [0, 1].
Yet, the maximum and minimum of f are still unknown.

In order to be able to distinguish the average reward of
different arms with a finite number of samples and converge
to the optimal arm x*, we need to assume that the function f
has a minimum increase rate at both sides of the optimum z*.

Assumption 2. There exists Cr, > 0 such that |f(z)—f(y)| >
Crlz — y| for all pairs x,y € [0,z*] or z,y € [z*,1].

Observe that Assumption 2 is different from Assumption
3.2 in [4] since we focus on the convergence rather than on
the regret. We now state the main problem that we tackle.

Problem. Let Assumptions 1, 2 hold. Then, find an algorithm

A that converges to the optimal arm x* in probability, i.e.,
lim Pr(|z; —2*| < h) =1, Vh >0,
t—o0

where x; is the arm sampled at time t by algorithm A.
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III. RELATED WORKS

This type of repeated decision making problems has been
well studied in the literature under the name multi-armed
bandits [5], [6]. In the general case of a continuous reward
function whose derivative is not accessible but only a noisy
version of the function value is, locating the maximum can
be achieved through derivative-free approaches as [7]. Also,
one can evaluate the gradient by sampling the function at
a single (random) point; this is “gradient descent without
a gradient” [8]. The Stochastic Gradient Descent algorithm
(SGD, [9]) is less appropriate, since a number of samples
are needed just to estimate the gradient, which affects the
convergence speed.

If the reward function is known to be unimodal, then more
specialized techniques can be used. Golden Section Search
(GSS, [10]) is a dichotomic algorithm solving the problem
in the absence of noise, if the reward function is determinis-
tic. The stochastic setting is trickier, and requires numerous
samplings of the reward function during the dichotomy. Line
Search Elimination (LSE, [4]) is an adaptation of GSS using
PAC bounds [11] to determine an appropriate number of
samples. LSE is particularly efficient if the reward function
is convex or close to convex, and fails at the other extreme,
if the reward function presents a Dirac-like shape, with its
optimum on top of a sharp peak, surrounded by a flat plateau.
Stochastic Pentachotomy [12] is another dichotomy scheme,
with performance guarantees on all unimodal functions, but
with a much higher computational complexity. In fact, it
requires solving at each iteration an optimization problem
over a class of unimodal functions (see ITx routine in [12]).
Bayesian optimization [13] can be also used in this context.

Up the authors’ knowledge, all the algorithms for unimodal
bandits necessitate to know the time horizon 7' in advance
to properly tune some key parameters and ensure certain
theoretical guarantees on the regret and/or on the convergence.
For instance, the parameter ¢ in algorithm LSE [4] should
be proportional to 1/7 in order to guarantee convergence
with high probability; also, the subroutine that decides the
number of samplings during one iteration of Stochastic Pen-
tachotomy [12] takes the remaining number of plays as input.
Our LSE-backtrack is the first algorithm for unimodal bandits
that does not make assumptions on the horizon 7" and could
be executed forever, i.e., it is anytime [14]. We remark that the
doubling trick is a well-known technique allowing to transform
a non-anytime bandit algorithm into an anytime one with
respect to the performance guarantees on the regret in the long
run. It works by phases: each phase corresponds to a standard
run over a fixed time horizon T'. At the end of each phase, it
reinitializes the algorithm from scratch and doubles the time
horizon [15]. However, the doubling trick does not allow us to
achieve convergence in probability, for the reason itself that the
algorithm must be restarted periodically from scratch. Also,
in practice the doubling trick is not viable because it causes
severe performance degradation on a periodic basis.

Finally, if the arms form a discrete space, then Optimal
Sampling for Unimodal Bandits (OSUB, [16]) is yet another
approach, based on KL-UCB [17], [18]. However, this is not
our scenario since we consider a continuous set of arms.



In wireless networks, unimodal bandits have been exploited
in [19] for rate adaptation, allowing to maximize the achieved
throughput by appropriately tuning the coding rate. The ex-
pected throughput can be described as a unimodal function
of the coding rate, as it equals the product between the
coding rate itself and the probability of correct reception.
The approach in [19] is conceived for scenarios where the
observations are binary, as at a given time the sender can
only know whether the transmission was successful for the
employed coding rate.

IV. LSE-BACKTRACK

In this section we describe our main algorithm for unimodal
continuous bandits, called LSE-backtrack, and we prove its
convergence properties. Before that, for the reader’s con-
venience, we present the state-of-the-art algorithm that we
improve upon, called Line Search Elimination (LSE) [4].

A. Line Search Elimination (LSE)

The Line Search Elimination (LSE) algorithm [4] adapts
Golden Section Search (GSS, [10]) to stochastic bandits using
the PAC-bounds that can be found in [11]. GSS is a dichotomy
algorithm that looks for the extremum of a deferministic
unimodal function. Instead of evaluating the function once at
each point (or arm) of interest as GSS does, LSE samples the
arms a sufficiently large number of times in order to obtain a
good estimate of the average reward of each selected arm.

At every iteration of the algorithm’s main loop, LSE focuses
on the interval [#¥ 2] in which the optimal arm z* lies
with high probability. LSE estimates the reward of four arms
zl < 24 < 2B < zf by sampling. Then, it shrinks the
interval by a constant factor 1/¢ (where ¢ = (1 ++/5)/2 is
the golden ratio) in the direction where the optimal arm z* is
supposed to lie, knowing that the underlying average reward
function f is unimodal. Thanks to the special property of the
golden ratio ¢, shrinking the interval by a factor 1/¢ allows
LSE to land on three arms already considered at the previous
iteration; hence, only one new arm is added at each iteration.
We report the pseudo-code of LSE in Algorithm 1.

Algorithm 1 LSE [4]

Require: Unimodal bandit function f : [0, 1] — [0, 1];
N (n): number of samples per arm at iteration n (n < 1);
Initialize the search interval [z¥, 2] < [0,1]
loop
at (" +2™) /(14 );
27— (2" o) /(14 0);
Sample f at arms z”, 2, 2% ™ a number N(n) of times
each and observe the resulting average rewards;
Let = be the arm with the highest average reward among
{zt z?, 2B ™}
if z € {z” "} then
[%, ™) « [2", 2B {Shrink to the left}
else if © € {z® 2™} then
[, 2f) « [z, 2] {Shrink to the right}
end if
Increment the iteration count n <— n + 1
end loop

H

As a terminology remark, the “time step” refers to exactly
one arm sample. We define “iteration” as one round through
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the algorithm’s main loop. Thus, one iteration for LSE consists
of 4N time steps, where NN is the number of samples per arm.
According to [4] and to [11, Theorem 1], if N is chosen as
follows: 1

N = log(8/9) (1)
for some ¢ and ¢, then at each iteration, an e-optimal arm
is correctly identified with probability at least 1 — § among
the four sampled arms. Therefore, it is critical for LSE that
0 is chosen small, with knowledge of the horizon T'; more
specifically, in [4] § is chosen proportional to 1/7. Note that
a small value of § directly impacts the number N of samples
per iteration, which is proportional to log(1/d), according to
(1). However, even if we choose a “small” value of ¢, there
is always a positive probability (< ¢§) at each iteration of
shrinking the interval in the wrong direction. This would cause
LSE to fail to frame the optimal value subsequently, since it
cannot catch up with previous mistakes. On the other hand,
€ should be chosen small enough to be able to distinguish
the rewards at different arms. We now provide the main PAC
result that holds for LSE and that we aim at improving upon.

Theorem 1. Run LSE algorithm with €(n) CL/e™t3,
N(n) = 1/e(n)*1og(8/5) and & € (0,1). After n iterations,
LSE successfully frames optimal arm x* in an interval of
length at most =™ with probability at least (1 — )™

The proof of Theorem 1 directly stems from the proof of
Theorem 4.4 in [20]. Note that, if 7" is unknown and ¢ is fixed,
then the probability that LSE frames the optimal arm tends to
0 as the number of iterations n — oo.

B. LSE-backtrack: Algorithm description

Let us first review the drawbacks of the existing algorithms
for unimodal bandit optimization that we wish to overcome, by
improving upon the elegant solution offered by LSE [4]. The
works in [12], [4] require to know the time horizon in advance
to ensure theoretical guarantees, i.e., they are not anytime. In
particular, LSE [4] has positive probability of deviating from
the optimal arm indefinitely when the horizon is unknown.
Stochastic Pentachotomy [12] has high computational com-
plexity, as it requires to solve an optimization problem over
the class of unimodal functions at each iteration. Moreover,
[12] and [4] do not adapt to the situation where a prior belief
over the location of the optimal arm is available. Finally,
the algorithms in [8], [21] do fully not exploit the unimodal
structure of the reward function as they are designed for more
general scenarios.

Our LSE-backtrack algorithm is inspired to the dichotomy
procedure proposed by LSE, which prescribes to appoint
an interval [z, 2] where the optimal arm x* is supposed
to lie, and to iteratively modify [z%, 2] according to the
samples collected on a small set of arms. However, at each
iteration LSE can only shrink the designated interval [z, 2],
while LSE-backtrack can stretch it when it is not believed to
contain z*. More specifically, at each iteration LSE-backtrack
samples two additional arms called 2”* and z outside the
designated interval [zX, ). If the average sampled reward
is higher at either of the exterior arms 2L and x™H | then
the optimal reward cannot be located inside of the search



xHH

(a)

xL xA xB xH
Shrink to the left

HH

(b)

S
xb x4 xB xH  x
Expand to the left

Fig. 1: LSE-backtrack. At each iteration, LSE-backtrack samples six arms
all gl gA oB oH HH, According to whether the highest sampled
reward is (a) at the interior or (b) at the border of the sampled pomts LSE-
backtrack (a) shrinks or (b) expands the search interval [xL x ] that is
supposed to contain the optimum x*.

interval [zX, xf]; this hints that [x%, 2] has been shrank in
the wrong direction at a previous step (see Figure 1(b)). Then,
our algorithm “backtracks”: it stretches the interval [z, 2]
to the right or to the left by the golden ratio factor ¢, whether
the sampled reward is the highest at 27 or 27", respectively.
This allows LSE-backtrack to cater for all the issues of state-
of-the-art approaches listed above, as we show next.

We report the pseudo-code of LSE-backtrack in Algorithm 2.

Algorithm 2 LSE-backtrack

Require: Unimodal bandit function f : [0,1] — [0, 1];
N (n): number of samples per arm for iteration n (n < 1);
Choose initial search interval [z, 2] (+ [0, 1] by default)
loop
m ~ (w: +x )/(1+<p);
zP < (:c —|—<px 2/(1 +¢);
Let 2 = max(z"", 0) such that 2" (cp‘LL—f—xH)/(l—i—cp);
Let 277 =min(z7 1) such that 2 = (a¥ 4+ pz"H) /(14-p);
Sample arms zlF, atL 24, 2P 2™ 2" a number of times
N(n) each and observe the resulting average rewards;
Let « be the arm with the highest average reward among
(2L, oL, 24, o8 oH o HH
if z = z~* then
[, 2] « [z'F, ™) {Expand 1o the left}
else if = € {z” 2"} then
(%, ™) « [2", 2B] {Shrink to the left}
else if © € {z® 2™} then
[, 2] « [z, 2] {Shrink to the right}

else if © = 2™ £hen

(%, 2™ « [2%, "] {Expand to the right}
end if
Increment the iteration count n <— n + 1
end loop

We remark that the theoretical analysis in our work (as well
as in [4] for LSE) assumes that all the samples are independent
across different iterations. For this reason, we prescribe to

resample each arm N (n) times at iteration n. However, the use
of the golden ratio ensures that at least three of the four arms
in LSE and four of the six arms in LSE-backtrack remain the
same at the next iteration. Hence, in practice, it is possible to
reuse samples from previous iterations for such arms in order
to accelerate the convergence. However, for LSE-backtrack we
suggest to reuse previous samples only if the interval is shrank,
since an interval expansion hints that previous observations
failed to correctly estimate the average reward at some arms
due to the presence of outliers.

C. LSE-backtrack: High probability PAC bounds

After presenting the details of LSE-backtrack for the op-
timization of bandit unimodal functions, we now deliver our
main theoretical results on its convergence properties.

We start by remarking the Theorem 1, that was proven
for LSE, still holds for LSE-backtrack; however, the reader
should note that (1 — )" 22¥%0, 0 if the time horizon T
is unknown and ¢ is constant. In other words, Theorem 1
does not allow us to prove that LSE-backtrack converges in

probability to the optimal arm z*.

Convergence in probability. Our main result presented in
Theorem 2 below shows that the arms sampled by LSE-
backtrack converge in probability to the optimal arm z* =
argmax,, f(z). The proof is in the Appendix.

Theorem 2. Run LSE-backtrack with €(n) = Cr/o""3,
N(n) = 1/e(n)?log(8/9), § < 0.074 and initialize the search
interval as [x*, x| = [0, 1]. With probability at least 1 —27",
after 3n iterations, the search interval [x* x™] has length at
most ¢~ ", and either contains optimal arm x* or is contained

in an interval of length =™ which also contains x*.

We first remark that LSE-backtrack is oblivious to the time
horizon of the learning process: indeed, the parameter § can
be kept constant (as long as it is small enough) and € := €(n)
only depends on the iteration count n. Hence, our algorithm
can run indefinitely and still provide performance guarantees at
any time. For this reason, it is denoted as an anytime algorithm,
and this feature has important practical implications described
in Section VI

We observe that, in order to frame the optimal arm x*, the
number of samples per arm N(n) must grow exponentially
with the iteration count n. This is due to the following three
joint facts: i) the interval [zl 2] converges exponentially
fast to x*, ii) strong-max Assumption 2 holds, hence
the rewards within [z% 2] also converge (at worst) at
exponential rate to f(z*) and iii) by [11, Theorem 1], one
has to collect a number of samples proportional to the inverse
of the (square of the) reward difference of the arms to be
able to distinguish them. However, we show via numerical
experiments in Section VI that LSE-backtrack is able to
converge to x* even with very few samples per arm and per
iteration (e.g., N(n) := N = 5).

Adaptation to prior belief. Theorem 2 already caters for
the need of i) converging in probability to the optimal x*
and ii) being oblivious to the time horizon. However, we still
need to show that iii) LSE-backtrack adapts to the situation
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where prior belief over the location of the optimal arm is
available. This translates into being able to initialize the search
interval [21, 2] to the region where z* is believed to lie,
and still converge to z* in probability even if the prior
is unreliable. Therefore, it remains to prove that the LSE-
backtrack converges to x* in probability even if the initial
search interval [#¥, 2] does not include the optimal arm z*.
For this purpose, a similar proof of Theorem 2 shows that the
same result holds for a sufficiently large number of iterations
n, needed to catch up with the initial offset. We report in
Corollary 2.1 the formal statement of this result.

Corollary 2.1. Assume that LSE-backtrack is initialized with
a search interval [x¥, 2] 3 x*. Then, the result in Theorem
2 still holds for sufficiently large values of n. Hence, LSE-
backtrack still converges in probability to x*.

In Section VI-B we evaluate numerically the sensitivity of
LSE-backtrack to different initialization intervals. Specifically,
we show how the evolution of the approximation error |x;—2x*|
over time ¢ is affected by inaccurate initializations of [x%, 2%].

Yu and Mannor [20] provide an upper bound for the
expected regret of LSE in the order of O(+/T logT). Unfor-
tunately, we did not succeed to prove any result on the regret
of LSE-backtrack, the main technical difficulty residing in the
search interval being able to either retract or enlarge, unlike
LSE.

V. AN EFFICIENT HEURISTIC: LSE-WEIGHT

In this section we propose another variant of LSE, called
LSE-weight, that can be also naturally adapted to the case
where a prior belief on the location of the optimal arm x* is
available. We already remarked that LSE is not able to catch
up with a wrong initialization that does not frame the optimal
arm. On the contrary, LSE-backtrack can use prior information
by initializing the algorithm with a smaller interval where the
optimal arm z* is believed to lie, and still converge to z* in
probability even if the prior is inaccurate (see Corollary 2.1).

In turn, LSE-weight relies on a weight function w : [0, 1] —
R that is not necessarily a probability density function (i.e.,
J w(z)dx does not necessarily equal 1). However, as intuition
will suggest, the weight function w can be naturally initialized
to the prior belief on the location of the optimal arm z*.

Algorithm 3 LSE-weight

Require: Unimodal function; f : [0,1] — [0, 1];
N: number of samples per arm;
Dampening coefficient 5 € [0;1);
Initial weight distribution w : [0, 1] — R*
loop N
Let 2 be such that [ w(z)da = =2 [} w(z)da;
B
Let 2” be such that [ w(z)dz = ¢~ fol w(z)dz;
Sample f at arms z4, 2P, a number N of times each;
Let z € {z*, 2% } be the arm with the highest average reward
if v =2 then
w(z) + pw(z), Vo € [z, 1] {Dampen right}
else
w(z) + puw(z), Yo € [0,2] {Dampen left}
end if
end loop

The idea behind LSE-weight is simple. In LSE, the
search interval [z% %] is partitioned into three subintervals
[z, 2], [x4, 2] and [2B, 2H]. After appropriate sampling,
it is decided that either [x%, 2] or [zP 2] cannot contain
the optimal arm z* according to the unimodality property, and
this subinterval is definitively removed from the search region.
In LSE-weight instead, at every iteration, the subinterval that
is believed not to contain x™ is not eliminated, but rather
its corresponding weight function w is dampened by a factor
B < 1. Then, the new points z* and 27 are decided according
to the newly updated weights, in such a way that if the initial
weight distribution is uniform and S = 0 then LSE-weight is
equivalent to LSE.

Setting a dampening factor 8 > 0 allows LSE-weight to
recover from mistakes, since no subinterval is ever definitively
removed from the search region; hence, for LSE-weight it
is reasonable in practice to use a number of samplings per
iteration being lower than for LSE. On the other hand, in
the extreme case where no mistake is ever committed while
evaluating the best arm among {z“ 2P}, setting 3 > 0
slows down the convergence of the algorithm. Thus, the best
strategy would prescribe to eliminate forever the suboptimal
subintervals, as LSE does. For this reason, in Lemma 1 we
provide a worst-case analysis for LSE-weight: we prove that
the convergence of the interval [zZ,24] to 2* is slower than
LSE at worst by a constant factor «(f) increasing with S3.

Lemma 1. Assume that algorithms LSE and LSE-weight use
the same number of samples per arm at each iteration. Define
by wSE (WMSE=Y pesp.) the number of iterations needed by
LSE (LSE-weight, resp.) before x® — x4 <lp=3, if no mistake
is made for the selection of the interval at each iteration. Then,

g1 (1) < In g
[~log, ()] ~ In(p+1)—In(p+B)’

For instance, «(0) = 1 (in fact, we already observed that
LSE-weight is equivalent to LSE if 8 = 0), «(0.5) ~ 2.27 and
«(0.75) ~ 4.8. However, in practice, setting 5 > 0 allows
LSE-weight to gain in flexibility, to use fewer samples per
iteration, and to outperform LSE and, in some cases, even
LSE-backtrack. We show this numerically in Section VI.

LSE—w
w
a(ﬁ) = WLSE =

VI. ANYTIME BANDITS FOR CLOUD COMPUTING

In Sections IV, V we described and provided the theoretical
guarantees for our two main algorithms, LSE-backtrack and
LSE-weight. Here we demonstrate their applicability to a re-
source allocation problem in cloud computing. In Section VI-B
we will provide further intuitions through in-vitro numerical
experiments with artificial bandit functions.

In cloud computing, one of the main challenges faced by
the cloud orchestrator is to match the amount of resources
allocated to a user with the user’s request. Specifically, at each
decision step, the orchestrator must reserve a certain amount
of resources, mainly in terms of CPU and memory utilization,
to a specific user for a certain time period, without knowing its
future needs [22], [23]. Yet, resource over-provisioning is not
a viable solution since CPU and memory are scarce resources.

It has been demonstrated in [24] that the profile of user
requests in Google clusters is highly uncorrelated over time,
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hence its accurate prediction proves to be extremely hard.
Thus, it is challenging to keep adapting the reservation policy
to the highly dynamic user request pattern. Rather, it is
preferable to find the allocation policy that strikes a good
medium-term balance between the running cost of the allo-
cated resources and the risk of not meeting the user’s request,
hence to degrade its Quality of Service (QoS); this may also
require the deployment of expensive extra resources [25].

We model such resource allocation problem in cloud as
follows. At fixed time steps ¢ = 1,2, ... the cloud orchestrator
must decide the amount z; of resources (typically, memory
or CPU) allocated to a user over the following time period.
Then, the user request r, materializes over the next period,
and the orchestrator receives a penalty ~ if r; > x4, i.e., if
the user request cannot be fulfilled by the allocated resources.
Then, the operator incurs an instantaneous cost c¢;(x;) =
2x¢+vy1(ry > x4), where T denotes the indicator function. Note
that, once the operator has allocated x; resources, the observed
reward —c(z;) is stochastic since it depends on the number of
requested resources r; which materializes afterwards. In this
scenario, the bandit function f equals the expected value of
the instantaneous reward:

f(x) = E[—c(2)] = =& =~y Pr(r > x),

We can further normalize f between [0, 1] by accounting for
the maximum number of resources that a user can ask for.
The goal of the cloud orchestrator is to learn the optimal
reservation policy z* = argmax f(z) by only observing the
instantaneous cost function c(x), at each time ¢. Moreover,
the time horizon over which the user will remain connected to
the infrastructure is unknown in advance to the orchestrator.
Therefore, it is crucial to require that a resource allocation
algorithm learning x* must be anytime. We also remark that
the penalty v can be interpreted either as a financial one,
described in the service level agreement stipulated with the
user, or as an input parameter that tunes the sensitivity of the
optimal solution with respect to the QoS degradation.

V. (2)

A. Real dataset experiment

We evaluate our algorithms on the Google cluster dataset
[26] by considering a CPU allocation scenario. The estimated
violation probability Pr(r > x) and the corresponding shape
of the bandit function f are illustrated in Figure 2. We observe
that f can be well approximated as a unimodal function. In
fact, the distribution of user requests r is (approximately)
decreasing in r, hence Pr(r > z) is (almost) convex in z.

In order to evaluate numerically our algorithms we use two
metrics. The former one is the approximation error |z, — z*|,
measuring the distance between the currently sampled arm
z; and the optimal arm z*. The latter metric is the classic
regret R, = Zle (f(xz*) = f(x;)), measuring the sum of the
differences between the expected reward f(x*) of the best
arm z* and the reward collected by algorithm. Both metrics
are averaged over 80 independent trials. We remind that we
did not succeed to provide an upper bound for the expected
regret of our algorithms.

We benchmark our algorithms against state-of-the-art ap-
proaches like LSE [4], SGD [9] and SGD without gradient
(W/O gradient) [8]. Stochastic Petachotomy [12] is not adapted
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to our scenarios where decisions are to be taken at the time
scale of seconds, since a hard approximation problem needs
to be solved at each iteration. In Figure 3 we show the results
of our experiments on Google cluster dataset [26]. We use the
same number of samples N = 25 per arm for all algorithms.
In practice, LSE-backtrack converges to the optimal point even
for values of IV smaller than those prescribed in Theorem 2,
thanks to its ability to make up for previous mistakes.

We observe that all algorithms except for SGD converge
quickly to a specific resource allocation value. SGD shows
much slower convergence rate since it cannot directly observe
a (noisy) version of f’(x), thus it needs to approximate it via
the expensive finite difference technique. Remarkably, LSE-
backtrack manages to settle itself (on average, over 80 trials)
on the closest local maximum to the optimal allocation x*.
LSE-weight follows closely. The exact convergence to x* is
not attained only because the function f shown in Figure 2
is not perfectly unimodal. LSE, instead, excludes «* from the
search interval early on, and by construction it is no longer
able to recover from previous mistakes. We finally note that
for W/O gradient [8] we use a learning rate of (1/t) that
shows optimized convergence properties.

B. In-vitro experiments

We now show via in-vitro experiments the convergence
properties of our algorithms when i) the number NV of samples
per arm is small and independent of the iteration count and
when ii) prior information on the location of the optimal arm
x* is available, but possibly wrong.

Figure 4 accounts for case i) and compares different algo-
rithms using the same number N of samples per arm. LSE-
backtrack and LSE-weight manage to converge to the optimal
arm x* even for values of N (N = 5, 10) being independent
of the iteration n and much smaller than the values prescribed
by Theorem 2 (there, N (n) = p?("*+3) /(C1)?1og(8/4)). On
the contrary, LSE deviates forever from x* at the first interval
shrinkage mistake. W/O gradient [8] can converge to x* but
at a slower rate. Finally, SGD is never able to converge with
so few samples per arm, hence we omit to show it. For a fair
comparison, LSE-weights is initialized with uniform weight
function (i.e., no prior information is available on x*).

We remark that, the number of samples N being equal, LSE-
weight and LSE have an edge over LSE-backtrack in early
iterations, since only two and fours arms respectively (instead
of six for LSE-backtrack) need to be explored at each iteration.
However, LSE-backtrack is more data-efficient than LSE since
it can revisit its decisions, hence it could afford to collect fewer
samples for each arm, especially at the first iterations when
arms are easier to distinguish since farther from the peak.

The case ii) is covered by Figure 5 showing the approxi-
mation error evolution of LSE-backtrack for different initial
search intervals [z, z!7]. The reader should appreciate how
the convergence speed depends on the initial interval length
xf — x¥ and on whether the interval already frames the
optimal arm, i.e., whether 2* € [z%, z]. Remarkably, LSE-
backtracks always manage to converge to x* in all the trials,
even when the prior turns out to be inaccurate.
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Fig. 2: Google cluster data measurements. (fop): Time series sample
from [26], on the number of CPU resources requested by a cloud user.
(middle): Probability that the orchestrator does not meet the user’s request
r by allocating = CPU resources, and related cost function c. (bottom):
Corresponding (approximately) unimodal bandit reward function f(x).

VII. CONCLUSION

We proposed LSE-backtrack, the first anytime algorithm
for unimodal multi-armed bandit problems with continuous
arm space. It converges in probability to the optimal arm by
exploiting the underlying unimodal structure of the reward
function. It has low complexity per iteration and it is adapted
to situations where prior information on the likely location
of the optimal arm is available. Indeed, it converges even
when the prior is inaccurate. We also presented LSE-weight,
a heuristic that naturally exploits the prior distribution on the
optimal arm and performs well in practice. We showed that our
algorithms can be successfully used to solve a basic problem
in cloud computing. There, the main challenge faced by the
orchestrator is allocating to a user the number of resources
striking the optimal trade-off between the running cost of the
allocated resources and the risk of degrading the user’s Quality
of Service. In this scenario, the anytime property of LSE-
backtrack is especially appealing, since the orchestrator is not
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Fig. 3: Numerical experiments on the Google cluster dataset [26].
The algorithms are evaluated with respect to (fop) the approximation error
|ze — x*| and (bottom) the regret, averaged over 80 independent trials. The
(approximately) unimodal bandit function is computed as in (2), and it is
illustrated in Fig. 2.

aware in advance of the duration of the user connection.

Extensive simulations showed that LSE-backtrack converges
even when the number of samples per arm is exiguous, which
makes our approach even more attractive in practice.

VIII. APPENDIX
A. Proof of Theorem 2

Proof. We will exploit a Markov chain type of argument to
show that the interval [z%, 2] zooms in on an e-optimal arm
exponentially quickly with high probability. Let us introduce
two variables to track the quality of the interval [z, z!]
provided by LSE-backtrack at iteration n. The former variable
is £, = o1 —xL which denotes the length of interval [z, 2]
during the n-th iteration. The latter variable &,, > 0 describes
the “distance” of the interval of interest [z7, 2] from the
optimal arm x* at iteration n. To be more specific, i) if &, = 0,
then a e-optimal arm z lies in the interval [zL, 2H]; ii) if
&, > 0, then there exists an e-optimal arm x such that, by
expanding &, times the interval [zZ, 2] by a factor ¢ in the
direction of z, it would result that z € [z, zfT].

We then wish to prove that, at the n-th iteration, LSE-
backtrack provides an interval [z, ] of length ¢, = 1/¢"
in which an e-optimal arm lies (£, = 0) with probability at
least 1—27". Then, by Assumption 2 we will conclude that the
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Fig. 4: Small number N of samples. Unimodal triangle function: f(z) =
z/x* for z € [0,2*] and f(z) =1 — (z —2*)/(1 — a*) for x € [z*,1],
with z* = 0.3 Variance of the observed reward: [0.2 + f(z)/2|. Results are
averaged across 80 independent trials.
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Fig. 5: Importance of choosing a good prior (=initial interval). LSE-
backtrack approximation error |z — x*|, averaged over 80 independent trials.
Each arm is sampled N = 30 times, irrespective of the iteration number. We
employed unimodal quadratic-wise functions with optimal arm z* = 0.4.
Please note how the convergence time depends on the length of the initial
interval [zl 2], as well as on whether it contains the optimal arm z*.
Remarkably, the exact convergence to x* is reached in all cases.

optimal arm actually lies in the interval [zX, z]. We remark
that the value of § must not depend on the time horizon, that
is unknown and potentially infinite. For this purpose, we now
describe our algorithm by the following (pessimistic version
of the) Markov chain on the states (¢,£). Assume that at
iteration n the chain is at state (¢, ), meaning that the current
interval [z, 7] has length £,, = ¢ and is at distance &, = &
from the optimal arm =z*. Using a result in [11, Theorem 1],
sampling N = (1/2%)1log(8/4) times an arm approximates its
expected reward within ¢ with probability 1 —d. Thus, at each
iteration n, by setting N(n) = (1/e(n)?)log(8/6), an &(n)-
optimal arm is correctly identified with probability at least
1 — 4. Therefore, if £ = 0, then the new state is (¢/¢, 0) with
probability at least (1 — ), while it can be (¢p,0) or (£/¢, 1)
with probability at most (1 — §). Otherwise, if & # 0, then
the new state is (fp, & — 1) with probability at least (1 — J),
while it can be (¢, &) or (£/¢, £+ 1) with probability at most
(1 —6). We illustrate this Markov chain on (¢, ) in Figure 6.
We shall show that on this chain, with high probability, the
algorithm does not stray too far from the left straight branch,
corresponding to & = 0 and with progressively exponentially
smaller distance from the optimal arm.

It is convenient to denote by F, the number of times a
“wrong” branch, i.e., a right-hand branch with probability at



Fig. 6: Infinite Markov chain (/,¢). (the states with £ < ¢~% are not
displayed.) Plain edges represent transitions with probability > 1 — § while
the dotted edges are transitions with probability < 4.

most 6, is taken by the stochastic process during the first n
steps (read, iterations). Then for all n, k > 0:

Pr (£n+2k S Wﬁn;fn+2k = 0) Z 1-Pr (En-l—Qk, Z k) .

In fact, if the number of wrong decisions is bounded by k,
then the algorithm is able to reach state (I = ¢~ ", ¢ = 0)
within n + 2k iterations. Next, we want to upper bound the
value of Pr(E, 1o > k). For n > 1,k > 0, we can write:

2 2
Pr(Epyor > k) < (”+ k) miaxéf < ("2 k)(sf. (3)

k
Then, by using Stirling’s formula, we obtain:

Pr(Epyo > k) \f

In particular, by setting k¥ = n we obtain Pr(FEs5, >n) <
\/% (2%‘5) If § <0.074 < 27, then the stochastic process

n

n+ 2k (n+2k) n+2k
k(n+ k) k¥(n + k)ntk

is at node ¢~ " or one of its descendants with probability
greater than 1 — 27", after 3n steps. In other words, after 3n
iterations, the algorithm is sampling arms at distance at most
@~ ™ from an £(3n)-optimal arm. Following Assumption 2,

[f(a%,) = faf,)] > Crlaf, — 2| > k. and an 8(371)
optimal arm is at distance at most 5(3n) /CL = »~3" from
the optimal arm z*, g.e.d.. O

B. Proof of Lemma 1

Proof. Let z* be the optimum arm. Let ¢ € [0,1]. We start
observing that, for both LSE and LSE-weight, the length 27 —
x# of the interval [z, xB] indicates the progression of the
algorithm and it measures the quality of the approximation of
optimal arm z*. By assumption, no mistake has been made
when retractmg the interval. Then max, ¢ 4 ,5y |2* — 2| <
©%(zB —24). At every 1terat10n in algorithm LSE, the length
between arms 2 and z” in LSE is divided by (. Initially,
that length is ¢ 3. Hence, it takes to LSE exactly w™5F =
[— log@(f)] iterations until 2% — 24 < fp 3.

At each iteration of LSE-weight, the total weight 1s mul-
tiplied by 1 — (1 - 8); = iif By definition of z* and

B the weight in [z, 2P] remains proportional to the total
weight. Hence the length |z® — 24| of interval between x4
and z® must be multiplied accordingly by “’+ﬁ The ratio

otB 0.618

o1 is affine in (3, and interpolates between 1 / o~
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(when =
weight, w

0) and 1 (when 8 — 1). Thus, for LSE-

LSE-w — 10g<p+ﬁ (¢)| iterations are needed until

B — 24 < lp=3. The thesm follows.
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