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Abstract—New data intensive applications, which are continu-
ously emerging in daily routines of mobile devices, significantly
increase the demand for data, and pose a challenge for current
wireless networks due to scarce resources. Although bandwidth
is traditionally considered as the primary scarce resource in
wireless networks, the developments in communication theory
shifts the focus from bandwidth to other scarce resources includ-
ing processing power and energy. Especially, in device-to-device
networks, where data rates are increasing rapidly, processing
power and energy are becoming the primary bottlenecks of
the network. Thus, it is crucial to develop new networking
mechanisms by taking into account the processing power and
energy as bottlenecks. In this paper, we develop an energy-aware
cooperative computation framework for mobile devices. In this
setup, a group of cooperative mobile devices, within proximity of
each other, (i) use their cellular or Wi-Fi (802.11) links as their
primary networking interfaces, and (ii) exploit their device-to-
device connections (e.g., Wi-Fi Direct) to overcome processing
power and energy bottlenecks. We evaluate our energy-aware
cooperative computation framework on a testbed consisting of
smartphones and tablets, and we show that it brings significant
performance benefits.

I. INTRODUCTION

The dramatic increase in mobile applications and the num-
ber of devices demanding for wireless connectivity poses a
challenge in today’s wireless networks [1], [2], and calls for
new networking mechanisms.

One of the promising solutions to address the increasing
data and connectivity demand is Device-to-Device (D2D)
networking. As illustrated in Fig. 1(a), the default operation
in current wireless networks is to connect each device to
the Internet via its cellular or Wi-Fi interface. The D2D
connectivity idea, which is illustrated in Fig. 1(b), breaks this
assumption: it advocates that two or more devices in close
proximity can be directly connected, i.e., without traversing
through auxiliary devices such as a base station or access
point. D2D networking, that can be formed by exploiting D2D
connections such as Wi-Fi Direct [3], is a promising solution
to the ever increasing number and diversity of applications and
devices. In this context, it is crucial to identify scarce resources
and effectively utilize them to fully exploit the potential of
D2D networking.

Although bandwidth is traditionally considered as the pri-
mary scarce resource in wireless networks, in D2D networks,
thanks to close proximity among devices and the develop-
ments in communication theory, the main bottleneck shifts
from bandwidth to other scarce resources including processing
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Fig. 1. (a) The default operation for the Internet connection. (b) D2D
connectivity: two or more mobile devices can be connected directly, i.e.,
without traversing through the core network, if they are in close proximity by
exploiting local area connections such as Wi-Fi Direct.

(b) D2D connectivity

power and energy. Next, we present our pilot study demon-
strating that processing power can be more pronounced as a
bottleneck than bandwidth in D2D networks.

Pilot Study: We developed a prototype for this pilot study
as shown in Fig. 2(a), where a mobile device D, receives
data from another device D; over a Wi-Fi Direct link. We
use Android operating system [4] based Nexus 7 tablets [5] as
mobile devices. In this experiment, after receiving the packets,
the mobile device D, performs operations with complexities
of O(1), O(n), and O(n?) above the transport layer (TCP),
where n is the packet size, and the operations we perform
are counting the bytes in the packets. In particular, O(1),
O(n), and O(n?) correspond to (i) no counting, (ii) counting
every byte in a packet once, and (iii) counting every byte in
a packet n times, respectively. We demonstrate in Fig. 2(c)
the received rate at the mobile device D, (note that this is
the rate we measure at the mobile device D5 after performing
computations) versus time. This figure demonstrates that the
received rate decreases significantly when the complexity
increases. |

Our pilot study shows that even if actual bandwidth is
high and not a bottleneck, processing power could become a
bottleneck in D2D networks. Similar observations can be made
for the energy bottleneck as detailed in our technical report [6].
Furthermore, with the advances in communication theory, e.g.,
millimeter wave communication [7], it is expected that data
rates among devices in close proximity will increase signifi-
cantly, which will make processing power and energy more
pronounced as bottlenecks. However, existing applications,
algorithms, and protocols are mainly designed by assuming
that bandwidth is the main bottleneck. Thus, it is crucial to
develop new networking mechanisms when bandwidth is not
the primary bottleneck, but processing power and energy are.

Thus, in this paper, our goal is to create group of devices
that help each other cooperatively by exploiting high rate D2D
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Fig. 2. Pilot Study: (a) Setup: Data is transmitted from mobile device D1
to another mobile device D2. In this setup, the mobile devices are Android
operating system (OS) [4] based Nexus 7 tablets [5]. The specific version of
the Anroid OS is Android Lollipop 5.1.1. The devices have 16GB storage,
2GB RAM, Qualcomm Snapdragon S4 Pro, 1.5GHz CPU, and Adreno 320,
400MHz GPU. Packet size is 500B. (b) Transmission rate versus time
for different computational complexities at the receiver side. Note that we
present the rate that we measure at the mobile device after performing the
computations. The presented rates are the averages over 10 seeds.
connections to overcome the processing power and energy
bottlenecks. The next example demonstrates our approach.

Example 1: Let us consider Fig. 1(a) again, where device
D, would like to receive a file from a remote resource via its
cellular or Wi-Fi connection. Assume that the cellular (or Wi-
Fi) rates of all devices are 1Mbps, but device D; can receive
data with 500kbps rate due to processing power bottleneck,
i.e.,, device D; has limited processing power (similar to our
pilot study we presented earlier). In a traditional system, D
will behave as a single end point, so its receiving rate will
be limited to 500kbps. On the other hand, if devices Dy, Ds,
and D3 will behave as a group and cooperate, then devices
D5 and D3 can also receive and process 500kbps portions of
data, and transmit the processed data to device Dy over D2D
connections. This increases the receiving rate of device D1 to
1.5Mbps from 500kbps, which is a significant improvement.

This example could be extended for scenarios when energy
(battery of mobile devices) is limited. For example, if device
Dy’s battery level is too low, its participation to the group
activity should be limited. ([

Application Areas. The scenario in the above motivating
example could arise in different practical applications from
health, education, entertainment, and transportation systems.
The following are some example applications. Health: A per-
son may own a number of health monitoring devices (activity
monitoring, hearth monitoring, etc.) which may need updates
from the core network. These updates - potentially coded for
error correction, compression, and security reasons - should be
processed (decoded) by these devices. Processing takes time,
which may lead to late reaction to the update (which may
require timely response) and energy consumption. On the other
hand, by grouping mobile devices, the person’s smartphone or
tablet could receive the update, process, and pass the processed
data to the health monitoring devices via high rate D2D links.
Education & Entertainment: A group of students may want
to watch the video of a lecture from an online education
system (or an entertainment video) while sitting together and
using several mobile devices. In this setup, one of the devices
can download a base layer of a video and decode, while the
other devices could download enhancement layers and decode.
The decoded video layers could be exchanged among these

mobile devices via high rate D2D links. As in the motivating
example, if one device’s download and decoding rate is limited
to 500kbps, it could be improved to 1.5Mbps with the help of
other devices.

Note that the processing overhead in these applications
could be due to any computationally intensive task related to
data transmission. For example, for video transmission appli-
cations, H.264/AVC decoders introduce higher computational
complexity when higher quality guarantees are needed [8], [9].
Another example could be network coding; for example, data
could be network coded at the source to improve throughput,
error correction, packet randomization potential of network
coding [10]. However, most of the network coding schemes
introduce high computational complexity at the receiver side;
O(n?), [11], [12], which limits the transmission rate. En-
cryption could be another example that introduces processing
overhead [13].

Thus, there exist several applications and scenarios where
bandwidth and energy could be bottlenecks, while bandwidth
is not the bottleneck. This makes our approach demonstrated
in Example 1 crucial. In particular, in this paper, we develop an
energy-aware cooperative computation framework for mobile
devices. In this setup, a group of cooperative mobile devices,
within proximity of each other, (i) use their cellular or Wi-Fi
(802.11) links as their primary networking interfaces, and (ii)
exploit their D2D connections (Wi-Fi Direct) for cooperative
computation. Our approach is grounded on a network utility
maximization (NUM) formulation of the problem and its
solution [14]. The solution decomposes into several parts with
an intuitive interpretation, such as flow control, computation
control, energy control, and cooperation & scheduling. Based
on the structure of the decomposed solution, we develop a
stochastic algorithm; energy-aware cooperative computation.'
The following are the key contributions of this work:

o We consider a group of cooperative mobile devices within
proximity of each other. In this scenario, we first investi-
gate the impact of processing power to transmission rate.
Then, we develop an energy-aware cooperative compu-
tation model, where devices depending on their energy
constraints could cooperate to get benefit of aggregate
processing power in a group of cooperative devices.

e We characterize our problem in a NUM framework by
taking into account processing power, energy, and band-
width constraints. We solve the NUM problem, and use
the solution to develop our stochastic algorithm; energy-
aware cooperative computation (EaCC). We show that
EaCC provides stability and optimality guarantees.

e An integral part of our work is to understand the per-
formance of EaCC in practice. Towards this goal, we

'Note that our work focuses on cooperative resource utilization in mobile
devices. In this sense, our work is complementary to and synergistic with: (i)
creating incentive mechanisms in D2D networks, and (ii) providing privacy
and security for D2D users [15], [16]. Looking into the future, it is very
likely that our proposed work on the design, analysis, and implementation
of cooperative resource utilization is gracefully combined with the work on
creating incentives and providing privacy and security.
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develop a testbed consisting of Nexus 5 smartphones and
Nexus 7 tablets. All devices uses Android 5.1.1 as their
operation systems. We implement EaCC in this testbed,
and evaluate it. The experimental results show that our
algorithm brings significant performance benefits.

The structure of the rest of the paper is as follows. Section II
presents related work. Section III gives an overview of the
system model. Section IV presents the NUM formulation
of our cooperative computation scheme. Section V presents
our stochastic algorithm; EaCC. Section VI evaluates the
performance of our scheme in a real testbed. Section VII
concludes the paper.

II. RELATED WORK

This work combines ideas from D2D networking, network
utility maximization, and stochastic network control.

The idea of D2D networking is very promising to efficiently
utilize resources, so it has found several applications in the
literature. In particular, D2D connections are often used to
form cooperative groups for data streaming applications, and
for the purpose of (i) content dissemination among mobile
devices [17], [18], (ii) cooperative video streaming over mobile
devices [19], [20], [21], [22], and (iii) creating multiple paths
and providing better connectivity by using multiple interfaces
simultaneously [23], [24]. As compared to this line of work,
we investigate the impact of processing power and energy in
D2D networks, and develop mechanisms to effectively utilize
these scarce resources.

D2D networking is often used for the purpose of offloading
cellular networks. For example, previous work [25], [26],
[17] disseminate the content to mobile devices by taking
advantage of D2D connections to relive the load on cellular
networks. Instead of offloading cellular networks, our goal is
to create energy-aware cooperation framework to overcome the
processing power and energy bottlenecks of mobile devices.

There is an increasing interest in computing using mobile
devices by exploiting connectivity among mobile devices [27].
This approach suggests that if devices in close proximity are
capable of processing tasks cooperatively, then these devices
could be used together to process a task as it is a cheaper
alternative to remote clouds. This approach, sparking a lot
of interest, led to some very interesting work in the area [28],
[29], [30]. As compared to this line of work, we focus on pro-
cessing power and energy bottlenecks in mobile devices and
address the problem by developing energy-aware cooperative
computation mechanism.

An integral part of our proposed work in this task is
to develop efficient resource allocation mechanisms. In that
sense, our approach is similar to the line of work emerged
after the pioneering work in [31], [32], [33]. However, our
focus is on energy-aware cooperative computation.

ITI. SYSTEM MODEL

We consider a cooperative system setup with N mobile
devices, where N is the set of the mobile devices. Our system
model for three nodes are illustrated in Fig. 3(a). The source
in Fig. 3(a) represents the core network and base stations
(access points). This kind of abstraction helps us focus on

the bottlenecks of the system; processing power, energy of
mobile devices, and downlink/uplink data rates. In this setup,
mobile devices communicate via D2D connections such as Wi-
Fi Direct, while the source communicates with mobile devices
via cellular or Wi-Fi links. We consider in our analysis that
time is slotted and ¢ refers to the beginning of slot ¢.

Connecting Devices Together: The total flow rate towards
device n in Fig. 3(a) (as also explained in Fig. 3(b)) is
Y ke Tnk(t), where x, ,(t) is the transmission rate of the
packets from the source towards device n, and these packets
will be used by device n. Note that z,, () is the transmission
rate of the packets from the source towards device n, and these
packets will be processed by device n and forwarded to device
k. On the other hand, y,(t) is the total flow rates targeting
device n as demonstrated in Fig. 3(b). The source constructs
a queue S, (t) for the packets that will be transmitted to the
mobile device n. The evolution of S,,(¢) based on y,(t) and
T (t) is expressed as

Sp(t+ 1) < max[S,(t) — Z Tin(t), 0] +yn(t), (1)
keN

where the inequality comes from the fact that there may be
less than y,, (t) packets arriving into .Sy, (¢) at time ¢ in practice
(e.g., in real time applications, the number of available packets
for transmission could be limited).

The flow rate y,(¢) is coupled with a utility function
9n(yn(t)), which we assume to be strictly concave function
of y,,(t). This requirement is necessary to ensure stability and
utility optimality of our algorithms. The ultimate goal in our
resource allocation problem is to determine the flow rates;
Yn(t) which maximize the sum utility > - gn(yn(t)).

Finally, flow rate over D2D connection between device n
and k is hy, i (t), k # n. Note that h,, 5 (t) is to help node k
using node n as a processing device.

Inside a Mobile Device: In each device, we develop
different modules depending on where data is arriving from
(as shown in Fig. 3(c)); i.e., from the source via cellular or
Wi-Fi interface, or other mobile devices via D2D interfaces.

When data is arriving from a D2D interface, it is directly
passed to the application layer, as this data is already processed
by another device. On the other hand, when data is arriving
from the source via cellular or Wi-Fi interfaces, packets go
through multiple queues as shown in Fig. 3(c), where U, x,
Qn,k, and Z,, , represent three different queues constructed at
mobile device n for the purpose of helping node k. Incoming
packets via cellular or Wi-Fi links are stored in U, j, which
then forwards the packets to computation block with rate
dn k(t). The computation block processes the packets, and
pass them to queue (), ;. Note that the output rate from com-
putation block is dy, i (¢)cu, 1 (t), where a, 1 (t) is a positive
real value. This value captures any possible rate changes at the
computation block, i.e., amk(t) is a rate shaper. For example,
if the computation block is H.264/AVC decoder or transcoder,
we expect that the rate at the output of the computation block
should be higher than the input. Thus, «, x(t) captures this
fact for any n, k, t. On the other hand, if there is no rate change
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Fig. 3. (a) System model for the scenario of three devices; n, m, k. The source in this model represents the core network and base stations (access points).
(b) Building blocks of the source. File,,, Vn is read and inserted in the buffer S, (t), and packets are transmitted from S, (t). 2, (t) is the transmission rate
of the packets from the source towards device n, and these packets will be processed by device n and forwarded to device k. (c) Building blocks of mobile
device n. If packets are received from the source via cellular and Wi-Fi interfaces, then they go to the computation and energy control blocks. If packets are
received from other mobile devices via D2D interface, they are directly passed to the application.

after the processing, then o, x(t) = 1.

The processed (and possibly rate shaped) packets are queued
at Qn k(t) and passed to energy filter. The energy filter is
coupled to the energy source, which determines the amount of
energy that can be spent to support the tasks at each slot. The
amount of energy is determined according to energy credits.
In particular, the energy source, depending on the battery level
as well as the estimate on the expected battery consumption
in the near future, calculates the number of packets that can
be supported by the mobile device, and the same number
of energy credits enter the energy filter. (Note that both
energy filter, energy source, and energy credits are not real,
but virtual entities, so they can be modeled by using a few
counters in practice.) Thus, at each transmission slot, packets
are transmitted from @, x(t) to Z, ;(t) with rate e, (t) if
there exist energy credits in the energy filter. Finally, packets
from Z,, j(t) are transmitted to application if device n is the
destination of the data (i.e., n = k), or they are transmitted to
the original destination via D2D interface with rate h,, j(t).

The computation and energy filter blocks in Fig. 3(c) model
the processing and energy bottlenecks of the mobile device,
respectively. If packets in U, ; increases too much, this means
that the computation block, hence processing power, is the
bottleneck, so node n should not receive much packets from
the source. Similarly, if @, ; increases too much, this means
that energy filter is the bottleneck, so again node n should
not receive much packets. Note that there could be also some
buildup in Z, j if the link between node n and k is the
bottleneck of the system, and it should be taken into account
when the energy-aware cooperative computation framework is
developed.

Also, it is crucial in our system model to put energy filter
after the computation block, because if device n will help
device k, the actual amount of packets that are supposed to be
transmitted are the processed packets, which will cause energy
consumption (i.e., not the packets before processing).

Based on the above intuitions and observations, we will
develop our resource allocation problem and algorithm in the
next sections. The evolution of the queues U, x(t), Qn. i (%),
and Z,, 1 (t) are provided in Table L

Links: In our system model, we consider two scenarios:
(i) cellular + Wi-Fi Direct, and (ii) Wi-Fi + Wi-Fi Direct.

TABLE I
EVOLUTION OF QUEUES Uy, ,(t), @n,k(t), AND Zp, 1 (t).

Un’k(t + 1) < max[Un’k(t) — dn,k(t), 0] + l’n’k(t)
Qn,k(t + 1) S maX[Qn,k(t) - en,k(t)a O] + dn,k’(t)an,k(t)
Zn’k(t +1)< maX[Zn’k(t) — hn ke t),0] + €n’;€(t)

In both cases, the D2D links between mobile devices are
Wi-Direct. In the first case, i.e., in cellular + Wi-Fi Direct,
the links between the source and mobile devices are cellular,
while they are Wi-Fi in the second case, i.e., in Wi-Fi + Wi-
Fi Direct. These two scenarios are different from each other,
because in the first scenario, cellular and Wi-Fi Direct links
could operate simultaneously as they use different parts of
the spectrum. On the other hand, in the second scenario, both
Wi-Fi and Wi-Fi Direct use the same spectrum, so they time
share the available resources. Our model and energy-aware
cooperative computation framework are designed to operate
in both scenarios. Next, we provide details about our link
models.?

In the system model in Fig. 3(a), each mobile device n € N’
is connected to the Internet via its cellular or Wi-Fi link. At
slot ¢, C®(t) is the channel state vector of these links, where
C*(t) ={C;(®), ..., C:(1), ..., C%(t)}. We assume that C? (t)
is the state of the link between the source and mobile device n,
and it takes “ON” and “OFF” values depending on the state of
the channel. Without loss of generality, if mobile device n does
not have Internet connection, then C%(t) is always at “OFF”
state, which means there is no cellular or Wi-Fi connection.

Since we consider that mobile devices are in close proximity
and transmission range, they form a fully connected clique
topology. At slot ¢, C*(t) is the channel state vector of
the D2D links, where C*(t) = {CV%(t), ..., CF.(t), -
CN_1.n(t)}. We assume that C} (t) is the state of the D2D
link between node n and k.

We consider protocol model in our formulations [34], where
each mobile device can either transmit or receive at the
same time at the same frequency. Assuming that C(t) =

2Note that the link models described in this section provide a guideline in
our algorithm development and basis in our theoretical analysis. However, in
Section VI, we relax the link model assumptions we made in this section, and
evaluate our algorithms on real devices and using real links.
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{C*(t),C"(¢t)} is the channel state vector of the system
including both the links between the source and mobile devices
as well as among mobile devices, I'c(;) denotes the set of the
link transmission rates feasible at time slot ¢ depending on
our protocol model. In particular, for cellular + Wi-Fi Direct
setup, ['c(y) is the set that allows more links to operate at the
same time, while for the Wi-Fi + Wi-Fi Direct setup, I'c(¢) is
a more limited set due to the interference among the links.

IV. PROBLEM FORMULATION

In this section, we characterize the stability region of the
energy-aware cooperative computation problem, and formulate
network utility maximization (NUM) framework. The solution
of the NUM framework provides us insights for developing the
stochastic control algorithms in the next section.’

A. Stability Region

We provide the stability region of the cooperative compu-
tation system for both cellular + Wi-Fi Direct and W-Fi +
Wi-Fi Direct setups. First, the flow conservation constraint at
the source should be y, < ke’ Tk, to stabilize the system.
This constraint requires that the total outgoing rate from the
source, i.e., Zk,e N Thn should be larger than the generated
rate Y.

Furthermore, the following flow conservation constraints
inside a mobile device should be satisfied for stability; x,, <
Aok, dnkoni < enk, and e, < hy . These constraints
are necessary for the stability of queues U, ,, Q k, and
Zn,k» Tespectively. Finally, the transmission rates over the links
should be feasible, i.e., {Zy i,k Pvnen ken € Lo

Thus, we define the stability region as A =
{{yruxn,lw dn,k7 €n,k, hn,k}VnEN,kEN | Yns Tn,ks dn,ks €n. k>
hn,k: > 0, Vn € Nak € N» Yn < Zke_/\[xk;ns Tn,k < dn,k:’
dn,kan,k < €n,k> En.k < hn,k’ {xn,ka hn,k}VnEN,kEN € FC}

B. NUM Formulation

Now, we characterize our NUM problem.

max > gn(yn)

neN
S.t. yn,xn,k,dn,k,en’k,hn,k c A, Vn GN,k enN )

The objective of the NUM problem in (2) is to determine
Yns T ks Aoy €n s B i Tor Vn € Nk € N which maximize
the total utility D s 9n(Yn)-

C. NUM Solution

Lagrangian relaxation of the flow conservation constraints
that characterize the stability region A gives the following
Lagrange function:

3Note that NUM optimizes the average values of the parameters that are
defined in Section III. By abuse of notation, we use a variable, e.g., ¢ as the
average value of ¢(t) in our NUM formulation if both ¢ and ¢(t) refers to
the same parameter.

L= 0an) = D salyn— D Tkn)— D > Unk

neN neN keN neN keN
(xnﬁk - dn,k) - Z Z qn,k(dn,kan,k - en,k:) - Z Z
neN keN neN keN
Zn,k(en,k - hn,k) (3)

where s, Un g, Gk, and 2, are the Lagrange multipliers.
Note that we will convert these Lagrange multipliers to queues
Sns Unks Qnk» and Z, ; when we design our stochastic
algorithm in the next section.

The Lagrange function in (3) is decomposed into sub-
problems such as flow, computation, and energy controls as
well as cooperation and scheduling. The solutions of (3) for
Yns An.k»> €n.k> Tnk, and h,, j are expressed as:

Flow control: max Z (9n(Yn) — YnSn) 4)
y
neN
Computation control: max Z Z ke (Un ke — GnkQn k)
neN keN

)]

Energy control: max Z Z enk(qnk — Zn,k) (6)
neN keN

Cooperation & Scheduling:
max SN [wnk(sk = tnk) + zZnkhn ]
neN keN
sto {&n ks ok Pvnen ken €T @)

Next, we design a stochastic algorithm; energy-aware co-
operative computation inspired by the NUM solutions in (4),

4, ©), (D.

V. ENERGY-AWARE COOPERATIVE COMPUTATION

Now, we provide our energy-aware cooperative computation
algorithm which includes flow control, computation control,
energy control, and cooperation & scheduling.

Energy-Aware Cooperative Computation (EaCC):

o Flow Control: At every time slot ¢, y,(t) is determined
by maximizing max, [M gy, (yn(t)) — Sn(t)yn(t)] subject
to yn(t) < RM* where R is a positive constant
larger than the transmission rate from the source, and
M is a large positive constant. Note that S,,(t) is the
queue size at the source of flow and stores packets that
are supposed to be transmitted to mobile device n. After
yn(t) is determined, y, (¢) packets are inserted in queue
Sn(t) (as illustrated in Fig. 3(a)).

o Computation Control: At every time slot ¢, the computa-
tion control algorithm at device n determines d,, x(t) by
optimizing

mgx Z dn,k(t)[Un,k(t) - Qn,k(t)an,k:(t)]
keN

st Y dpi(t) < DR (8)
keN
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where D}'?* is a positive constant larger than the process-
ing rate of the computation block in device n dedicated
to help device k. The interpretation of (8) is that at every
time slot ¢, d, i~ = D;'®* packets are passed to the
computation block (in Fig. 3(b)) if Uy, = (t) — Qn ik~ () >
0, where k* is the mobile device that maximizes (8).
Otherwise, no packets are sent to the computation block.
The packets that are being processed by the computation
block are passed to @, 1 (t). Note that some computation
blocks may require to receive a group of packets to be
able to process them. In that case, D)'®* is arranged
accordingly (i.e., it can be increased to transfer a group
of packets).

e Energy Control: At every time slot ¢, the energy control
algorithm at device n determines e, ;(t) by optimizing

max Z enk(t)[Qnk(t) — Znk(t)]
st enn(t) < B 9)
keN

where E7'?* is a positive constant larger than the energy
capacity of device n dedicated to help device k. The inter-
pretation of (9) is that at every time slot ¢, e, p» = E}'%*
packets are passed to the energy filter (as illustrated in
Fig. 3(b)) if Qp i~ (t) — Zp k= (t) > 0, where k* is the
mobile device that maximizes (9). Otherwise, no packets
are sent to the energy filter. The packets passing through
the energy filter are inserted in Z,, ().

o Scheduling & Cooperation: At every time slot ¢, the
scheduling and cooperation algorithm determines trans-
mission rates over links, i.e, x,(t) and h, k() by
maximizing

HmlahX Z Z [xn,k(t)(sk(t) - Un,k(t)) + hn,k(t)Znyk(t)]
’ neN keN

st.x, h e FC(t) (10)

For cellular + Wi-Fi Direct system, (10) is decomposed
into two terms: maximizing » - > pcns Tn,k (1) (Sk(?)
nk(t)) and >0 oD icn Pnk(t) Zn i (1), because
cellular and Wi-Fi Direct transmissions operate simulta-
neously and transmission over one link does not affect
the other. On the other hand, for Wi-Fi + Wi-Fi Direct
setup, the joint optimization in (10) should be solved.
Note that transmissions over all links are unicast trans-
missions in our work, where unicast is dominantly used
in practice over cellular, Wi-Fi, and Wi-Fi Direct links.
Also, it is straightforward to extend our framework for
broadcast transmissions.

Theorem 1: If channel states are i.i.d. over time slots, and
the arrival rates Ely,(t)] = A,,Yn € N are interior of the
stability region A, then energy-aware cooperative computation
stabilizes the network and the total average queue sizes are
bounded.

Furthermore, if the channel states are i.i.d. over time slots,
and the traffic arrival rates are controlled by the flow control

algorithm of energy-aware cooperative computation, then the
admitted flow rates converge to the utility optimal operating
point with increasing M.
Proof: The proof is provided in [6]. B

Our energy-aware cooperative computation framework has
several advantages: (i) distributed, (ii) takes into account
scarce resources such as processing power and energy in
addition to bandwidth to make control decisions, and (iii)
utilizes available resources; processing power, energy, and
bandwidth in a utility optimal manner. Theorem 1 shows the
theoretical performance guarantees of our framework, while
we focus on its performance in a practical setup in the next
section.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our energy-aware cooperative
computation (EaCC) scheme using a testbed that consists of
Android based smartphones and tablets. The evaluation results
show that our scheme significantly improves throughput as
compared to (i) no-cooperation, where each device receives
its content from the source without cooperating with other
devices, and (ii) cooperation, where multiple mobile devices
cooperate, but the cooperating devices do not do computation
and energy control for other devices (mobile devices just
receive packets from the source, and relay them to other
mobile devices without processing and energy control). Next,
we present testbed setup and results in detail.

A. Setup & Implementation Details
Devices: We implemented a testbed of the setup shown in

Fig. 3(a) using real mobile devices, specifically Android 5.1.1
based Nexus 5 smartphones and Nexus 7 tablets.

We classify devices as (i) a source device, which acts as the
source in Fig. 3(a), (ii) helper devices, which receive data from
the source, process it, and transmit to other devices (receivers)
to help them, and (iii) receiver devices, which receive data
from both the source device and the helpers. A receiver device
processes data arriving from the source, but it does not process
the data arriving from helpers as the helpers send already
processed data.* Note that a device could be both receiver
and a helper device depending on the configuration.

Integration to the Protocol Stack: We implemented our
energy-aware cooperative computation (EaCC) framework as
a slim layer between transport and application layers. In
other words, we implemented our framework on top of TCP.
This kind of implementation has benefits, because (i) mobile
devices do not need rooting, and (ii) our framework and
codes could be easily transferred to mobile devices using other
operating systems such as iOS.

Source Configuration and EaCC Implementation: We im-
plemented the source node in Fig. 3 using a Nexus 5 smart-
phone. Basically, multiple files; File,, File; requested by
devices n and k are read by using the public java class
BufferedInputStream according to the flow control algorithm
described in Section V and shown in Fig. 3(b). The bytestream

“Note that we relax this assumption in our technical report [6] for
multimedia applications.
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Fig. 4. (a) System model consisting of a source device, one receiver, and one helper. Wi-Fi is used between the source and the receiver device (1) and
the helper device (H1), while Wi-Fi Direct is used to connect Ry to Hj. (b) Average rate versus time for the setup shown in (a) for the case that all the
devices are Android based Nexus 7 tablets. (c) Average rate versus energy level at receiver device R;. In this setup, all devices are Android based Nexus 5
smartphones. In both (b) and (c), the average rate is calculated as the average over 10 trials (with different seeds). The computation under consideration in
this experiment is O(n?), which counts the number of bytes in a packet for each byte in the packet (i.e., recursive counting).

is packetized by setting each packet to 5005, and packets
are inserted into source buffers; S, (t), Si(t). We set the
flow control parameters as; M = 500, R}'** = 100, and
slot duration is 20msec. We used log function as our utility
function. In this setup, reading files, converting bytestream into
packets, and inserting packets into the input queues are done
by multiple threads, i.e., a thread runs for each file; File,, in
Fig. 3(b).

The other set of threads at the source device make packet
transmission decisions from the source device to receiver and
helper devices. In particular, the source node collects U, 1 (%)
information from all mobile devices. At each time slot, the
source node checks Sy (t)—U,, x(t), and if Sk (t)—U, x(t) > 0,
then 100 packets are transmitted from Sy (¢) to the TCP socket
at the source device for transmission to mobile device n.

EaCC Operation on Mobile Devices: All mobile devices
(including helper or receiver+helper devices) implement all
the building blocks illustrated Fig. 3(c). Multiple threads are
used to make these blocks operating simultaneously.

The first thread at mobile device n receives packets that are
transmitted by the source node, and inserts these packets in
Uy k-

The second thread has two tasks. First, it transfers packets
from U, to @ according to the computation control
algorithm in (8), where D;'** = 100 packets and the slot
duration is 20msec. We set a,, () = 1 in our experiments
as our applications do not change the rate as explained
later in this section. The second task of this thread is to
actually do the computation tasks related to the application.
In our experiments, the computation block counts the bytes
in the packets. In particular, similar to the pilot study in the
introduction, O(1), O(n), and O(n?) correspond to (i) no
counting, (ii) counting every byte in a packet once, and (iii)
counting every byte in a packet n times, respectively.

The third thread transfers packets from @, 1, to Z,, ;. using
the energy control algorithm in (9), where we set E7M*
depending on the battery level of the device. For example,
if the battery level is below some threshold, E7'3* is limited.
We evaluated different configurations in our experiments as
we explain later. The slot duration is again set to 20msec.

The final thread transfers packets from Z,, j to application
layer if n = k, or transmits to node k if n # k. In the second
case, i.e., if n # k, the number of packets in TCP socket is

checked at every time slot, where the time slot duration is
20msec. If it is below a threshold of 500 packets, then 100
packets are removed from Z,, ;, and inserted to the TCP socket
to be transmitted to node k.

When node n receives packets from node k, it directly
passes the packets to the application layer as illustrated in
Fig. 3(c), because these packets are the ones that are already
processed by node k. If node n is both a helper and a receiver
device, it runs all the threads explained above in addition to
the receiving thread from node % (illustrated in Fig. 3(c)).

Information Exchange: Our implementation is lightweight
in the sense that it limits control information exchange among
mobile devices. The only control information that is trans-
mitted in the system is U,, , from each mobile device to the
source node. Each mobile device n collects Uy, i, Yk € N,
and transmits this information to the source node periodically,
where we set the periods to 100msec.

Connections: All the devices in the system including the
source device, helpers, receivers, and helper+receiver devices
are connected to each other using Wi-Fi Direct connections
in our testbed. The source node is configured as the group
owner of the Wi-Fi Direct group. We note that cooperation in
this setup does not bring any benefit in terms of bandwidth
utilization as all the links use the same transmission channel
in a Wi-Fi Direct group. However, as we demonstrate later in
this section, it brings benefit due to cooperative processing
power and energy utilization, which is our main focus in
this paper. Therefore, this setup (where all the devices are
connected to each other using Wi-Fi Direct links) well suits
to our evaluation purposes.

Test Environment: We conducted our experiments using
our testbed in a lab environment where several other Wi-
Fi networks were operating in the background. We located
all the devices in close proximity of each other, and we
have evaluated EaCC for varying levels of computational
complexity, number of receivers, and number of helpers. Next,
we present our evaluation results.

B. Results

We first consider a setup as shown in Fig. 4(a) which
consists of a source device, one receiver (R;), and one helper
(Hy). Fig. 4(b) shows the average rate versus time graph for
the setup shown in Fig. 4(a) when all three devices are Android
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based Nexus 7 tablets. The average rate is calculated as the
average over 10 trials (with different seeds). The computation
under consideration in this experiment is O(n?), which counts
the number of bytes in a packet n times, n is the packet size.
As can be seen, if there is no cooperation, the rate measured
at Ry is on the order of 1.5Mbps. On the other hand, EaCC
increases the rate to almost 3Mbps. This means that helper
device H helps the receiver device R; process the packets in
EaCC. In this setup, EaCC doubles the rate as compared to
no-cooperation, which is a significant improvement.

For the same setup in Fig. 4(a), we also evaluate the
impact of energy control part of EaCC on the average rate
performance. In particular, Fig. 4(c) shows the average rate
versus battery level at the receiver device R;. In these results,
we used Android based Nexus 5 smartphones. The average rate
is calculated as the average over 10 trials (with different seeds).
The computation under consideration in this experiment is
O(n?), which counts the number of bytes in a packet for each
byte in the packet. We consider that if the battery level of
a device reduces below 40% threshold, then energy credits
are not generated for the processing of the received packets.
This makes @), ; large over time, and after some point no
packets are transmitted to that device for the processing task.
In Fig. 4(c), when the battery level of R; reduces below 40%,
then it stops receiving packets for processing. If there is no
cooperation, then the rate towards R; reduces to 0. On the
other hand, with EaCC, the rate is still higher than O thanks to
having helper. The helper device with larger energy level (for
the sake of this experiment), receives packets from the source,
processes them, and forwards them to R;, which receives
already processed data. After 40% threshold, both EaCC and
no-cooperation improve, because R; starts processing packets.
This result shows the importance of energy-awareness in our
cooperative computation setup.

Now, we consider the impact of the number of helpers to
overall rate performance. In particular, we develop a setup
shown in Fig. 5(a), where there is one source, one receiver,
and a varying number of helpers. In this setup, the source
device, receiver, and the first two helper devices are Nexus
5 smartphones, while the other helpers are Nexus 7 tablets.
Fig. 5(b) shows the average rate (averaged over 10 seeds)
when EaCC is employed versus the number of helpers for
different computational complexities such as O(1), O(n), and

O(n?), where the processing task is counting the number of
bytes in a packet. As expected, when complexity increases, the
rate decreases. More interestingly, the increasing number of
helpers increases the rates of all complexity levels. There are
two reasons for this behavior. First, even if complexity level is
low, e.g., O(1), processing power is still a bottleneck, and it
can be solved by increasing the number of helpers. Note that
after the number of helpers exceeds a value, the achievable
rates saturate, which means that processing power is not a
bottleneck anymore, but bandwidth is. The second reason is
that receiving data over multiple interfaces increases diversity.
In other words, when the channel condition over one interface
(e.g., between source and the mobile device) degrades, the
other interface (e.g., between two mobile devices) can still
have a better channel condition.

In order to understand the real impact of processing power
in a cooperative system, we tested both EaCC and cooperation
(without computation and energy control) in the setup shown
in Fig. 5(a). The results are provided in Fig. 5(c) when the
complexity is O(n?). As can be seen, while EaCC signifi-
cantly increases the rate with increasing number of helpers,
cooperation slightly increases the rate (due to diversity). The
improvement of EaCC over cooperation is as high as 83%,
which is significant.

Finally, we consider a scenario that there are multiple
receivers interested in different files. Fig. 6(a) shows the
system model with one source, two receivers, and multiple
helpers. In this setup, the source, two receivers, and the first
helper is Android based Nexus 5 smartphone, while the rest
of the helpers are Nexus 7 tablets. Fig. 6(b) and (c) show the
average rate (averaged over 10 seeds) measured at Ry and
Rs when EaCC is employed with respect to the increasing
number of helpers, respectively. Similar to previous setups,
O(1), O(n), and O(n?) correspond to different computational
complexities, where the processing task is counting the number
of bytes in a packet. As can be seen, the measured rate at both
Ry and R, increases with increasing number of helpers. This
shows that our EaCC algorithm successfully accommodates
multiple flows and receivers.

VII. CONCLUSION
We considered that a group of cooperative mobile devices,
within proximity of each other, (i) use their cellular or Wi-Fi
(802.11) links as their primary networking interfaces, and (ii)
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exploit their D2D connections (Wi-Fi Direct) for cooperative
computation. We showed that if mobile devices cooperate
to utilize their aggregate processing power, it significantly
improves transmission rates. Thus, for this scenario, we de-
veloped an energy-aware cooperative computation framework
to effectively utilize processing power and energy. This frame-
work provides a set of algorithms including flow, computation
and energy controls as well as cooperation and scheduling. We
implemented these algorithms in a testbed which consists of
real mobile devices. The experiments in the testbed show that
our energy-aware cooperative computation framework brings
significant performance benefits.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update,” 2014-2019.

[2] “Ericsson mobility report,” February 2015.

[3] “Wi-fi direct,” http://www.wi-fi.org/discover-and-learn/wi-fi-direct.

[4] “Android,” http://developer.android.com/develop/index.html.

[5] “Nexus tech specs,” https://support.google.com/nexus/answer/6102470?hl=en.

[6] A. Singh, Y. Xing, and H. Seferoglu, “Cooperative compuration in
device-to-device networks.” [Online]. Available: http://nrl.ece.uic.edu
and via [cs.NI] arXiv:1602.04400

[7]1 T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong,
J. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile
communications for 5g cellular: It will work!” Access, IEEE, vol. 1,
pp. 335-349, 2013.

[8] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, “Video coding with h.264/avc: tools,
performance, and complexity,” Circuits and Systems Magazine, IEEE,
vol. 4, no. 1, pp. 7-28, First 2004.

[9] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/avc
baseline profile decoder complexity analysis,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 704-716,
July 2003.

[10] J. K. Sundararajan, D. Shah, M. Jakubczak, M. Mitzenmacher, and
J. Barros, “Network coding meets tcp: Theory and implementation,”
Proceedings of the IEEE, pp. 490-512, March 2011.

[11] P. Vingelmann, P. Zanaty, F. Fitzek, and H. Charaf, “Implementation
of random linear network coding on opengl-enabled graphics cards,” in
Wireless Conference, 2009. EW 2009. European, May 2009, pp. 118—
123.

[12] H. Shojania, B. Li, and X. Wang, “Nuclei: Gpu-accelerated many-core
network coding,” in INFOCOM 2009, IEEE, April 2009, pp. 459-467.

[13] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[14] M. Chiang, S. T. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: a mathematical theory of network archi-
tectures,” Proceedings of the IEEE, vol. 95, no. 1, January 2007.

[15] D. Syrivelis, G. losifidis, D. Delimpasis, K. Chounos, T. Korakis, and
L. Tassiulas, “Bits and coins: Supporting collaborative consumption of
mobile internet,” in Proc. IEEE Infocom, Hong Kong, April 2015.

[16] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” April 2014, technical report -
arxiv:1310.0720v6[cs.GT].

[17] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forward-
ing in delay tolerant networks,” in Proc. of ACM MobiHoc, Hong Kong,
May 2008.

[18] C. Boldrini, M. Conti, and A. Passarella, “Exploiting users’ social
relations to forward data in opportunistic networks: The hibop solution,”
in Proc. of Pervasive and Mobile Computing, October 2008.

[19] L. Keller, B. Cici, A. Le, H. Seferoglu, C. Fragouli, and A. Markopoulou,
“Microcast: Cooperative video streaming on smartphones,” in Proc. of
ACM MobiSys, June 2012.

[20] H. Seferoglu, L. Keller, A. Le, B. Cici, C. Fragouli, and A. Markopoulou,
“Cooperative video streaming on smartphones,” in Proc. Allerton, 2011.

[21] M. Ramadan, L. E. Zein, and Z. Dawy, “Implementation and evaluation
of cooperative video streaming for mobile devices,” in Proc. of IEEE
PIMRC, Cannes, France, September 2008.

[22] S. Li and S. Chan, “Bopper: wireless video broadcasting with peer-to-
peer error recovery,” in Proc. of IEEE ICME, Beijing, China, July 2007.

[23] J. Chesterfield, R. Chakravorty, I. Pratt, S. Banerjee, and P. Rodriguez,
“Exploiting diversity to enhance multimedia streaming over cellular
links,” in Proc. of IEEE INFOCOM, March 2005.

, “A system for peer-to-peer video streaming in resource constrained
mobile environments,” in Proc. of ACM U-NET, December 2009.

[25] S. Ioannidis, A. Chaintreau, and L. Massoulie, “Optimal and scalable

distribution of content updates over a mobile social network,” in Proc.

IEEE INFOCOM, Rio de Janeiro, Brazil, April 2009.

[26] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and A. Srinivasan,
“Cellular traffic offloading through opportunistic communications: a case
study,” in Proc. of ACM Workshop on Challenged Networks (CHANTS),
Chicago, IL, September 2010.

[27] R. K. Lomotey and R. Deters, “Architectural designs from mobile cloud
computing to ubiquitous cloud computing - survey,” in Proc. IEEE
Services, Anchorage, Alaska, June 2014.

[28] T. Penner, A. Johnson, B. V. Slyke, M. Guirguis, and Q. Gu, “Transient
clouds: Assignment and collaborative execution of tasks on mobile
devices,” in Proc. IEEE GLOBECOM, Austin, TX, December 2014.

[29] M. Satyanarayanan, S. Smaldone, B. Gilbert, J. Harkes, and L. Iftode,
“Bringing the cloud down to earth: Transient pcs everywhere,” in
MobiCASE’10, 2010, pp. 315-322.

[30] E. Miluzzo, R. Caceres, and Y. Chen, “Vision: mclouds - computing on
clouds of mobile devices,” in ACM workshop on Mobile cloud computing
and services, Low Wodd Bay, Lake District, UK, June 2012.

[31] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
mul- tihop radio networks,” IEEE Trans. on Automatic Control, vol. 37,
no. 12, December 1992.

[32] ——, “Dynamic server allocation to parallel queues with randomly
varying connectivity,” IEEE Trans. on Information Theory, vol. 39, no. 2,
March 1993.

[33] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochas-
tic control for heterogeneous networks,” IEEE Trans. on Networking,
vol. 16, no. 2, April 2008.

[34] P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
IEEE/ACM Transactions on Information Theory, vol. 34, no. 5, March
2000.

[24]

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP 376



