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Abstract—To reduce the energy consumption of a large number
of network devices in a data center, energy-efficient schemes use
various heuristics to consolidate traffic to fewer switches. Most of
these works, however, ignore the flow-level performance, which is
one of the most critical requirements in production data centers.
Hence, flow rate allocation should be considered together with
flow path selection to guarantee flow-level performance and in
the meantime save energy of network devices. For this reason,
we present a framework to ensure that the energy consumption
for data center network (DCN) is proportional to the traffic and
to guarantee the flow-level performance. Our solution consists
of two components: (i) flow rate allocation to meet flows’
deadlines and (ii) flow path selection to use fewer switches.
We compare our framework with existing techniques under
synthetic traffic patterns. Results show that our framework could
save, on average, 20% of network energy than the always-on
baseline, while maintaining the better flow-level performance, and
achieving good running time and fault tolerance simultaneously.

I. INTRODUCTION

High energy consumption has become a central issue for
large-scale data centers as computing and networking infras-
tructures scale out in response to growing requests in clouds.
It is shown in [1] that the energy used in U.S. data centers
in 2013 was estimated 91 billion kwh and is projected to
increase to roughly 140 billion kwh annually by 2020. Various
techniques, including Dynamic Voltage Frequency Scaling
(DVFS), virtualization and efficient power supplies, have been
explored to reduce the energy consumed by servers which
accounts for the largest component of a data center’s total
power. The network devices, which could account for 10-20%
of a data center’s total power [9], [13], also need energy saving
schemes.

DCNs are usually provisioned for the peak workload, and
this load exceeds their long-term utilizations by a large margin.
Therefore, significant energy could be saved if the energy
consumption of a DCN could be proportional to its actual
rather than peak workload. We call a DCN with this feature
an energy propoertional DCN. A power measurement [16]
studied several data center switches under a variety of traffic
patterns. The study showed that keeping a switch always on
consumes most energy, while increasing the traffic from zero
to full load via a switch only increases the switch’s power
by less than 10%. This phenomenon implies that to achieve
DCN energy proportionality, we could mainly focus on the

number of power-on switches instead of the traffic load going
through the switches. DCN topology designs, e.g., Fat-tree [2],
VL2 [10], BCube [11] provide more network components and
more paths between arbitrary pairwise servers. This advantage
brings opportunities to improve DCNs energy-proportionality,
because turning off a subset of switches would not disconnect
servers.

While traffic consolidation has been an effective way to
achieve energy-efficiency by consolidating flows to fewer
switches [13], [19], [21], they heavily depend on the accurate
prediction of traffic [7]. On the other hand, most of the traffic
engineering based solutions are agnostic to the network flow
performance, which results in delaying flows and slowing
down responses to requests. This degradation is not acceptable
for applications requiring high quality of services (QoS).

An important class of data center applications, called Online
Data-Intensive (OLDI) applications, e.g., web search and on-
line retail, employ algorithms where every query operates on
data spanning thousands of servers. Latencies in this request-
response process would heavily affect users experiences. To
avoid the performance degeneration and keeping DCNs en-
ergy efficient, we avoid monitoring traffic flows frequently
but instead obtain the flows’ deadlines implicitly with the
TCP AIMD mechanism. Quantitatively, we measure the flow
performance in terms of its flow completion time (FCT), as the
previous works did [14], [17], [18], [22]. Our objective is to
design state changing (on/off) schemes for switches where the
DCN energy consumption is minimized and the flow deadlines
are met.

In order to reduce a DCN energy consumption, the optimal
solution should meet the following goals:

• Work Conservation (WC): the principle to keep active
switches with high utilization.

• Performance Guarantee (PG): the criterion for energy
saving schemes that should not affect network FCTs.

• Network Agility (NA): the ability to dynamically grow and
shrink the DCN capacity to meet traffic loads.

In this paper, we formulate this DCN Energy Saving (DES)
problem and prove its NP-completeness. To address the DES
problem, we propose a framework to optimize the energy
consumptions while maintaining the network performance. To
find the most suitable network subset, we present multiple al-
gorithms to select paths for flows such that the flow bandwidth
demands are satisfied and the number of required switchesISBN 978-3-901882-83-8 c� 2016 IFIP
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is minimized. Each algorithm achieves different tradeoffs be-
tween efficiency and optimality. To keep the flow performance,
the transmission rates are allocated in a way which meets the
flow deadlines and efficiently utilizes the bandwidths. Using
flow rate allocation and flow path selection, our framework
could dynamically adjust the active set of network elements to
satisfy changing traffic loads. Experiments show that compared
to existing works, our solution on average, could save 20% of
the network energy in data centers, while holding the better
flow performance.

The rest of the paper is organized as follows: Section II
formulates the DES problem and analyzes its hardness. Section
III describes the framework where the rate allocation and path
selection algorithms are proposed. Section IV presents the
simulation results. We review the related works in Section V
and conclude the paper in Section VI.

II. THE DCN ENERGY SAVING PROBLEM

In this section, we first analyze the characteristics of DCN
switch and the power-down strategy. Based on the prelim-
inaries, we formulate the DES problem as a constrained
optimization problem, and analyze its complexity.

A. Preliminaries
A network switch is commonly composed with chassis,

line-cards, switching fabric, and ports. The chassis usually
consumes a constant power. The line-card buffers packets
and the switching fabric maintains the switching table. Ports
consume dynamic power according to their speeds. The DES
problem critically relies on the nature of the speed-power
curve f (s), a function mapping the switch’s processing speed
s to its power. In [4], [5], [20], the authors calculate f (s)
only by switch ports. In this work, f (s) is more general and
includes a constant plus a dynamic speed-related component.
This model meets the real statistics [16] and supports our idea
that, powering down the unused switches can save more energy
than speed scaling [4]. Equivalently, we transfer the port power
consumption to its associated link power consumption.

Advanced architectures (e.g., Fat-tree [2], VL2 [10], BCube
[11]) enrich the connectivities among servers in data centers.
But the measurements from [7] show that, the utilization of
aggregation switch links is 8% at 90% running time, while
the average utilizations of edge layer switches and core layer
switches are around 20% and 40%, respectively. This enables
us to combine flows from several low utilization switches.
As Fig. 1 illustrates, flows could be consolidated onto fewer
switches when the DCN is at low utilization. In this example,
after flow consolidation, six idle switches could be turned off,
reducing network power by nearly 30%.

B. Problem Formulation
We assume that flows K1, K2, ..., K

n

are transmitted among
the DCN. We denote the i-th flow, K

i

= {s
i

, t
i

, d
i

}, where
s

i

is the source, t
i

is the sink, and d

i

is the flow size. The
DCN is abstracted as a graph G = (V, E), where V is the set
of nodes, including hosts and switches, and E is the set of

active switch

idle switch

idle link

CSW0 CSW1

ToR4 ToR5 ToR6 ToR7

Fig. 1. An example of consolidating flows onto fewer switches in a Fat-tree
topology using 4-port switch

links connecting them. Each link (u,v) 2 E has the capacity
c(u,v). We do not allow flows to get split due to the fact that
the reordering packets would degrade TCP performance, as
previous works did [3], [13]. f

i

(u, v) is the size of the i-th
flow along link (u,v), which is either d

i

or 0. An assignment
of flows is a mapping from flows to paths in the DCN, such
that the following constraints are satisfied.
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The constraint (1) restricts the total flows along each link
not exceeding the capacity. The flow conservation constraint
expressed in (2) means that flows should not be created or
destroyed at intermediate nodes. Equality (3) means that the
sink receives the same amount of data as that the source sends.

Next, we define the following notations:
• S: the set of all switches;
• P

u

: the power of switch u, including the constant com-
ponent plus the dynamic component;

• P

cons

u

: the constant power component of switch u;
• P

link

u,v

(x

u,v

): the dynamic power component consumed by
link (u,v), which is related to the flow rate x

u,v

on it;
• X

u

: the indicator deciding whether the switch u is on;
• Y

u,v

: the indicator deciding whether the link (u,v) is on;
• R

i

(u, v): the indicator deciding whether the i-th flow uses
link (u, v).

The objective function can be formulated as follows:

min

X

u2S
X

u

· P
u

, (4)

where

P

u

= P
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u

+

1

2

X

v2Su
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u,v
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u,v

), (5)

x

u,v

=

nX

i=1

f

i

(u, v). (6)

A factor of 1
2 in Equation (5) is to eliminate the double

counting of each link. For the link power consumption model
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P

link

u,v

(x

u,v

), we adopt the power function from [4], a widely
used version in the literature:

P

link

u,v

(x

u,v

) = � + µx

↵

u,v

, (7)

where �, µ and ↵ are constants, and usually ↵ � 1. To avoid
the stability problem incurred by frequently togging on and off
links, we assume that a link can be powered off only when
it carries no traffic, thus the constraint (1) can be augmented
with binary variable Y

u,v

:

8i, 8(u, v) 2 E ,
nX

i=1

f

i

(u, v)  Y

u,v

· c(u, v). (8)

Actually, when all links from a switch are powered off, the
switch can be powered off too:

8u 2 S, X
u

= 1�
Y

v2Su

(1� Y

u,v

). (9)

Since we do not allow flow splitting, we have:

8i, 8(u, v) 2 E , f
i

(u, v) = R

i

(u, v) · d
i

. (10)

Data center network Energy Saving (DES) Problem:
Given flows K1, K2, ..., K

n

, decide X

u

(8u2S), where (4)
is minimized and constrains (1)(3)(8)(9)(10) are satisfied.

C. The Hardness of DES Problem

Theorem 1: The DES problem is NP-complete.
Proof: First we consider the adapted-DES problem, where

we assume the constant component of the power of switch
P

cons

u

could be evenly partitioned to the active links, and the
power of link P

link

u,v

(x

u,v

) = � + x

u,v

, with µ = 1, ↵ = 1, and
� = P

cons

u

/|S
u

|. Hence, the objective function of this adapted-
DES is: X

(u,v)2E

(� + x
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),

which is equal to
X

(u,v)2E

x

u,v

+

X

u2S
P

cons

u

.

The Multi-Commodity Flow (MCF) problem is to minimize
X

(u,v)2E

a(u, v) · x
u,v

,

while satisfying constraints (1)(2)(3). Any MCF problem
instance could be reduced to the adapted-DES instance in
polynomial time, by letting a(u, v) = 1 and adding an
additional constant. As the MCF problem is NP-complete for
integer flows [8], the adapted-DES problem is NP-complete.
Any additional constraints like P

cons

u

cannot be shared by
links or ↵ > 1, making the DES problem not easier than the
adapted-DES problem.

Due to the hardness of DES problem, we explore practical
and efficient schemes to improve DCN energy-efficiency and
flow performance.

Data Center

Network

flows

Initial route

allocator Monitor

Scheduler

flows &net. 
stat.

flows &net. 
adjust

Fig. 2. System framework overview

III. ENERGY SAVING SCHEMES FOR DCNS

First we introduce our system framework, as shown in Fig.
2. Typically, flows are initialized by initial route allocator. As
flows arrive and depart, the monitor periodically detects the D-
CN configurations, and when the network gets suboptimal, the
scheduler adjusts flow routes and the network configurations.
In this adjusting process, we decouple rate1 allocation and
path selection for flows, aiming at satisfying flow rate demands
and minimizing the occupied network simultaneously. For rate
allocation, we first apply a simple method to label implicit
deadlines to deadline-agnostic flows, and use them to calculate
the bandwidth demands (III.A). Based on the bandwidth de-
mands, linear programming and simulated annealing methods
are proposed to select flow paths, and to output the minimum
subset of the DCN (III.B). The actual rate that a flow obtains is
the minimum allocated bandwidth along the selected path. We
also extend the methods for practical considerations (III.C).

A. Flow Rate Allocation

1) Bandwidth demand calculation: One of the main metrics
of the flow performance is its duration time, in other words,
the flow completion time. For applications in data centers,
especially OLDI applications, flows need to meet their dead-
lines to be useful. Nevertheless, deadlines are hard to explicitly
acquire from the packet headers. Since the sizes of flows are
easy to obtain, we can exploit the sizes of flows to estimate the
implicit deadlines for flows, and then use them in bandwidth
allocations. The method of calculating deadlines is based on
the TCP AIMD mechanism.

When the network is lightly loaded, the TCP (Reno version)
congestion window shows the sawtooth wave shape (Fig. 3).
The area between the wave and the x-axis can be considered
as the amount of data a flow sends. In a sawtooth wave (the
gray region), the amount of data is around 3

4WL (L · W

2 + 1
2 ·

L · W

2 ). We assume that the window size starts from W

2 , and
increases linearly until congestion occurs. Given the flow size
A, it is easy to approximate the flow duration time by a simple
formula:

D =

A

3
4WL

· L =

4A

3W

.

We regard D as the implicit deadline, and this value would
be tighter than the time it really takes when transmitting in
DCNs, due to the assumption on light network traffic. Given

1We use the term rate and bandwidth interchangeably.
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a flow with remaining size f

i

.a and the remaining time until
its deadline expires f

i

.r, the demand bandwidth is estimated
as f

i

.de = fi.a

fi.r
.

2) Rate allocation: The bandwidth demand request travels
along the selected path to its destination, along which the
nodes allocate bandwidths accordingly. The actual bandwidth
flow f

i

gets is the minimum of the allocated bandwidths. We
apply the Greedy Bandwidth Allocation (GBA, Algorithm 1)
for each node, which receives bandwidth requests from flows.
If the node has sufficient capacity, each flow will acquire
bandwidth f

i

.al = f

i

.de + b, where b is the spare bandwidth
capacity shared with other flows. When the node does not
have enough capacity to satisfy all the requests, GBA will try
to satisfy requests as many as possible. The way we calculate
f

i

.al respects PG goal and outperforms original TCP in terms
of FCTs, as shown in Section IV.

Algorithm 1 Greedy Bandwidth Allocation
Input: f [1...N ]: flows to be allocated, B: bandwidth capacity
Output: flows f [1...N ] with bandwidth allocations
1: Sort f [1...N ] by f.de in a non-decreasing order;
2: i = 1, R = B;
3: while i  N and R > 0 do
4: f

i

.al = min{R, f
i

.de};
5: R = R � f

i

.al;
6: end while
7: if R > 0 then
8: b = R/N , i = 1;
9: while i  N do

10: f

i

.al = f

i

.al + b;
11: end while
12: end if
13: Return f [1...N ];

B. Flow Path Selection
Based on the flow bandwidth demands, we have developed

two methods to compute a minimum-power network subset
in DCNs. The first is based on linear programming, with a
randomized rounding scheme for minimizing active switches.
Inspired by [3], the second method uses simulated annealing
technique to get the solution by efficiently searching solution

space. Each method includes both initial route allocator and
scheduler algorithms.

1) Linear programming method: First we introduce our
initial route allocator in this method. Energy-Efficient Routing
(EER, Algorithm 2) counts the number of active switches in
each path and sorts the paths in a non-increasing order. Next,
EER checks the remaining bandwidths of the ordered paths
(p

i

.re) successively and allocates them to the candidate flow
until satisfying its demand (f.de). The divisor (⇤ � N[i]) (line
13) is small when there are many active switches in this path,
and in this case the probability of choosing this path is high .
We set ⇤ = 6 in Fat-tree, since there are 5 switches between
inter-pod hosts. For example, f.de = 20, N[1] = 5, N[2] = 2,
A[1] = 10 and A[2] = 10, after Normalize(), the probability
of choosing p1 and the probability of choosing p2 are 0.8 and
0.2, respectively. EER tends to allocate flows to paths which
have more active switches and to meet WC goal.

Algorithm 2 Energy-Efficient Routing
Input: f : flow to be allocated, p: the set of M possible paths
Output: an ideal path chosen for f
1: for i: 1 to M do
2: N[i] = CountActiveSW(p

i

);
3: end for
4: Sort p by number of active switches in decreasing order;
5: for i: 1 to M do
6: if p

i

.re  0 or f.de  0 then
7: continue;
8: end if
9: N[i] = CountActiveSW(p

i

);
10: A[i] = min{p

i

.re, f.de};
11: p

i

.re = p

i

.re � A[i];
12: f.de = f.de � A[i];
13: A[i] = A[i] / (⇤ � N[i]);
14: end for
15: Normalize(A[1...M]);
16: Return p

i

with probability A[i];

As flows arrive and depart, the network utilization may
become suboptimal. The scheduler takes the network con-
figuration and the flows as inputs and recomputes the paths
for flows in nearly real-time, such that the active switches
are minimized and the NA goal is respected. For scheduler
algorithm in this method (LP, Algorithm 3), LP solves the
MCF problem with fractional linear programming, and then
extracts candidate paths for each flow. With the fractional
results, we use a natural randomized rounding scheme, where
the paths are chosen with the probabilities depending on their
weights. Similarly to EER, we measure the weight of the j-th
candidate path for the i-th flow by the assigned bandwidths
P
i

[j].as and the number of active switches N[j], giving that
LP respects WC.

2) Simulated annealing method: Directly computing the
flow assignment needs exhaustive search in the solution space,
which is exponential to the number of flows. We introduce
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Algorithm 3 Linear Programming Based Path Selector
Input: f [1...N ]: flows to be allocated, G = (E ,V): the DCN
Output: routing path p

i

for f [i]
1: Solve MCF problem by linear programming;
2: For each flow f [i], extract a set of candidate paths P

i

;
3: for i : 1 to N do
4: for P

i

[j] 2 P
i

do
5: N[j] = CountActiveSW(P

i

[j]);
6: w[i][j] = P

i

[j].as / (⇤�N[j]);
7: end for
8: Normalize(w[i]);
9: Choose p

i

with probability w[i];
10: end for
11: Return p1, p2, ..., p

N

;

a novel method which can significantly reduce the solution
space. The key insight is that a core switch can handle multiple
flows destined to specific hosts. In Fig. 1, CSW0 handles flows
destined to hosts under ToR4 and ToR6, while CSW1 handles
flows destined to hosts under ToR5 and ToR7. That is, we
shift from choosing paths for flows to choosing core switches
for hosts. Once the mapping from hosts to core switches
is determined, so are the paths for flows. Both initial route
allocator and scheduler algorithm in this method depend on
this mapping, since initial route allocator could initialize paths
for flows by simply searching in this mapping in terms of their
destinations, and scheduler updates this mapping by calling SA
(Algorithm 4).

SA is to find the optimal state in the state space, where a
state is a particular mapping. In each iteration, we generate
a neighboring solution from current state and accept it as the
new state with a probability depending on the energy of current
and neighboring state, and current temperature. SA proceeds
the iterations, with a decreased temperature each round, and
it stops when the temperature reaches 0.

Algorithm 4 Simulated Annealing Based Path Selector
Input: s: initial state, n: iteration count
Output: s

B

: beat state of the mapping
1: e = Energy(s);
2: s

B

= s, e
B

= e;
3: for T : n to 0 do
4: s

N

= Neighbor(s);
5: e

N

= Energy(s);
6: if e

N

< e

B

then
7: s

B

= s

N

, e
B

= e

N

;
8: end if
9: if Pr(e

N

�e, T ) > Rand() then
10: s = s

N

, e = e

N

;
11: end if
12: end for

With the flow assignment determined by SA, we could
easily find whether the flow demands in a link exceed its ca-

pacity. The Energy() function is defined by the total exceeded
bandwidth demands and the number of active switches in s:

Energy(s) = (s.ex band+ 1) · (s.active sw + 1).

An extra 1 is necessary to ensure that the energy is always pos-
itive and comparable. Pr() defines the probability of accepting
neighboring state as the new state:

Pr(�E, T ) =

(
1 �E > 0
e

c�E/T

�E  0

where c is a adjustable parameter.
Initial state: Particularly, the number of core switches is

equal to the number of hosts in a pod in the Fat-tree. We
restrict our first initial state to one-to-one mapping, which
implies each host in a pod is mapped to a unique core switch.
In subsequent scheduling phases, we set the initial state as the
best state from the previous phase. This configuration could
reduce the disruption of existing flows.

Neighbor state generator: Our neighbor state generator
directs SA to appropriate mappings which saves more energy
and tries to meet the capacity constraints. Our strategies are: (i)
powering off a randomly-chosen core switch and remapping
the involved hosts to other randomly-chosen core switches, (ii)
swapping the mapping relationships of two randomly-chosen
hosts, (iii) remapping a randomly-chosen host to another core
switch, and (iv) powering on a core switch and remapping
a randomly-chosen host from other switches to this switch.
The first strategy is for energy-saving, while the last three
strategies are for fine placements of flows with less exceeded
capacity bandwidths. These four strategies are chosen with
equal probability.

Energy function: The energy function we define involves
both energy and bandwidth allocation information. Less ener-
gy indicates either less energy consumptions or less exceeded
bandwidths, either of which would be accepted as a good state.
Given a fixed traffic, less energy consumption mean less active
switches, and then higher switch utilizations, giving that SA
respects WC.

C. Practical Considerations

Stability consideration: The algorithms we have proposed
are to find the minimum subset of switches, which achieve
the three goals presented in Section I. However, these may
go too far and result in unstable load. Unstable load will lead
to different subsets of switches in the contiguous scheduling
phases, meaning that the states of several switches change fre-
quently. For stability consideration, we extend our algorithms
with a Hit mechanism.

After applying the scheduler algorithm (LP or SA), we
extract the path for each flow, with which the subset of
switches is determined to run until next schedule phase. For
a switch not in the subset, (i.e., the switch would be turned
off), if the number of requests for powering off this switch in
the scheduling interval is greater than a given threshold, we
actually power off this switch, otherwise, we keep the switch
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on and randomly choose flows from geographically neighbor
switches to adjust their paths to go through this switch. We
correspondingly call the algorithms with Hit mechanism as
LP-hit and SA-hit.

Fault tolerance consideration: The framework could cer-
tainly minimize the network energy consumption, but may
hurt the performance regarding fault tolerance of the origi-
nal system that always keeps switches on. We refer to the
original system as always-on baseline in our later evaluation.
In current data centers, failures are quite common due to
hardware, software, and power outage problems [6], [12]. We
thus improve our algorithms for fault tolerance with minor
modifications. For LP, we modify the Normalize() (Algorithm
2, line 8) function. For example, assume that there are two
possible candidate paths for flow 0, whose weights are w[0][0]

= 10, and w[0][1] = 2.5, respectively, and other candidate paths
are with weight w[0][i] = 0, for i � 2. In LP-FT, we make the
impossible paths join the candidate path set by modifying their
weights, (in this example, let w[0][2] = 2). This leads to the
probabilities of choosing path 0, 1, and 2 are 69.0%, 17.2%
and 13.8%, respectively. This method activates more paths,
and powers on more switches for fault tolerance. For SA-FT,
we let additional new core switches join the best mapping
computed by SA, and change a randomly-chosen host to map
to the new core switch.

Our framework combines GBA with LP and SA, respective-
ly. The LP based method and its variants run fast, while the
SA method and its variants achieve more energy savings and
maintain better FCTs, as demonstrated in the next section.

IV. SIMULATION EVALUATIONS

This section describes evaluations of our system framework.
The goal of these tests is to determine the energy-efficiency
and flow performance under various traffic patterns and various
network utilizations. The efficiencies and fault-tolerance of
algorithms are also evaluated.

A. Simulation Setups
We simulated our system framework on a laptop with an

Intel Core i5-2410M 2.30Ghz CPU and 4GB RAM. All of
the algorithms are implemented in Java.

Our simulator captures the flow-level events like flow ar-
rivals, departures and transmission rate calculations. Existing
packet-level simulators such as ns-2 become extremely slow or
even impossible when the number of network nodes becomes
huge. The traffic is generated for a range of communication
patterns at the granularity of network flow which follows
Pareto distribution with mean size 50KB. In our simulations,
time is split into slices. At each time slice, it updates flow rates
and generates new flows if needed. Periodically it calls the
scheduler to reassign flows to new paths and changes switch
states. For comparison, we also implement the Greedy Bin
Packing (GBP) method [13], which evaluates possible paths
and chooses the leftmost one with sufficient capacity for each
flow. When calling the scheduler algorithm (LP, SA or GBP),
the simulator also calls GBA for bandwidth allocation. When

updating flow rates, we also implement the TCP with slow start
and AIMD, and D3 [22] for flow performance comparisons.
Our simulator has similar implementation as that in [3], which
matches testbed performance very well.

We use Fat-tree topology with 320 switches and 1024
servers. Similar to previous works [2], [3], our synthetic traffic
patterns include:

• Random: Each server sends to a random destination.
Multiple servers can send to the same receiver.

• Random bijection: Each server sends to a random desti-
nation. Each host receives data from only one sender.

• Random nonpod: Each server sends to a random destina-
tion not in the same pod as itself. Multiple servers can
send to the same receiver.

• Stride-512: We number the servers in our Fat-tree topolo-
gy from left to right, as the leftmost is 0 and the rightmost
is 1023. By Stride-512, we mean the server i sends to
server (i+512) mod 1024.

For a single switch power function (Equation (5)), we set
P

cons

u

= 200 watts, and for each link power function � = 0,
µ = 2 ⇥ 10

�6 watts/(Mbps)2 and ↵ = 2, which are adopted
from [19]. Consequently, the maximum power consumption of
each switch is 232 watts.

B. Simulation Results
We now explore the efficiency of our framework. The

primary metrics include (i) FCTs, and (ii) the ratio of energy
consumption with our algorithms over the energy consumption
with the always-on baseline.

1) Synthetic demands, varying loads: Energy savings and
flow performance heavily depend on the traffic patterns and
network utilizations.

Energy saving evaluations: Figs. 4(a), (c), (e), (g) show
the energy savings in the Random, Random bijection, Random
nonpod, Stride-512 traffic patterns, respectively. In each traffic
pattern, we vary the network utilization from 10% to nearly
100% by adding more flows. And for each utilization and
each traffic pattern, we run the simulation for 60 seconds,
and measure the average energy consumptions during the
middle 40 seconds. In all four traffic patterns, SA saves more
energy than GBP and LP. In detail, 25% and 8% more energy
(at least) can be saved by SA compared with GBP and LP
model at low utilization (10% � 30%), respectively. While the
gaps in energy saving between different algorithms decrease
as the utilizations grows, SA could save 18% and 7% (on
average) more energy than GBP and LP model at medium
utilization (30% � 60%), respectively. When the utilization
is close to 100%, all the switches must remain active, and
thus all algorithms have similar performance. From another
point of view, traffic patterns also affect energy savings. At
20% utilization, SA achieves 42% and 35% energy savings
in Random and Random nonpod traffic patterns, respectively,
implying that at the same network utilization, the less flows
through core switches, the more energy saving.

Flow performance evaluations: In this section, we evaluate
the flow performance of different algorithms under synthetic
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(b) FCTs under Random traffic
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(c) Energy under Random bijection traffic
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(d) FCTs under Random bijection traffic
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(e) Energy under Random nopod traffic
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(f) FCTs under Random nopod traffic
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(g) Energy under Stride-512 traffic
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(h) FCTs under Stride-512 traffic

Fig. 4. Energy consumptions and FCTs under synthetic traffic patterns

traffic patterns. Here, we choose three utilizations of 10%,
40% and 70% to represent low, medium and high utilizations,
respectively, and focus on the FCTs. The ECMP and D3
schemes run within the always-on network configuration,
while SA, LP and GBP run within subsets of the network.
Figs. 4(b), (d), (f) and (h) plot the percentiles FCTs (1st-
25th-50th-75th-99th) at different traffic patterns and network
utilizations. At low utilization, the median FCTs for all ap-

proaches are comparable, while for the 99th percentile FCT,
SA and GBP are comparable, but LP performs worse than the
two algorithms. As network utilization increases, LP model
becomes worse than SA and GBP, because its probabilistic
path selection leads to aggressive flow congestions. At medium
load, the median FCT of SA is, on average, 11% higher than
that of GBP, while the 99th percentile of SA is at least 33%
lower than that of GBP. The gaps between SA and GBP
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Fig. 5. Energy consumptions with sine-wave utilization

TABLE I
THE RATIOS OF ENERGY CONSUMPTION WITH SA BY VARYING ITERATIONS

SA Iteration Random Random bijection Random nopod Stride-512
10% 40% 70% 10% 40% 70% 10% 40% 70% 10% 40% 70%

50 0.594 0.726 0.860 0.581 0.720 0.828 0.618 0.781 0.913 0.557 0.681 0.856
100 0.570 0.703 0.840 0.562 0.703 0.819 0.609 0.766 0.887 0.557 0.673 0.832
500 0.573 0.695 0.831 0.560 0.708 0.820 0.605 0.770 0.878 0.550 0.690 0.827
1000 0.563 0.702 0.838 0.554 0.696 0.822 0.610 0.765 0.891 0.564 0.668 0.831
5000 0.567 0.691 0.834 0.562 0.695 0.821 0.604 0.772 0.875 0.551 0.678 0.823

10000 0.565 0.695 0.830 0.551 0.691 0.825 0.605 0.761 0.871 0.560 0.670 0.818
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Fig. 6. Time consumptions by varying iterations

become larger in terms of the 99th percentile, but become
closer in terms of the median at high utilization.

2) Diurnal variation demand: As the network utilization
varies with time in product data centers, we capture this
demand by simulating a sine-wave utilization which is inspired
by [13]. As Fig. 5(a) shows, the highest utilization is 90%,
while the lowest is 10%. The simulation runs for 40 seconds
and 80 seconds at low and high utilization, respectively, to
imitate the diurnal utilization pattern. We compare energy-
efficiency of LP and SA, together with LP-hit and SA-hit.
From measurements of the half of the wave length, we record
and calculate the energy consumptions from the 200th time
tick to the 550th time tick, which demonstrate that SA and
LP save 18.4% and 5.6% more energy than GBP, respectively.
While SA-hit consumes more energy than SA, which is about
3% in this load decreasing phase, it consumes almost equal
energy as SA in the load increasing phase. This phenomenon
also appears in LP-hit, as illustrated in Fig. 5(b). Since Hit
mechanism indeed incurs more energy, it could reduce the
number of switch state changing (Fig. 5(c)). We also note that
SA leads to more state changing times than LP, which we
believe, is the expense for higher energy savings.

0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization

 

 

GBP

LP

SA

LP−FT

SA−FT

%
 O

f 
O

ri
g
in

(a) Varying utilizations

20 80 320 1280 5120

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Switches number

 

 

LP

SA

LP−FT

SA−FT

(b) Varying scales

Fig. 7. Energy consumptions with fault tolerance

3) Iterations and running times: To explore the energy
savings of SA under different iterations, we conduct the
experiments using synthetic traffic patterns and various uti-
lizations as before. These results (Table I) conform with our
expectation that more iterations create better state that can be
used to save more energy. Fortunately, most of the performance
improvements appear in the first few iterations. Next, Fig.
6 shows the running times of SA for different iterations,
compared with LP under various utilizations. These results
report that the running times of SA with few hundreds of
iterations are not much longer than LP.

4) Fault tolerance: We use the Fat-tree topology as before,
and the Random traffic pattern as the underlying traffic. For
LP-FT, we add two more possible paths into the candidate path
set for each flow, while adding one more core switch (if exists)
for each pod to the best state for SA-FT. Fig. 7(a) shows that
additional energy required by fault tolerance decreases as the
utilization grows. Furthermore, as the network scale increases,
the cost of fault tolerance decreases, which is confirmed by
the results of Fig. 7(b) where the number of switches changes
from 20 to 5120.

In summary, our SA and LP methods together with GBA
show better energy-efficiency than GBP algorithm under the
synthetic traffic patterns. In terms of flow performance, LP
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impacts the FCT aggressively. In contrast, SA shows compa-
rable median FCTs but lower 99th percentiles compared with
GBP. Besides, the running time of SA is not much longer
than LP since its improvements almost always appear in the
first few iterations. We also demonstrate that our methods can
be easily extended for fault tolerance and the incurred energy
consumptions are controllable.

V. RELATED WORKS

Energy-efficient DCNs: Many approaches have been pro-
posed on improving the energy-efficiency of DCNs. The first
type of these works is to design novel architecture. [15]
proposed a server-centeric data center structure that conserves
energy by varying bandwidth availability based on traffic
demand. The second type is to optimize energy-efficiency
of DCNs by traffic engineering methods. Heller et al [13]
presented ElasticTree, a network-wide power manager, which
dynamically adjusted the set of active network elements.
But ElasticTree assumes that a complete prior knowledge of
incoming traffic is known. Wang et al [21] proposed CARPO,
a correlation-aware power optimization algorithm that dynam-
ically consolidates traffic flows onto a set of switches and
shuts down unused network devices. Andrews et al exploited
speed scaling [4] and power-down [5] techniques to route and
schedule continuous flows, but the transmission speed for each
flow was given as a constant.

Flow-level optimization: The performance of OLDI appli-
cations heavily depends on FCTs. There is abundant work that
deals with the subject of data center transport designs. D3 [22]
first introduced deadline information combined with explicit
rate control. PDQ [14] showed that minimizing FCTs requires
preemptive flow scheduling.

There are few works that improve DCN energy-efficiency
and performance simultaneously. Wang et al [20] proposed
a novel energy-saving model for data center networks by
scheduling and routing deadline-constrained flows, based on
speed scaling and power-down strategies. But the power
function of switches they used was only based on links (or
ports). We use the general switch power function and propose
approaches that could make energy consumptions of DCNs
approximately in proportion to their traffic loads, while the
flow-level performance degradation is guaranteed.

VI. CONCLUSION

In this paper, we studied the energy-efficiency of DCNs,
where the flow-level performance was guaranteed. The key
idea of our framework was that we decoupled the path
selection and rate allocation for flows. In path selection, we
assigned flows to paths with fewer switches to minimize
network energy consumptions. In rate allocation, we efficiently
utilized link bandwidth to satisfy flow demands which were
estimated with implicit deadlines. With these approaches, we
were able to achieve both energy efficiency and better flow
performance compared with existing works.
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