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Abstract—Software Defined Networking (SDN) is an emerging
networking paradigm which intends to merge networks into
the age of the cloud, providing fine-grained control, simplified
configurations, unprecedented flexibility and seamless scalability.
However, due to the large set of unresolved challenges as well
as the deployment cost, network evolution to fully SDN systems
will take a long time. In fact, SDN elements are incrementally
deployed in enterprise networks, producing a transitional network
form of hybrid SDN (H-SDN). An H-SDN system consists of
traditional networking elements and SDN elements, accommo-
dating both conventional traffic and SDN traffic. In this paper,
we investigate traffic engineering (TE) in H-SDN, where the SDN
controller strategically routes SDN traffic so as to optimize the
TE performance over all network links shared with uncontrollable
conventional traffic. Two hybrid modes are studied: (1) the barrier
mode, where the two forms of traffic are routed in separated
capacity spaces; and (2) the hybrid mode, where each link can
be fully occupied by either form of traffic. We propose fast
algorithms for the TE problems in both scenarios with provable
approximation guarantees. Theoretical analysis and computer
simulations validate the efficacy of our algorithms.

Index Terms—Traffic engineering, software defined networks,
hybrid SDN, flow optimization, request routing

I. INTRODUCTION

A. H-SDN: The Transitional Form to The New Norm

Software Defined Networking (SDN) is an emerging disrup-

tor to the traditional networking paradigm, which unleashes a

powerful new paradigm offering flow-level traffic control and

programmable interfaces to network operators. SDN promises

the ease of network design, operation and management and

therefore, breaks through the bottleneck to the acceleration

towards the age of cloud computing that networks are evolving

to. By decoupling the control framework from the data-plane

functionalities, SDN supports centralized network control with

global network view, complements network function virtualiza-

tion (NFV) and unlocks the latent potential of the network fab-

ric. In conjunction with the growing support of SDN protocols

like OpenFlow [1] and the continuous development of NFV,

SDN is becoming a new norm of networks, which not only

gains significant research attention, but also leads the majority

of network operators to jump on the SDN bandwagon to exploit

its early success [2].

However, as a newly born networking paradigm, SDN itself

comes along with a large set of unresolved challenges [3]. On

the other hand, rather than a disruptive new technology, mature

networks with tested functionalities and proven success are

more attractive to network operators. Due to these technical
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Figure 1. Architecture of an H-SDN system.

and economical concerns, network operators are less likely to

upgrade their entire networks to SDN. Instead, SDN elements

are incrementally deployed to co-work with traditional net-

working elements, resulting in a transitional form of networks,

i.e., hybrid SDN (H-SDN) [4].

The architecture of an H-SDN system is depicted in Fig. 1.

The system contains both SDN elements and legacy routers.

While the SDN elements and flows are controlled by a (logi-

cally) centralized SDN controller, legacy flows are uncontrolled

traffic to the SDN controller which are routed by legacy

routers and possibly need to pass some OpenFlow routers.

Since the large-object traffic is dominating the network [5],

e.g., one object size greater than 1 megabytes, such as video

streaming, SDN tends to integrate virtualized sourcing servers

in its setup such that the controller has better control over

data requests [6]. Physically, these sourcing servers can be in-

network data sources, caching proxies or sourcing points that

are further connected to content providers networks, such as

remote content distribution networks (CDNs) or clouds [7].

B. Traffic Engineering in H-SDN

Most traditional networks are Commercial Off-The-Shelf

(COTS) based systems, in which the networking elements are

designed, supplied and evolved by hardware vendors while

limited configurable options are provided to network operators.

For the ease of presentation, henceforth, we term such tradi-

tional design and management model as COTS Networking

(CN) and refer to the corresponding routers/switches therein

as CN elements.

Traffic engineering (TE) aims to distribute traffic among

links so as to optimize certain performance criterion, such asISBN 978-3-901882-68-5 © 2015 IFIP



maximum link congestion level, sum link cost, and maximum

concurrent flow. In this work, we adopt the most popular opti-

mization goal, i.e., to minimize the maximum link utilization,

and make TE and such a goal interchangeable in this paper.

As a transitional form of networks, H-SDN inherits both

advantages and disadvantages from CN and SDN. It requires

extra caution to update elements and to design new features

in H-SDN [8]. Inappropriate deployment of an H-SDN system

will result in a more complex network with severely degraded

performance for packet delivering. Given the fact that TE re-

mains intractable in CN [9] as well as in SDN [10], optimizing

TE in H-SDN is more challenging.

In an H-SDN system, CN traffic and SDN traffic co-exist

and share the link capacities. To ensure the network stability,

we assume no changes to the existing routing solutions to CN

traffic, e.g., Open Shortest Path First (OSPF) [11] or IS-IS

[12], which have proven efficiency in delivering packets. We

carefully design the routing protocol for SDN flows so that

they pass through both SDN elements and CN elements in an

efficient and friendly manner.

With virtualized data sources, SDN also offers the network

controller the capability to select sources for traffic demands.

For instance, when an SDN node initiates a traffic demand

(possibly for some specific object), not only will the flow be

distributed among paths, but also the demand can be fulfilled

by several sources to further improve the network performance.

Therefore, TE in H-SDN also needs to consider the source

redirection problem, i.e., how to split demand among sources.

Therefore, to support TE in H-SDN, we need to jointly

counter the flow routing and source redirection problem and

strategically route SDN traffic while maintaining the advan-

tages of both CN and SDN elements.

C. Our Contributions

In summary, the contributions of this paper are three-fold.

Firstly, to the best of our knowledge, this is the first article

to investigate the traffic engineering in hybrid SDN systems.

In this work, the fine-grained control capability of SDN el-

ements is exploited to further distribute SDN flows among

sources, while routing configurations at CN elements are gently

enhanced to accommodate the SDN flows. This paper shows

an elegant attempt to orchestrate the hybrid traffic in H-SDN

without losing the majority advantages from either side.

Secondly, we analyze the routing protocols of CN and SDN,

and propose a novel routing protocol for passing SDN traffic

through CN elements. It is a simple hop-by-hop protocol with

destination based forwarding and traffic aggregation, which

integrates the efficiency of CN and the manageability of SDN.

We show that the protocol is compatible with SDN protocols

and can be easily supported by CN elements.

Thirdly, based on the new protocol, we model the TE

problems in two modes of H-SDN, a barrier mode and a

hybrid mode. The barrier mode is a conservative method for

deploying SDN elements in CNs, where a certain fraction of

capacity over each link is reserved for SDN traffic such that

the incrementally deployed SDN elements operate in an overlay

network, logically isolated from the existing CN system. In the

hybrid mode, the two types of traffic fully share the delivering

capacities of the network. We extensively study the formulated

TE problems and propose fully polynomial-time approximation

schemes (FPTASs) for them. For both modes of H-SDN,

our algorithms achieve a provably approximate guarantee of

(1 + ω) with computational complexity proportional to ω−2.

Theoretical analysis and numerical studies are then carried out

to evaluate the efficacy of our algorithms.

The rest of this paper is organized as follows. Our design

rationale and a new routing protocol are presented in Section II.

In Section III, we describe the system model, propose the opti-

mization framework and analyze the hardness of the formulated

problems. Section IV and Section V present our solutions to

the problems introduced in Section III. Simulation studies are

presented in Section VI. Section VII presents related works.

Finally, Section VIII concludes the paper.

II. ROUTING DESIGN: A TALE OF TWO NETWORKS

In this section, we first study important features in SDN and

CN that can be used in our hybrid scenario. A new routing

protocol is then proposed for H-SDN, integrating advantages

from both networks.

A. SDN: Fine-Grained Flow Control and Source Virtualization

SDN is a programmable networking design offering global

view of the network traffic and centralized flow management.

The SDN controller is able to periodically gather traffic in-

formation from the control plane and accordingly distributes

traffic demands so as to shape the traffic and optimize the

network performance. The routing decisions are then dis-

seminated as “policies” to SDN forwarding elements, which

execute the decisions as “actions”. SDN enables fine-grained

flow control, where routing tables are also programmable

to the controller. Fig. 2 shows an example of the routing

table. Options, such as “Rule”, “Priority” and “Source”, are

programmed as “tags” to identify flows for respective actions

that are also re-programmable.

Another important feature of SDN is the source virtualiza-

tion. Without a global view, CN separates sourcing selection

from other networking functionalities, where content providers

are in charge of making server-redirection decisions for remote

requests while networks only deal with the so-decided peer-to-

peer traffic matrix. This leads to a series of suboptimal routing

in CN [13]. On the contrary, in SDN, source servers, either

caches, CDNs or clouds, are virtualized as source points with

uniform interfaces provided to the SDN controller [14]. Appar-

ently, extra TE gain can be obtained by strategically distributing

traffic demands among sources. From this conviction, we will

exploit this feature to further optimize the TE goal.

B. CN: Destination-Based Routing and Traffic Aggregation

CN routers identify flows (packets) by their destinations

and forward them to corresponding outgoing links along the

shortest paths that are distributively calculated via OSPF or

IS-IS. Typically, flows are equally split and forwarded among

several shortest paths if they exist [11]. Also, the flow-splitting

fractions can be online configurable via gently modified routing
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Figure 2. Enhanced routing table at the SDN forwarding element.
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Figure 3. A routing example based on flow-splitting table.

protocols [15]. In this paper, we assume that the CN routers

are configured to support the adaptive flow-splitting.

The concept of destination-based traffic aggregation is pro-

posed in [16] for OSPF networks and improved by [17] to

aggregate user datagram protocol (UDP) based mobile packets

in mobile core networks. At a generic CN router, incoming

flows towards a common egress point can be aggregated, and

then split and forwarded like one flow (regardless of sources).

The rationale behind this is that all chosen routes are shortest

paths and shortest paths have the property that any segments

of shortest paths are also shortest paths. We note that such

destination-based routing and traffic aggregation can also be

easily programmed at SDN routers.

C. A Transitional Routing Protocol for H-SDN

To provide a foundation for later discussion, we propose a

simple, enhanced routing protocol in this section and assume

that all nodes have supported it so that all traffic in the SDN

domain can be strategically routed.

In the protocol, we assume that the information of link status

can be periodically gathered by the SDN controller, through the

control plane from SDN elements and periodical reports from

CN nodes [18]. We also assume that flows are distinguished

only by corresponding destination identifiers and flows towards

common destinations are aggregated over routers.

We then slightly modify the routing table to support pro-

grammable flow splitting. We add a column of flow-splitting

ratios to each routing table, representing how the incoming

flows to be split and forwarded to outgoing links. Fig. 3 is an

example showing how the protocol works. Router A has two

incoming flows f1 from B and f2 from C to egress router

D. A is one of the source nodes for some objects requested

by node D, thus it generates a local-loop flow f3 towards D,

which is also treated as an incoming flow for A. For routing

purposes, router A reads the destination of each incoming flow,

and groups flows with respect to distinct destinations. Then

for each destination, A combines flows in the group, looks up

the routing table for the splitting ratios and accordingly splits

the aggregate flow and forwards the split flows to respective

outgoing links, i.e., #1, #2, and #3.

Here we note that it is a slight change to existing routing

table, which can be easily implemented in existing routers

[15], [17]. In fact, the idea of flow splitting for TE purpose

has been considered in practice, e.g., in [19] and [20]. In

our scenario, the controller computes these routing decisions

and disseminates them to both SDN nodes and CN nodes.

Accordingly, the traffic control policies at SDN nodes and

routing configurations at CN nodes are updated. The extra

traffic involved with distributing the routing decisions is negli-

gible compared to the existing function-incurred flows, e.g., for

charging and policies.

III. TRAFFIC ENGINEERING IN HYBRID SDN

A. System Model and Notations

We target a hybrid software defined network depicted in

Fig. 1, where SDN nodes and virtualized sourcing nodes co-

exist with traditional routers. SDN nodes are incrementally de-

ployed SDN-compliant routers, and a virtualized sourcing node

can be treated as a special SDN node integrated with a sourcing

server. A traditional router refers to the widely deployed CN

node [4], whose behaviors can only be tweaked by network

configurations, e.g., routing tables. In-system links are shared

by hybrid traffic of CN flows and SDN requests. CN traffic

is assumed to be optimized via standard link-state routing

protocols such as Open Shortest Path First Traffic Engineering

(OSPF-TE), and is termed as uncontrollable background traffic

in our scenario. As a transition system from CN to SDN, two

basic link-sharing modes are considered in this paper: (1) the

barrier mode, in which a certain portion of capacity is reserved

on each link for SDN requests; and (2) the hybrid mode, in

which link capacities are fully shared by CN and SDN traffic.

SDN requests are initiated by destination (SDN) nodes

requesting for respective network objects. The information

of SDN requests, e.g., requested objects, flow demands, is

accessible to the SDN controller through the control plane.

Here, we only consider the dominative requests for large

objects (> 1MB), e.g., video streaming, for that delivery

of minority requests for small objects has little impact on

link utilization. The overhead for gathering such video request

information is negligible compared to the cost for supporting

charging and policy functions [17]. To optimize the overall

traffic engineering, the SDN controller is then responsive to

periodically schedule SDN requests according to the real-time

network traffic gathered. Specifically, the controller first needs

to strategically redirect requests to corresponding sourcing

servers (source redirection), e.g., using the functionalities of

domain name system (DNS) servers or hypertext transfer

protocol (HTTP) proxies [21]. Then it needs to optimize flow

routing for so-generated peer-to-peer traffic over multiple paths

(flow routing). The scheduling optimization is assumed to

be repeated from cycle to cycle at the same time scale as

the dynamics of SDN requests, e.g., tens of seconds, while

during the period, network topology, background traffic and

SDN requests are assumed to be fixed. Then, fast convergence



Table I
BASIC NOTATIONS.

Notation Definition

b(e) The uncontrollable traffic on edge e

c(e) Capacity of edge e

dk
i

Traffic demand of request (i, k)

E Set of in-system links

f(P ) Amount of flow routed on P ∈ Pk

i
w.r.t. (i, k)

O Set of network objects available to SDN requests

Pk

i
Set of admissible paths to request (i, k)

P Set of all involved paths for the current period

R Set of SDN requests

Ri Set of requests at node i

Sk Set of nodes that store object k

V Set of serving nodes

becomes an essential requirement for achieving near-optimal

TE goals in such a short time scale.

We formulate the hybrid network as a directed graph

G(V,E), where V is the set of nodes, including SDN nodes,

sourcing nodes and CN nodes with n = |V |, E is the set

of shared links with m = |E|. Network (large) objects are

distributed among sourcing nodes S. Let O represent the set of

objects requested at the time period considered. Each requested

object k ∈ O corresponds to a subset of sourcing nodes

Sk ⊂ S, which can serve the request. Let R denote the

set of SDN requests initiated at the beginning of the period

considered with r = |R|. An SDN request is defined by a tuple

(i, k), i ∈ V, k ∈ O, representing node i requesting object k.

and is further associated with a traffic demand dki to be fulfilled.

Link e ∈ E has a capacity c(e), accommodating both SDN

traffic and background traffic. The background traffic b(e) on

each link e is readily retrieved or estimated by the controller

through the dynamic information disseminated by OSPF-TE

[22] [23]. A path Pji is called admissible to request (i, k)
if it is a simple path with j ∈ Sk, which can potentially

serve the request. In the multiple-path network, we further use

Pji to denote all the simple paths from j to i, Pk
i to denote

all admissible paths for request (i, k) and P to represent all

involved paths in the current period. Table I summarizes the

important notations used in this paper.

The request scheduling problem is now to fulfill all SDN

requests by determining the amount of flow to be loaded among

respective admissible path sets, termed as f(P ), where P is an

admissible path with respect to corresponding request. We note

that the path decisions of {f(P )} here also imply the source

redirection, since the starting node of each path P refers to a

sourcing node. Furthermore, by enumerating path-flow values

of {f(P )}, it is ready to compute the hop-by-hop flow-splitting

fractions for the protocol in Section II-C.

B. Traffic Engineering in Barrier Mode

The barrier mode intends to isolate SDN traffic from CN

traffic by setting provisioning barriers in the capacity space

of shared links, where SDN traffic and CN traffic are actually

routed in distinct overlay networks. Each form of traffic is

restricted in its own capacity space, e.g., 40 percent of link

utilization is reserved for SDN flows while CN flows can use

up to the rest 60 percent. This is an instant solution for “hybrid”

traffic and is readily to be implemented since routers are able

to distinguish the two forms of traffic. Furthermore, due to the

isolation it guarantees, new techniques can be introduced and

tested in the hybrid network without influencing the stability of

existing CN. Therefore, it is a practical and conservative mode

in the transition period. However, these barriers might lead to

over-provisioning and potential underutilization.

Suppose that we have reserved a capacity space of η, 0 <
η < 1, for SDN traffic in the network1. The traffic-engineering

problem is to minimize the maximum link utilization in the

provisioning capacity space, which is formulated as a linear

programming (LP) problem:

min
f(P )

λ

s. t.
∑

P :e∈P

f(P ) ≤ ληc(e), ∀e ∈ E

∑

P∈Pk
i

f(P ) ≥ dki , ∀(i, k) ∈ R

f(P ) ≥ 0, ∀P ∈ P

(1)

where the first constraint represents the capacity limitation in

the link space, scaled by the factor λ, and the second constraint

requires that all the demands should be fulfilled.

Note that this formulation potentially involves an exponential

number of variables f(P ) due to the combinatorial explosion

in path enumeration. It can be converted to an equivalent

formulation with polynomial-size edge-flow variables with the

method in [17]. However, as estimated therein, the size of the

equivalent problem remains far beyond the LP-solving range of

any modern LP solver, e.g., IBM CPLEX. Instead, we attempt

to develop a fast algorithm with approximate guarantee.

C. Traffic Engineering in Hybrid Mode

The hybrid mode goes beyond provisioning barriers, and

allows a fine-grained and cognitive way of traffic scheduling

by the SDN controller. At the beginning of each cycle, the

controller schedules SDN requests with awareness of uncon-

trollable traffic on each link, so as to optimize the overall TE.

The problem is formulated as a similar LP problem as follows:

min
f(P )

λ

s. t.
∑

P :e∈P

f(P ) + b(e) ≤ λc(e), ∀e ∈ E

∑

P∈Pk
i

f(P ) ≥ dki , ∀(i, k) ∈ R

f(P ) ≥ 0, ∀P ∈ P .

(2)

The only difference here lies in the first constraint, which

considers the background traffic on each link e ∈ E. Like-

wise, this LP problem has similar computational complexity.

Therefore, a fast approximate algorithm is more desirable.

1Here, we only formulate the unified scenario, where all links reserve η por-
tion of capacity for SDN traffic. However, our formulation is readily extended
to scenarios with various reservation portion for fine-grained configurations.



IV. ALGORITHM FOR BARRIER TRAFFIC ENGINEERING

For ease of presentation, we define c′(e) to be the capacity

of link e in the overlay network, i.e., c′(e) , ηc(e), ∀e ∈ E,

where η is the capacity provisioning for SDN requests. To

solve problem (1), we first study the problem of maximizing

the concurrent flow, which is formulated as:

max
g(P )

ρ

s. t.
∑

P :e∈P

g(P ) ≤ c′(e), ∀e ∈ E

∑

P∈Pk
i

g(P ) ≥ ρdki , ∀(i, k) ∈ R

g(P ) ≥ 0, ∀P ∈ P .

(3)

By letting f(P ) = g(P )/ρ, λ = 1/ρ, we note that problem (3)

is equivalent to problem (1).

Problem (3) is in a similar form as the maximum concurrent

multi-commodity flow (MCMF) problem, which is extensively

investigated in [24]–[26]. The key difference lies in that flows

in MCMF are identified by fixed source-destination pairs, while

in our problem, flow demands are destination-based and the

sourcing nodes remain to be determined. Since the algorithms

developed in the literature depend heavily on the source-

destination pairs, thus they cannot be extended for use in our

scenario within acceptable overhead.

In the following, we leverage the results from [26] while

modifying the kernel scheme of shortest-path calculation so

as to solve the flow routing problem (3) in a scenario with

multiple sources as well as multiple paths.

A. Proposed Approximation Algorithm

First, we look at the dual formulation of problem (3):

min
l(e)

Γ(l) ,
∑

e∈E

c′(e)l(e)

s. t.
∑

e∈P

l(e) ≥ xk
i , ∀(i, k) ∈ R, ∀P ∈ Pk

i

∑

(i,k)∈R

xk
i d

k
i ≥ 1

l(e), xk
i ≥ 0, ∀(i, k) ∈ R, ∀e ∈ E

(4)

where l(e) is the length function assigned to each edge e and

xk
i is a dual variable w.r.t. each request (i, k) ∈ R. For a

given length function l, we can eliminate the first constraint

in problem (4) by rewriting xk
i as a function of l, i.e., xk

i (l),
representing the length of the shortest path from the nearest

admissible node in Sk to node i, mathematically defined as:

xk
i (l) , min

j∈Sk

xji(l), ∀(i, k) ∈ R (5)

where xji(l) presents the minimum distance from node j to

node i using length function l.
If we define β(l) as the aggregate shipping cost for all

requests via the “shortest” paths, i.e.,

β(l) ,
∑

(i,k)∈R

dki x
k
i (l) (6)

Algorithm 1: Algorithm for problem (3).

Input: Network graph G = (V,E), network object set O,

overlay link capacities c′(e), source set

{Sk}, k ∈ O, SDN requests set R, request

demands {dkj }, accuracy ǫ
Output: Primal solution y and ρ

1: Initialize l(e)← φ/c′(e), ∀e, g(P )← 0, ∀P
2: while Γ(l) < 1 do

3: for j = 1 to n do

4: For all requests (j, k) ∈ Rj , initialize d̃kj = dkj .

5: while Γ(l) < 1 and d̃kj > 0 for some k do

6: K ← {k|(j, k) ∈ Rj , d̃
k
j > 0}

7: P k
j ← shortest path in Pk

j using length l

8: ρ← max
{

1, max
e∈∪k∈KPk

j

∑

k:e∈Pk
j
d̃kj

c′(e)

}

9: for k ∈ K do

10: fk
j ← d̃kj /ρ

11: d̃kj ← d̃kj − fk
j

12: g(P k
j )← g(P k

j ) + fk
j

13: end for

14: l(e)← l(e)
(

1 + ǫ

∑
k:e∈Pk

j
fk
j

c′(e)

)

, ∀e ∈ ∪k∈KP k
j

15: end while

16: end for

17: end while

18: g(P )← g(P )/ log1+ǫ
1+ǫ
φ , ∀P

19: ρ← min
(j,k)∈R

∑

P∈Pk
j
g(P )

dkj

then solving problem (4) is equivalent to finding a length

function l, such that Γ(l)/β(l) is minimized [24]. We further

denote the optimal value of problem (4) by γ

γ , min
l

Γ(l)/β(l) (7)

which is equal to the optimal objective value of the primal

problem (3) according to the primal-dual theory.

Alg. 1 summarizes the procedure of our algorithm for

problem (4). The algorithm proceeds in a similar phase-step-

iteration manner as the scheme in [26]. Each phase consists of

n iterations (lines 3-16). Each iteration j reflects to a node j, in

which all the traffic demands requested by the node are fulfilled

through a series of steps. Inside each step (lines 6-14), only

uncompleted requests are considered and partially fulfilled by

the nearest source through the shortest path under the current

length function l, i.e., the shortest admissible path. The link

function is then updated at the end of each step (line 14).

The shortest admissible paths are computed by constructing a

shortest path tree at each iteration. For instance, in iteration j,

we consider a reversed graph G′ of G, where the directions of

all edges E are reversed. Using Dijkstra’s algorithm, we obtain

the shortest-path tree Tj rooted at node j in O(n log n+m),
which contains all the possible admissible paths to be used in

the series of steps inside.

Different from [10], where they investigated almost the same

problem as the MCMF problem and modified the algorithm in



[26] for their purposes, our algorithm only leverages the frame-

work of the one proposed in [26], while the kernel procedure is

re-factored to jointly consider the source-redirection problem.

B. Correctness and Approximation

The correctness of Alg. 1 can be revealed by comparing it

to the naive approach of adding a super source node for each

object and directly applying the solutions to the maximum con-

current multi-commodity flow problem (e.g., in [26]). Details

are available in [27] and are omitted here due to space limit.

We next analyze the approximation ratio of Alg. 1. For ease

of presentation, we add subscripts to indicate phase i, iteration

j and step s. Let d̃ki,j,s be the demand for object k that has not

been fulfilled at step s and it is set to dkj at step 0. In Alg. 1,

the length function is updated at the end of each step by:

li,j,s(e) = li,j,s−1(e)(1 + ǫ ·

∑

k:e∈Pk
j
fk
i,j,s

c(e)
) (8)

for step (i, j, s), where 0 < ǫ < 1 is to be defined later.

At step s of iteration j of the ith phase, the dual objective

value Γ(l) is increased by

△Γ(li,j,s)
(8)
= ǫ

∑

e∈∪k∈KPk
j

li,j,s−1(e)
∑

k:e∈Pk
j

fk
i,j,s

= ǫ
∑

k∈K

fk
i,j,s

∑

e∈Pk
j

li,j,s−1(e)

(5)
= ǫ

∑

k∈K

fk
i,j,sx

k
j (li,j,s−1) (9)

where P k
j is the shortest admissible path w.r.t. request (j, k)

and xk
j (li,j,s−1) is the corresponding shortest distance, which

is updated using the length function in the previous step. Since

xk
j (l) is monotonically increasing through the steps, if κj

denotes the number of steps in iteration j of the ith phase,

we have xk
j (li,j,s) ≤ xk

j (li,j,κj
), ∀s ≤ κj . Hence, for the entire

iteration, the dual objective increase is bounded by

κj
∑

s=1

△Γ(li,j,s)
(9)
= ǫ

κj
∑

s=1

∑

k∈K

fk
i,j,sx

k
j (li,j,s−1)

≤ ǫ

κj
∑

s=1

∑

k∈K

fk
i,j,sx

k
j (li,j,κj

)

= ǫ
∑

k∈K

dkjx
k
j (li,j,κj

). (10)

Let li,1,0 denote the length function after the last step of the

last iteration in phase i−1, Γ(i) denote the corresponding dual

objective value Γ(li,1,0), and β(i) denote β(li,1,0). We further

obtain the increase bound of the dual objective during the ith
phase as

∑

j,s

△Γ(li,j,s) ≤ ǫ
∑

j

∑

k∈K

dkjx
k
j (li,j,κj

)

≤ ǫ
∑

j

∑

k∈K

dkjx
k
j (li+1,1,0)

= ǫβ(li+1,1,0). (11)

Therefore, we have the following recursive relationship:

Γ(li+1,1,0) ≤ Γ(li,1,0) + ǫβ(li+1,1,0)
⇐⇒ Γ(i + 1) ≤ Γ(i) + ǫβ(i+ 1). (12)

Together with the fact γ ≤ Γ(i)/β(i) in (7), we have

Γ(i+ 1)

Γ(i)
≤

1

1− ǫ/γ
, ∀i ≥ 0, ǫ < 1. (13)

Consider the initial setting Γ(0) = mφ (see line 1 of Alg. 1)

and the assumption γ ≥ 1, we finally have the non-recursive

inequality for Γ(i), given by

Γ(i) ≤
mφ

(1− ǫ/γ)i

≤
mφγ

γ − ǫ
eǫ(i−1)/(γ−ǫ)

≤
mφ

1− ǫ
eǫ(i−1)/(γ−ǫ). (14)

If the algorithm terminates after q phases, which implies that

Γ(q) ≥ 1, we have

γ ≤
ǫ(q − 1)

(1 − ǫ) ln 1−ǫ
mφ

. (15)

Therefore, similar to [24], [26], we can claim the following

conclusions. We omit the proofs here since the remaining

discussions follow the route in [24], [26].

Theorem 1. If γ ≥ 1, the number of phases in Alg. 1 is

bounded by ⌈γ log1+ǫ
1+ǫ
φ ⌉.

Theorem 2. Provided γ ≥ 1, if ρ denotes the objective value

of problem (3) found by Alg. 1, we have ρ > q−1

log1+ǫ
1+ǫ
φ

, where

φ =
1

(1 + ǫ)
1−ǫ
ǫ

·

(

1− ǫ

m

)1/ǫ

.

The obtained objective value is related to the optimal value γ
according to the inequality: γ

ρ < (1− ǫ)−3.

Therefore, if we choose ǫ such that

(1− ǫ)−3 = 1 + ω (16)

the approximation ratio γ
ρ is less than (1 + ω) for any ω > 0.

C. γ < 1 and Running Time

Any case with γ < 1 can be scaled down to a corresponding

instance with γ ≥ 1 such that Alg. 1 applies. The detailed

discussion on this together with the running time analysis can

be found in the longer version of this paper [27] and is omitted

here due to space limit. The primary conclusion is summarized

in the following Theorem 3.

Theorem 3. Let rmax be the maximum number of SDN requests

initiated by one node, i.e., rmax , maxi∈V |Ri|. Define

Ts , O(n log n + m + rmax). Alg. 1 computes a (1 + ω)-
approximation solution to problem (1) in Õ((ω−2+log r)m·Ts)
time (Õ(f) = O(f · logO(1) m)), for any ω > 0, where ω and

ǫ are in the same order.
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Figure 4. Example of multipath routing with bg. traffic.

V. ALGORITHM FOR HYBRID TRAFFIC ENGINEERING

If we ignore the implied source-redirection subproblem, the

formulation of problem (2) is very similar to the TE problem

formulated in [10]. However, from the route adopted therein,

problem (2) is converted to an “equivalent” form:

max
g(P )

θ

s. t.
∑

P :e∈P

g(P ) ≤ c(e)− b(e), ∀e ∈ E

∑

P∈Pk
i

g(P ) ≥ θdki , ∀(i, k) ∈ R

g(P ) ≥ 0, ∀P ∈ P

(17)

After the conversion, they solved this “equivalent” problem

via an algorithm modified from [26]. If we can follow the

route, then problem (2) is readily solved using the algorithm

developed in Section IV. However, we argue that these two

problems are actually inequivalent. For instance, we consider

the flow scheduling example depicted in Fig. 4. A traffic

demand of 60Mbps from node 1 to node 3 is to be scheduled

by the network. It can be fulfilled through path (e1) or (e2, e3),
where link e1 is a backbone link of capacity 1, 000Mbps with

background traffic of 900Mbps, e2 and e3 are local links of

100Mbps capacity each with no background traffic. Using the

route from [10], the optimal routing is to split the traffic and to

load each admissible path with an amount of 30Mbps, resulting

in a global maximum link utilization of 900+30
1000 = 0.93.

Obviously, if we load all the demands to path (e2, e3), the

resulted TE factor remains 900
1000 = 0.90. Therefore, this

counterexample reveals the inequivalence between a hybrid TE

problem and a barrier TE problem.

We note that Alg. 1 relies heavily on the scalability of

variables, which does not exist in problem (2) with constant

values of background traffic. This means that Alg. 1 cannot be

modified in any way to fit the hybrid TE scenario. Instead, we

need to develop a new approach.

We denote the maximum link utilization before scheduling

SDN requests by fte, i.e., fte , maxe∈E b(e)/c(e). Appar-

ently, fte is a lower bound of the optimal TE value of problem

(2). Suppose that up to λ0 fraction of link capacity can be used

for data traffic2. Thus we also obtain an upper bound for the

optimal TE. Therefore, we can strategically find the optimal

2Practical networking systems usually control an upper bound for the
maximum link utilization so as to avoid over-congestions which greatly
degrade the stability of the networks. For instance, λ0 = 0.95.

solution to problem (2) via a binary search. The algorithm

follows a standard binary-search route. Detailed procedure is

omitted due to space limit and is available in [27].

In each search step of the algorithm, we first compute an

overlay network. Capacity provisionings vary among links. For

link e ∈ E, the provisioning ratio η(e) = λ0 − b(e)/c(e).
Then we use Alg. 1 to check if the requests are routable in

the overlay network with specific capacity provisioning. By

selecting appropriate ω in the same order as δ, the binary-

search approach obtains a δ-suboptimal solution to problem

(2) for any δ > 0.

Let B be the largest number used to specify the runs of

binary search with respect to λ0, fte and the accuracy threshold

δ. Hence, the hybrid algorithm runs logB times of Alg. 1.

According to Theorem 3, the hybrid algorithm consumes a

computation time of Õ((ω−2 + log r)m · Ts · logB).
We comment that in some cases with heavy loads, Alg. 1

may not be able to produce a feasible solution even if λ0 = 1.0
is selected for provisioning computation. In these scenarios,

the hybrid algorithm produces a solution in which all requested

demands are proportionally scaled down. We comment that this

is still a reasonable traffic assignment for the hybrid network.

VI. PERFORMANCE EVALUATION

A. Setup

We developed a simulator to implement our algorithms in

C++. As shown in Section IV and Section V, the efficacy of

the proposed algorithms does not rely on specific network fac-

tors, such as system topologies, source placement and request

patterns. In this section, we simulate the routing algorithms in

hybrid SDN networks with randomized configurations.

We use Inet-3.0 [28] to generate network topologies with a

mean degree of 4 by default. All links are considered to be

bi-directional with the capacity of 1Gbps for each direction.

SDN nodes and sourcing points are randomly selected from

the generated networking nodes. For SDN requests, 20, 000
network objects are randomly distributed among the sourcing

nodes such that each object has a mean number of 5 replicas.

SDN nodes randomly initiate data requests with traffic demands

uniformly selected from 512kbps to 3Mbps discretely with a

step size of 128kbps. SDN traffic load is then controlled by

the factor traffic density, which denotes the average number of

requests collected from SDN nodes in each cycle. The default

accuracies for ǫ, ω, δ are 0.10, 0.05, 0.10, respectively.

B. Barrier Mode: The Overlay Network

Similar to the TE solution in [10], SDN flows are scheduled

in a separate overlay network without exploiting the informa-

tion of CN traffic. In this section, we show the numerical results

of Alg. 1 developed in overlay networks, where the maximum

link utilization is also calculated over corresponding overlay

links. Here we assume that SDN traffic can use up to 40 percent

of capacity on each link.

1) The Approximation Gap: In Section IV, we have shown

that Alg. 1 achieves a (1 + ω)-approximation solution to

each case of TE problem. Therefore, for each maximum link

utilization value λ produced by Alg. 1, a lower bound of the



optimal TE can be obtained by λ
1+ω . Together with the fact

that for the optimization problem (1), any calculated result is

an upper bound of the optimum, the optimal value then lies

within λ
1+ω and λ for any selected ω.

We simulate this conclusion in three H-SDN systems with

the number of nodes 30, 50, 70 and the number of SDN nodes

10, 20, 30, respectively. The traffic density is 1500 in all cases.

We then run Alg. 1 in so-generated network instances with

different approximation ratios ω. Fig. 5 shows the relation

between the approximation gap and ω. We conclude from the

figure that with proper selection of ω, the approximation gap

of Alg. 1 can be arbitrarily small.
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Figure 5. Maximum link util. with different approx ratios ω.

2) Running Time: In each instance of problem (2), the

running time of Alg. 1 is mainly determined by the number

of phases executed before it terminates (see Section IV-C). In

the simulations above, we also sum up the total number of

phases in each running cases and show the results in Fig. 6.

The three quadratic curves in it confirm the conclusion that the

total number of phases in Alg. 1 is proportional to ω−2.

3) TE Performance and Multi-Source Gain: For compari-

son, we align our algorithms with the OSPF-based TE routing

scheme, in which traffic demands are assumed to be fulfilled

by the “nearest” source via shortest paths. We then show the

gain of source redirection enabled in this paper for TE problem

by comparing Alg. 1 to a slightly modified version, in which

each available sourcing set Sk reduces to a single sourcing

node with a minimum distance to corresponding SDN node.

The simulated network has 50 nodes, 20 of which are SDN

nodes. Traffic density is gradually increased from 100 to 2000.

The numerical results are shown in Fig. 7. As seen, having

SDN traffic distributed among sources can significantly im-

prove the TE performance without introducing much overhead.

C. Hybrid Mode: Fully Shared Links

Different from the overlay networking mode, the hybrid

mode has the capacities of network links fully shared by CN

traffic and SDN traffic. This makes it more difficult to show

the efficacy of our algorithms, since the output relies heavily

on the uncontrolled CN traffic. We are not going to align our

algorithm with the scheme developed in [10]. As shown in

Section V, the performance of their method could be arbitrarily

low with unpredictable, time-varying CN traffic.

To provide a fundamental understanding, we compare the

performance of the hybrid algorithm with that of the barrier

algorithm (i.e., Alg. 1), where 40 percent of capacity is reserved

for SDN traffic on each link. We use the hybrid network with

50 nodes and 20 SDN nodes with available link utilization

upper bound λ0 = 0.95. CN traffic are randomly generated

with maximum link utilization between 0.2 and 0.5. The same

set of SDN requests are then scheduled by the hybrid algorithm

and Alg. 1, respectively. We show the TE performance of

the two algorithms in Fig. 8. We can see from the figure

that our hybrid-mode traffic scheduling effectively adapts to

uncontrolled CN flow and produces much better overall TE

results than the routing developed for the barrier H-SDN.

All the cases are run on a Linux PC with an Intel i7 processor

and 4GB RAM. For a moderate accuracy of ω = 0.05, our

algorithms finish the computation within 2 seconds in all

simulated cases.

VII. RELATED WORK

Network migration from CN to SDN is extensively analyzed

in [29] both technically and economically, which concludes

that the coexistence of SDN and traditional elements in com-

mercial networks could probably last for decades [4]. Despite

the attractive prospect that SDN has promised, the hybrid

mode inevitably brings more complicated network management

issues to network operators. In [8], Vissicchio et al. revealed

that the forwarding anomalies created by co-existence of SDN

and CN routing protocols might eventually defeat the purpose

of deploying SDN. Therefore, for the sake of stability and man-

ageability, in short-term deployment, barriers are tentatively

setup for separating SDN traffic and traditional CN traffic. This

confirms the motivation of this study.

Traditional flow optimization works in a lower layer of the

network, e.g., OSPF [11] at the link layer. Merging to cloud,

virtualized data sources are integrated in the SDN [6]. This

enables the SDN controller to manage data sources and accord-

ingly to select data sources for SDN requests. Therefore, SDN

supports fine-grained traffic control, e.g., source redirection at

the application layer. For SDN requests, the controller can

gather the detailed information of the remote requests such

that not only can the flow routing be optimized, but also the

sources of each request can be strategically selected. Joint

source redirection and flow routing are first investigated in

[17]. However, the schemes therein are designed for mobile

networks and the joint problem is formulated on an overlay

network without background traffic. In this work, we went

beyond the mobile routing problem investigated in [17], while

we considered a more practical scenario in the hybrid SDN

system with uncontrollable background traffic.

A similar work on traffic engineering in SDNs was carried

out in [10], where the authors also studied a hybrid form of

SDN. There are several essential differences between [10] and

this work though. Firstly, they focused on the deployment of

SDN networking elements, while we focused on the hybrid

traffic. Secondly, they assumed no changes to be made to non-

SDN nodes and only attempted to optimize the traffic passing

through SDN elements. In this work, we argued that the slight

modified routing protocol can be easily implemented in SDN

routers as well as CN routers. Instead of considering a routing
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table with specific traffic in [10], our protocol adds a factor

of forwarding fraction for distinct destination-based traffic. We

also considered the joint flow optimization together with source

redirection. More importantly, the TE problem formulated in

[10] was solved by being converted to a deemed “equivalent”

problem. However, by a counterexample, we showed that the

conversion is actually not equivalent in most scenarios. We

then proposed fast approximate algorithms with theoretical

correctness guarantees. Therefore, this work complements [10]

by considering more practical TE models and solutions.

VIII. CONCLUDING REMARKS

With the upcoming migration from CN to SDN, this paper

suggests an elegant approach to accommodate SDN elements

and traffic in CN networks, instead of regarding SDN elements

as intruders to CN systems as in most related work. We have

considered two hybrid modes, i.e., the barrier mode and the

hybrid mode, and formulated the important TE problems in

H-SDN. In the barrier mode, SDN traffic and CN traffic are

actually routed in separate capacity spaces guided by pre-

set capacity provisioning. On the other hand, in the hybrid

mode, TE is optimized beyond barriers and link capacities are

dynamically shared by the two forms of traffic. We proposed

fast approximate algorithms for the formulated problems in the

two modes respectively. The approximation ratios and running

time are theoretically analyzed and numerically validated.
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