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Abstract—Distributed control plane is a promising 

approach to a scalable software-defined networking (SDN). 
However, traffic changes could incur load imbalance among 
individual controllers. Live migration of switches from 
controllers that are overloaded to those that are 
underutilized may be a solution to handle peak switch traffic 
using available control resource. Such migration has to be 
performed with a well-defined mechanism to fully utilize the 
available resource of controllers. In this paper, we study a 
scalable control mechanism to decide which switch and 
where it should be migrated for a balanced control plane, 
and we define it as switch migration problem (SMP). The 
main contributions of this paper are as follows. First, we 
define a SDN model to describe the relation between the 
controllers and switches from the view of loads. Based on 
this model, we formulate SMP as a network utility 
maximization (NUM) problem with the objective of serving 
more requests under the available control resource. Second, 
we design a synthesizing distributed algorithm for SMP --- 
distributed hopping algorithm (DHA), by approximating our 
optimal objective via Log-Sum-Exp function. In such DHA, 
individual controller performs algorithmic procedure 
independently. With the solution space  , we prove that the 
optimal gap caused by approximation is bounded by 
1

log


 , and the DHA procedure is equal to an 

implementation of a time-reversible markov chain process. 
Finally, the results are corroborated by several numerical 
simulations. 

Keywords—software-defined networking; scalability; switch 
migrations; markov chain 

I.  INTRODUCTION 

Scalability is a key issue for the SDN control plane. 
Distributed control plane is a promising approach to a scalable 
SDN. Each controller manages a part of switches in the network 

but makes decisions based on a logically centralized network 
view. However, the control plane tends to unbalance and its 
performance will be degraded, since the current static structure 
between controllers and switches cannot adapt for the network 
traffic changes. 

At first stage, SDN deploys only one central controller that is 
responsible for all the switches [1]-[3]. This architecture could 
readily achieve network state consistency and avoid 
communications among different controllers. But the single 
resource-limited controller confines the SDN paradigm to a 
small-scale network, because a large network could experience 
the overloading of the controller due to the frequent and 
resource-exhaustive events such as OpenFlow (OF) PACKET-
IN events [4]. For example, the flow setup time 1  in an 
overloaded controller can rise significantly, and its performance 
can deteriorate rapidly. 

A few recent attempts are subsequently taken to tackle this 
problem via the distributed schemes which may fall into two 
major groups: those horizontally equalizing all controllers, i.e., 
flat architecture [4, 5], and those vertically layering from root 
controller to leaf ones, i.e., hierarchical architecture [6]. Both 
architectures have comparatively improved the scalability of 
SDN control plane, but the static map between controllers and 
switches lead to load imbalance among controllers. For instance, 
real measurement for network traffic shows that 1-2 orders of 
magnitude difference between the peak and median flow arrival 
rates at a switch [7]. Current static configurations could easily 
induce that some controllers are overcommitted and become hot 
spots, but other controllers are underutilized and turn to cold 
spots. Workloads have to be offloaded from the hot spots since 
there is inadequate resource to meet service level agreements 
(SLAs). Oppositely, cold spots expect to serve more switches for 
the high network utility. 

                                                        
1 Whenever a switch receives a flow, it searches its flow table to find 
the entry matched. As the match is failed, it requests the controller to 
calculate the flow path and install appropriate rules. The time required 
to complete this operation is known as the flow setup time. 
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The recent version of OpenFlow protocol [8] has realized the 
problem caused by such static configurations. Therefore, it 
proposes that each switch could be controlled by three different 
roles of controllers, master, equal and slave. Generally, there is 
only one master controller for a switch. The master can not only 
fetch the switches’ states but also write rules to its switches to 
instruct the data plane. The equal controllers are introduced to 
separate the loads from the master. They have the same authority 
with master. The slaves only read the states from its switches. 
Each switch could have more than one equal and slave 
controllers. If the master is failed due to overload or some 
exceptions, the equal controllers, or even slaves could be 
transited to master as soon as possible. However, the OF spec 
suggests no mechanism explicitly indicating the switch 
migration or controller roles shift, because the writers of this 
spec think that this is the responsibility of the controller to 
choose a master among themselves. 

We believe that such migration has to be performed with a 
well-defined mechanism to fully utilize the available resource of 
controllers. In this paper, we focus on designing a scalable 
control mechanism via solving SMP problem. To the best 
knowledge of the authors, this is the first work to specially solve 
the SMP for a more balancing SDN control plane. The main 
contributions in this paper are as follows. 
 We first give a SDN model to describe the relation between 

controllers and switches, and then we define SMP problem 
as a NUM with the objective of serving more loads under 
available control resources.  

 Based on the Markov approximation framework [14], we 
approximate our optimal objective with a Log-Sum-Exp 
function, and design a synthesizing distributed algorithm, 
distributed hopping algorithms (DHA), to approach the 
optimal solution of the SMP. We prove that the gap 
between the approximated solution and the optimal one is 
limited and the solution search path of our DHA is a 
markov chain path with a stationary probability distribution.  

 We implement a scalable control mechanism based on our 
DHA algorithms, and validate its performance in real ISP 
topologies. 

The remainder of this paper is organized as follows. The next 
section gives the related works. The section III discusses the 
intuition and details of our model for SDN. In section IV, we 
reduce our SDN model to network utility maximization problem. 
Section V presents the design of distributed hopping algorithms. 
Section VI describes an implementation of scalable control 
mechanism. Section VII validates our DHA. Section VIII 
concludes this paper. 

II. RELATED WORK ON ELASTIC CONTROL 

Current static map between controllers and switches prevents 
controllers from exchanging the network loads according to the 
traffic changes. To address this problem, ElastiCon [9] is 
provided to dynamically grow or shrink the amount of 

controllers set and migrate the switches among controllers along 
with the network traffic. Similarly, V. Yazıcı1 [10] proposed a 
coordination framework for scalability and reliability of 
distributed control plane. But the SMP problem about how to 
select migrated switches and their target controllers is not solved 
properly.  

B. Heller et al. [11] solve how to place the controllers based 
on propagation latency. But this work only focused on where to 
place multiple controllers statically. Guang Yao et al. [12] 
consider controller placement problem from the view of the 
controller load. 

To achieve more performance and scalability in large-scale 
WAN, Md. Faizul Bari et al. [13] provide a dynamic controller 
provisioning framework to adapt the number of controllers and 
their geographical locations. The framework minimizes flow 
setup time and communication overhead by solving an integer 
linear program. But it has to perform a reassignment of the 
entire control plane based on the collected traffic statistics. This 
operation easily leads to network instability because it incurs 
massive state synchronizations. Furthermore, both its greedy and 
simulated annealing approaches are centralized algorithms 
which do not adequately utilize the resource of distributed 
controllers. 

To sum up, the existing solutions to dynamic controller 
provisioning problem (DCPP) are changing the number of 
controllers and their location via reassigning the switches for 
controllers. This operation is likely to incur network instability 
due to a large number of state synchronizations among 
controllers. 

This article has two differences compared with the existing 
works. First, our pivot is to solve the SMP problem so that we 
can eliminate the imbalance of the control plane with the 
available resource. Second, based on the architecture of 
distributed controllers, we design a synthesizing distributed 
algorithm that each controller runs its own algorithmic 
procedure independently.  

III. SYSTEM MODEL 

A. The Motivations 

The objective of the switch migration is to serve more 
network flows under available resource and maximize the 
resource utility in the control plane. In practice, there are many 
cases that need to change the mappings. Firstly, since a switch 
request to a controller may peak at different times, there is an 
opportunity to increase controller resource utilization by moving 
more switches into the same controller during off-peak seasons. 
Then controllers without switches could be shut down or sleep 
for saving power and communication cost. This can hamper the 
control plane sprawl, and we call this operation as switches 
consolidation.  

Secondly, once some switches encounters their peak traffic, 
they can use up all available resources at the controller where 



they are placed. One big problem we may encounter is that 
controllers may become overloaded while other controllers 
maybe underutilized. in order to improve network performance 
and resource utilization, a possible configuration is moving 
some switches from heavy controllers to light ones. We call this 
operation as load balance. 

Thirdly, if all active controllers become overloaded, it is 
impossible to eliminate hotspots by switch migrations. The 
operator will deploy some new controllers, and switches will be 
migrated to such new controllers. 

With live switch migration, the switch traffic being served at 
the same time may be effectively increased by migrating 
switches with additional resource needed from resource-
deficient to resource-rich controllers. However, such migration 
has to be performed with a well-designed mechanism to fully 
utilized available resources. 

Note that, the preceding three cases could be detected by a 
load estimation application on the controller. Our algorithm 
could be used to solve them by designing specific optimal 
objectives. In the first case, we should design a control power 
function as payoff function, and then minimize it in such 
controllers. In the second case, we should design a utility 
function as payoff function, and then maximize network flows 
requests under available resource. Essentially, the third one is a 
special case of second one. For brief, we discuss load balance 
case in the residual part of this paper. Our future work will 
explore the first case which could toward a green network. 

B. SDN Model 

Our pivot in this paper is the switch migration problem 
towards more balanced control plane. So we assume that the 
SDN controllers have been optimally placed in the distributed 
topology.  

As the literature [12] stated, the load of a SDN controller 
consists of many factors, such as processing of PACKET_IN 
events, maintaining the local domain view, communicating with 
other controllers, as well as installing flow entries. In different 
scenario, the proportions of those factors differ greatly. But the 
processing of PACKET_IN events is generally regarded as the 
most prominent part of the total load [15]. Accordingly, the 
arriving rate of PACKET_IN events on a controller is counted to 
measure its load.  

Therefore, we give our SDN model as follows. We consider 

a SDN   consisting of N  controllers  1 2, , , Nc c c  , and M  

switches  1 2, , , Ms s s  . Let ia
 
be the control load generated 

by switch is , and id
 
be the upper load limits of switch is . 

Accordingly, the switch is  
can be denoted as  : ,i i is a d .  

We use  : ,j j jc A S
 
as the controller model. jA  represents the 

capacity for the controller jc , and jS   denotes the set of 

switches managed by controller jc . 

IV. NETWORK UTILITY MAXIMIZATION PROBLEM IN SDN 

Our primary objective is to find out how switch migration 
policies should be employed so that the network utility is 
maximized. We assume that the more events the controller 
handles under the available resource, the higher the utilities will 
be produced. Based on the our SDN model, we formulate switch 
migration problem as a centralized network utilization 
maximization problem in SDN, 
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j

j
c

S




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where jU  is network utility produced by controller jc .  

In SMP , the constraints (2) limit that the total load cannot 
exceed controller’s capacity. The constraints (3) limit the upper 
bound of each switch to avoid that a small part of switches 
exhausts controller resource. The constraints (4) ensure that 
different controllers do not overlap. And the constraints (5) 
ensure the self-contain of set .  

We believe that once a controller is powered on, the more 
resource it is possessed, the more utilities it will produce if all 
the resource consumers are legal. In addition, we assume that 
network utility function is twice differentiable, increasing and 
strictly concave. Hence, we define network utility function for 

jc   with log function, 

 

 log
i j

j i
s S

U a


                                        

 

(6) 

 
Then the objective function can be reformulated as, 
 

max  max  
j j

j j i j

j ij
S S

c c s S

U B
  

  
 

                    (7) 

 

Where  ijB t denotes the network utility produced by switch i  

on the controller j , i.e.,  

 

 logij iB a

                                           

(8) 

 



Under the constraints of SMP , the more load a controller serves, 
the more network utilities it will produce. 

V. DISTRIBUTED HOPPING ALGORITHMS 

Theoretically, the problem SMP can be reformulated as 0-1 
integer linear program, which is a typically combinatorial 
network optimization problem, and very difficult to solve. 
Although we can approach the optimal solution through 
lagrangian relaxation with quadratic equality constraints and 
solve its dual problem, or decoupling it into several knapsack 
problems, it incurs time consuming [16].  

Actually, many important network design problem can be 
formulated as a combinatorial network optimization problem, 
and a surge of studies have been provided to solve it and have 
made a significant progress, but many of them are designed to 
centralized implementations [17] or time-consuming as the 
network size becomes larger [18][19]. In our scenario, we need a 
approach that can be concurrently processed in a distributed 
manner, because each SDN controller manages its local switches 
and interacts with its neighbors. Moreover, network running the 
distributed algorithms are more robust to the network dynamics 
(e.g., switch migration and controller sleep). 

In this article, we refer to a markov approximation 
framework using the log-sum-exp function to approximate the 
optimal value of our SMP. Based on this, we provide a 
distributed hopping algorithm in a synthesizing form. In the 
subsequent section, we first describe the log-sum-exp 
approximation of SMP. Then we illustrate the detailed design of 
DHA. 

A. Log-Sum-Exp Approximation 

Let   denote the  -algebra of , and    is consisted of 

all the subsets of  (including empty set and ), we define a 
network configuration as a network partition.  

Definition 1 Network Configuration 1 , , , ,f f f
j Nf S S S    

 
is a configuration of network   if 

 f
jS  , and  ,f f

j jS j jS     , 

 
j

f
j

c
S





 , 

where f
jS  denotes the switch set controlled by jc  under the 

configuration f . Let   be the set of all feasible f . 

Then SMP problem can be rewritten as follows, 
 

 :   max  
j i

f
j

f
ij

f
c s S

SMP B f


 

 




                                             (9) 

 . .   
ji
f

i j

s S

s t a f A


 , jc   and f          (10) 

  
 i ia f d , is   and f                (11) 

 

where  ijB f  denotes ijB
 
calculated by equation (8) under 

configuration f .  ia f   represents control load generated by 

switch is  under configuration f . The problem maximizes 

network utility by choosing a optimal configuration f . However, 

since the feasible configuration set   is exponentially large, it 
is still a NP-hard combinatorial network optimization problem. 

Let fp  be the percentage of time that configuration f  is in 

use on configuration space  . An equivalent formulation of the 

problem fSMP  is as follows, 
 

 
0

:  max  
f f

jj i

f
f ij

p
f c s S

SMP EQ p B f


  

   
 

                 (12) 

 

Besides all the constraints of the problem fSMP , the equation 

1f
f

p





 is satisfied for the problem fSMP EQ . 

To solve this problem, we use the log-sum-exp function to 
approximate the optimal value of fSMP EQ  as follows, 

 

   
1

max  log exp
j ji

f f
j ji

ij ij
f

c f cs SsS

B f B f


   

  
  

  
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        (13) 

 
where   is a positive constant. As the Theorem 1 in literature 

[14] stated, we solve the approximated version of the problem 

fSMP EQ , off by an entropy term 
1

logf f
f

p p
 




. So the 

objective of fSMP EQ  can be rewritten in approximated form, 

 

 
0

1
:  max  log

f
j

f
j i S

f
f ij f f

p
f c fs

SMP MA p B f p p


  

    
  

   (14) 

 
This additional entropy term opens a new design space for 
exploration. 

Since the objective function of problem fSMP MA  is twice 
differentiable, increasing and strictly concave for all fp , and all 

the constraints are linear, Karush-Kuhn-Tucker (KKT) 
conditions are necessary and sufficient for an existing optimal 
solution. We can conclude that,  

Theorem 1 The optimal solution of the problem fUM MA  

is  *
fp B , f   like that, 

  

 

 

*

exp

exp

f
j

f
j

j i

j i

ij
c s

ij
f c s

S

f

S

B f

B

p B

f
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  

 
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 
 

 
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 
 



 

  



 

, f   



 The optimality gap between fSMP  and fSMP MA  is 

bounded by 1
log


 , where 

 
represents the size of  . 

The symbol        11 12, , ij MNB B f B f B f B f     . 

The proof can refer to our technical report about this paper 
[21]. 

B. Distributed Hopping Algorithm Design Based on Markov 
Chain 

As stated in Lemma 1 of the literature [14], there exists at 
least one continuous-time time-reversible ergodic markov chain 

with stationary distribution  *
fp A . The state space   has to 

satisfy two conditions. First, with the property of ergodicity, any 
two states in this state space can communicate with each other 
through at least one path. Second, the markov chain must obey 

detailed balance equation, i.e.,        , ,fff ff fp B pB BBq q   

where  ,f fq B  
denotes the transition rate from the strategy f  to 

f  .  

We define neighbor set  j
 
of jc

 
as the controllers whose 

switch directly links to at least one of switch in f
jS . The 

transition rate  ,f fq B  
will be not zero, if both configurations 

1 21 , , , , , ,f f f f
j j Nf S S S S      and 

1 21 , , , , , ,f f f f
j j Nf S S S S           

satisfy, 

 C1:
1 2

\{ , }j j jc c c  � , f f
j jS S  , 

1 1 2 2
2f f f f

j j j jS S S S     , where 
 
represents the element 

number of set. That means only one switch is migrated 
from one switch set in f  to another in f  . 

 C2:  
2 1jc j , i.e., the switch migration only happens 

among neighbors. 

We define the set  f  as  ff    satisfies to the above 

two conditions with f . We can see that the jump from f  to f   
is scale-limited so that only two correspondingly neighboring 
controllers change their utilization ratios and take the reminder 

invariable. Accordingly, let  ,f f 
 
denotes the invariable 

domains under both configuration f  and f  . It will appear 

between both sides of detailed balance equation, we thus ignore 

it. The transition rate  ,f fq B  in our scenario is formulated as 

the revised version of OPT 1 in the literature  [14], i.e., 
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Where the function  
c

b
a a , if b c  else 0.  ,f fq B  

can be 

calculated in a symmetric way. If we limit that the switch only 
migrated to its neighbors, we can see that the transition rate can 
be calculated in a local way.  

In SDN, there is a logically centralized global view where all 
controllers share the information. Therefore, each controller can 

collect fresh value  ijB f
 
in  ,f f    to calculate  ,f fq B

and  ,f fq B . Let    ,f f f
f

q B q B


 


, the network will sojourn 

in the state f  for a period that reduces to the exponential 

distribution with parameter  fq B . Based on the theorem 1, we 

can deduce that, 
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The configuration f  is composed of the local partitions of 

all individual controllers. The transition from configuration f  to

f   is taken place by a switch migration from one controller to 

its neighbor. If each controller counts down a clock and waits 
for transition until clock terminates, we can design that the 
transitions are present at two neighbor controllers. Then, the 
Markov Chain can be calculated in a distributed manner. 

We briefly describe the distributed hopping algorithm (DHA) 
as follows. The following procedure runs on each controller 
independently, and we focus on a particular controller 

nc . 

Stage 1: Initially, given an SDN topology with distributed 
controllers, any controller 

nc  is allocated a switch domain under 

the configuration f . 

Stage 2: Controller 
nc  randomly selects a switch s  from its 

domain f
nS

 
with the size of f

nS  and a controller 
nc   from its 

neighbor set  n . Then 
nc  will count down a random number. 

The random number is generated by the exponential distribution 
with mean f

nu  which represents as follows,  
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Stage 3: If the count is expired and no existing switch 

migration activity in its neighbors is sensed, the controller 
nc  

will broadcast the coming migration activity between 
nc and 

nc 

to its neighbors. Then the controller 
nc  will migrate the selected 

switch into the controller
nc 

. After migration, the controller 
nc  

will update all utilization ratios  ˆ
ijB f of the switches in



 ,f f  
 
into the network global view, and broadcast it to 

its neighbors. 
Stage 4: Conversely, if there is such an activity between its 

neighbors, the controller 
nc  resets the timer. The algorithm 

returns to Stage 2. 
The pseudocode of DHA is shown in Algorithm 1 which 

runs on each individual controller independently. We focus on a 
particular controller 

nc . 

 
Algorithm Distributed Hopping Algorithm 
1: Initialization: 
2: Initial configuration f , controller nc with switch set f

nS ; 

3:     Let 
nc ’s neighbor set be  n ; 

4: Let 0k  , tag =0; 

5: End 
  
6: Procedure Selection( nc ) 

7:     Randomly select a switch s  from f
nS ; 

8:     Randomly select a controller  nc  from  n ; 

9:     Acquires total utilization ratios of  ,f f   ; 

10:     Generates a timer with  ' ',  f
n nT rand exp u ; 

11:     Begin counting down nT  

12:     while the timer  nT does not expire do 

13:         if sense the existence of switch migration activity then 
14:             tag = 1; 
15:              break; 
16:         end if 
17:     end while 
18:     If tag == 1 then 
19:         Terminates current countdown timer and invoke Section( nc ); 

20:         Tag = 0; 
21:      else  
22:         Controller nc migrate switch s to controller nc  ; 

23:         Announces to its neighbors; 
24:     end if 

 
We then have the conclusion as follows. 
Theorem 2 The process of distributed hopping algorithm is 

the implementation of time-reversible Markov Chain with 
stationary distribution  *

fp B , f  . 

The proof can refer to our technical report about this paper 
[21]. 

VI. IMPLEMENTATION 

A. DHA-CON 

In this section, we implement a control mechanism prototype 
atop Beacon controller [26] based on DHA algorithm, called 
DHA-CON, including a load estimation module, a DHA 
decision module and a distributed data store module.  
Load Estimation. A load estimation module runs as a control 
application. It tracks the controller loads, and predicts the 

average message arrive rate from each switch. We set two 
thresholds, upper limit and lower limit, to indicate whether 
startup our DHA modules. If the loads are less than lower limit 
or bigger than upper limit for one minute, load estimation 
triggers DHA module to switch migration. 
DHA Decision. Each controller runs a DHA instance to decide 
the switch migration. There are two operating models for DHA, 
the balance one and the green one. First, if a controller is a hot 
spot, i.e., its loads are bigger than the upper limit for one minute, 
DHA will work in the balance model to offload part of loads for 
equilibrium. Second, if a controller is cold spot, i.e., its loads are 
less than lower limit, DHA will work in the green model to 
offload all loads and shut down this controller.   
Distributed data store. A distributed data store provides a 
logically central view for controller cluster. It stores all switches 
information, including data from load estimation module.  

B. Controller-to-Controller Interface 

We need to extend eastbound and westbound interface so 
that controllers could communicate with each other during DHA 

process. As shown in Fig. 1, suppose controller jc  with 

neighbors  j , each runs a DHA thread. When the countdown 

timer in jc  expires, and there are no existing migration activities 

in its neighbors, it will emit migrating request message to its 
selected destination dc . This message includes the migrating 

switch ID. Then dc will reply an ACK message to jc . The 

controller jc  broadcast notification message to its neighbors to 

suggest that there is a migration activity between jc  and dc . 

Finally, the switch migration could be started. We refer the 
reader to [9] for details of messages needed during switch 
migration. 

 
Fig. 1. The message interactions among controllers 



 

After one time of switch migration, controller jc  and dc  

update their utilization ratios in the central data store, and 
broadcast updates to their neighbors respectively.  

VII. THE NUMERICAL EVALUATION 

A. Simulation Setup 

In this section, we evaluate the performance of our prototype 
under the experimental environment shown in Fig. 2. Consider 
performance interferences between Mininet and controllers, we 
deploy Mininet [20], Beacon controller and our DHA-CON on 
different physical machines. Each physical machine runs Ubuntu 
12.04 LTS with JDK 1.7.  

Instead of the artificial topologies, we use two real network 
topologies Chinanet [22] (38 nodes and 59 links) and Cernet [23] 
(36 nodes and 53 links) from zoo topology. Chinanet is a real 
ISP topology from China Telecom, one of three largest ISPs in 
China. Cernet is the largest education and research network in 
China. In addition, we install Beacon controller in an individual 
machine to simulate single centralized controller. Other five 
physical machines run DHA-CON instances. All physical 
machines have exactly the same configuration with 3.4GHz Intel 
Core i7 processor, 4GB of DDR3 RAM and a 1 Gbps NIC. They 
are connected by a H3C S5500 switch. We use iperf [24] to 
generate TCP flows between hosts. To simulate realistic traffic, 
all flows are generated as traffic characterization described by 
[25] such as flow size distribution and arriving rate. 

 

 
Fig. 2 the experimental topology 

 
We focus on verifying whether our distributed hopping 

algorithm can improve the performance and scalability of 
distributed control plane. We compared our DHA-CON (4 
controllers) with the scenarios of single controller (S-CNTL), 
static distributed controllers (D-CNTL) (4 controllers), and 
Dynamic Controller Provisioning Problem with Greedy 
Knapsack and Simulated Annealing (DCP-GK and DCP-SA). In 
DCP-GK or DCP-SA, we initially deploy four controllers, and 
we will add a new one when one of its controllers overload. 
Specifically, we first compare average flow setup time along 
with traffic flows. Then, we evaluate the migration cost caused 
by DHA. Third, we compare the average utilization ratios of 

controllers. Finally, we evaluate utility gap of DHA. In our 
experiment, we define utility gap as the difference between 
system utility achieved by DHA and the optimal utility obtained 
by exhaustively searching algorithm which search the feasible 
configuration space. 

B. Parameters Measurement 

Before our evaluation, we have to get the values of some 
parameters in DHA, that is, controller capacity and the upper 
limits of switch. We use the topology that two physical 
machines are connected with a switch. One machine runs a 
Beacon instance, another runs Cbench [27], a program for 
testing OpenFlow controllers. Each machine has one NIC with 
1Gbps.  

Cbench works in throughput mode with the command, 
cbench -c 192.168.1.3 -p 6633 -m 10000 -l 10 -s 16 -M 1000 -t. 
We find that the average throughput of Beacon is about 1500 
kilo requests per second with 4 threads. 

In our experiment, since the switch bandwidth is limited by 
the loopback interface of Mininet, it is difficult to overload the 
distributed controllers. So we have to restrict the controller 
capacity at a low level so that the controller is over-subscribed 
less than the factors of 1:5   (In datacenter network up-links 

from ToRs are typically 1:5 to 1:20 oversubscribed [28]). The 
capacity of each controller in our experiment is limited to 300 
kilo requests per second. And the upper limit of switch is simply 
calculated by equation (18), where k  represents the number of 
switches under the controller, and ia  represents average loads 

generated by switch is . 

 1
i id throughput k r a                          (18) 

At the right hand of the equation, the first item, called basic 
item, is calculated based on the controller throughput, control 
scale and over-subscription ratio. The second item, called 
individual item, is a random number not beyond ia .  

C. Numerical Results 

Our objective is to increase network utilities, so that they can 
handle as many OF event requests as possible with their 
available resources. We set 50   during simulations. 

 

 
 (a) Chinanet                                             (b) Cernet 

Fig. 3 Flow count 
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We run each simulation for 6 hours. Fig. 3 shows the flow 
counts on Cernet and Chinanet respectively. Simulations are 
repeated for three times. At each time, we record flow setup time, 
the number of packets exchanged between controllers, and 
controller utilizations for different scenarios. We show the 
average results of three repeated simulations. 
Flow setup time. In the simulation, we use average flow setup 
time to measure the effect of our DHA-CON, because it reflects 
controller load changes caused by switch migration.  

We compare the average flow setup time of DHA-CON (4 
controller instances), S-CNTL, D-CNTL (4 controller instances), 
DCP-GK and DCP-SM (4~5 controller instances) in two 
different topologies. Fig. 4 shows their time curves. We can see 
that S-CNTL is a constant, since single controller is overloaded 
during the simulation. However, the flow setup time for other 
four scenarios fluctuates along with flow count, yet has different 
ranges. That is, D-CNTL has the largest fluctuation, DCP-GK 
takes second place, and DHA-CON and DCP have less 
fluctuation.  

 

 
(a) Chinanet                                             (b) Cernet 

Fig. 4 Average flow setup time 

 
(a) Chinanet                                             (b) Cernet 

Fig. 5 Empirical CDFs 

 
There are several reasons to explain the above results. First, 

single controller has the lowest scalability due to its resource-
limited architecture. Second, compared with S-CNTL, although 
D-CNTL has a distributed control plane, its static architecture is 
likely to induce some heavy controllers that suffer from long 
flow setup time. Third, DCP-GK and DCP-SM could eliminate 
overloaded controller via adding a new controller, and DHA-
CON achieves such scalability via switch migration. That is, 
DCP-GK and DCP-SM must run reassignment between 
controllers and switches while our DHA-CON only migrate 
several switches from one overloaded controller to light one. 

The empirical CDFs in Fig. 5 definitely present that dynamic 
control plane (i.e., DHA-CON and DCP) are less vulnerable to 
flow count than D-CNTL. 

 
Overhead. We compare the overhead for five scenarios. Fig. 6 
presents the communicating overhead and average flow setup 
time with Chinanet and Cernet topologies. S-CNTL has the 
lowest communicating overhead because there are no controller-
to-controller messages. Compared with S-CNTL, D-CNTL has 
higher overhead, because controllers need to state 
synchronization for global network view. DHA-CON generates 
more packets than D-CNTL, since it needs to migrate switches 
except state synchronization in DCNTL. But the cost for 
migration switches is small, no more than 20% of D-CNTL. 
DCP-GK and DCP-SM have highest communicating overhead. 
Their cost is twice times that of D-CNTL, and 1.5 times that of 
DHA-CON, because DCP that reassigns the mappings between 
controllers and switches will incur more switch migrations than 
DHA-CON. 

As mentioned earlier, average flow setup time for DHA-CON 
is lowest than other scenarios, about 0.2 s. The average flow 
setup time for DCP-GK and DCP-SM are close to our DHA-
CON, about 0.25 s for Chinanet and Cernet respectively. But the 
average flow setup time for S-CNTL and D-CNTL are more 
than 0.65 s and 0.35 s for both topologies. 

 

  
(a) Chinanet                                             (b) Cernet 

Fig. 6 Summary of Overhead and Average Flow Setup Time 

 
(a) Chinanet                                        (b) Cernet 

Fig. 7 Average controller utilization 

 
Average utilization ratio. To validate the scalability of DHA-
CON, we count the average utilization ratio for different 
scenarios. As show in Fig. 7, S-CNTL has 100% utilization due 
to its limited resource. Each controller in DHA-CON has more 
than 90% utilization. Since DHA-CON balances the loads 
among controllers so that more requests can be served. 
Controller in D-CNTL has less than 80% utilization in average 
because the load imbalance among different controllers. DCP-
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GK and DCP-SM have lowest utilization in average. Although 
DCP could serve the same total loads with DHA-CON, but it 
needs more controllers than DHA-CON (one more than DHA-
CON in our simulation). 
Utility gap. Theorem 1 provides a utility loss bound for our 
DHA algorithm. In the worst case, the Log-sum-exp 

approximation can lead to utility loss of 
1

log n


, where n is the 

number of feasible network configurations. In our simulations, 
we have, 

38

36

1
log4 0.46 for Chinanet

1 50
log

1
log4 0.43 for Cernet

50

n





 
 


 

We obtain the optimal network configuration by 
exhaustively searching the feasible network configurations. 
When 50  , the average actual utility loss is 0.23 and 0.22 for 

Chinanet and Cernet. We see that the performance loss bound is 
guaranteed, and the observed utility loss is quite smaller than the 
bound.  

VIII. CONCLUSIONS 

In this paper, we make the first attempt to explore SMP 
problem for more scalable control plane under the available 
resource. We first model this problem as a NUM problem from 
the view of network loads. And then, we design a synthesizing 
distributed algorithm to solve it. Finally, we implement a 
prototype and validate it in two real topologies. Of cause, the 
control load and locality are not the only important factors when 
choosing target controllers. Resilience is also an important 
aspect. We will study them in the future. 
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