
DHA: Distributed Decisions on the Switch Migration
Toward a Scalable SDN Control Plane

Guozhen Cheng, Hongchang Chen, Zhiming Wang, Shuqiao Chen

National Digital Switching System Engineering & Technological R&D Center

Zhengzhou, China

[Email: guozhencheng@hotmail.com, chc@ndsc.com.cn wangzm05@gmail.com, chenshuqiao1973@163.com]

Abstract—Distributed control plane is a promising

approach to a scalable software-defined networking (SDN).
However, traffic changes could incur load imbalance among
individual controllers. Live migration of switches from
controllers that are overloaded to those that are
underutilized may be a solution to handle peak switch traffic
using available control resource. Such migration has to be
performed with a well-defined mechanism to fully utilize the
available resource of controllers. In this paper, we study a
scalable control mechanism to decide which switch and
where it should be migrated for a balanced control plane,
and we define it as switch migration problem (SMP). The
main contributions of this paper are as follows. First, we
define a SDN model to describe the relation between the
controllers and switches from the view of loads. Based on
this model, we formulate SMP as a network utility
maximization (NUM) problem with the objective of serving
more requests under the available control resource. Second,
we design a synthesizing distributed algorithm for SMP ---
distributed hopping algorithm (DHA), by approximating our
optimal objective via Log-Sum-Exp function. In such DHA,
individual controller performs algorithmic procedure
independently. With the solution space  , we prove that the
optimal gap caused by approximation is bounded by
1

log


 , and the DHA procedure is equal to an

implementation of a time-reversible markov chain process.
Finally, the results are corroborated by several numerical
simulations.

Keywords—software-defined networking; scalability; switch
migrations; markov chain

I. INTRODUCTION

Scalability is a key issue for the SDN control plane.
Distributed control plane is a promising approach to a scalable
SDN. Each controller manages a part of switches in the network

but makes decisions based on a logically centralized network
view. However, the control plane tends to unbalance and its
performance will be degraded, since the current static structure
between controllers and switches cannot adapt for the network
traffic changes.

At first stage, SDN deploys only one central controller that is
responsible for all the switches [1]-[3]. This architecture could
readily achieve network state consistency and avoid
communications among different controllers. But the single
resource-limited controller confines the SDN paradigm to a
small-scale network, because a large network could experience
the overloading of the controller due to the frequent and
resource-exhaustive events such as OpenFlow (OF) PACKET-
IN events [4]. For example, the flow setup time 1 in an
overloaded controller can rise significantly, and its performance
can deteriorate rapidly.

A few recent attempts are subsequently taken to tackle this
problem via the distributed schemes which may fall into two
major groups: those horizontally equalizing all controllers, i.e.,
flat architecture [4, 5], and those vertically layering from root
controller to leaf ones, i.e., hierarchical architecture [6]. Both
architectures have comparatively improved the scalability of
SDN control plane, but the static map between controllers and
switches lead to load imbalance among controllers. For instance,
real measurement for network traffic shows that 1-2 orders of
magnitude difference between the peak and median flow arrival
rates at a switch [7]. Current static configurations could easily
induce that some controllers are overcommitted and become hot
spots, but other controllers are underutilized and turn to cold
spots. Workloads have to be offloaded from the hot spots since
there is inadequate resource to meet service level agreements
(SLAs). Oppositely, cold spots expect to serve more switches for
the high network utility.

1 Whenever a switch receives a flow, it searches its flow table to find
the entry matched. As the match is failed, it requests the controller to
calculate the flow path and install appropriate rules. The time required
to complete this operation is known as the flow setup time.

ISBN 978-3-901882-68-5 © 2015 IFIP

The recent version of OpenFlow protocol [8] has realized the
problem caused by such static configurations. Therefore, it
proposes that each switch could be controlled by three different
roles of controllers, master, equal and slave. Generally, there is
only one master controller for a switch. The master can not only
fetch the switches’ states but also write rules to its switches to
instruct the data plane. The equal controllers are introduced to
separate the loads from the master. They have the same authority
with master. The slaves only read the states from its switches.
Each switch could have more than one equal and slave
controllers. If the master is failed due to overload or some
exceptions, the equal controllers, or even slaves could be
transited to master as soon as possible. However, the OF spec
suggests no mechanism explicitly indicating the switch
migration or controller roles shift, because the writers of this
spec think that this is the responsibility of the controller to
choose a master among themselves.

We believe that such migration has to be performed with a
well-defined mechanism to fully utilize the available resource of
controllers. In this paper, we focus on designing a scalable
control mechanism via solving SMP problem. To the best
knowledge of the authors, this is the first work to specially solve
the SMP for a more balancing SDN control plane. The main
contributions in this paper are as follows.
 We first give a SDN model to describe the relation between

controllers and switches, and then we define SMP problem
as a NUM with the objective of serving more loads under
available control resources.

 Based on the Markov approximation framework [14], we
approximate our optimal objective with a Log-Sum-Exp
function, and design a synthesizing distributed algorithm,
distributed hopping algorithms (DHA), to approach the
optimal solution of the SMP. We prove that the gap
between the approximated solution and the optimal one is
limited and the solution search path of our DHA is a
markov chain path with a stationary probability distribution.

 We implement a scalable control mechanism based on our
DHA algorithms, and validate its performance in real ISP
topologies.

The remainder of this paper is organized as follows. The next
section gives the related works. The section III discusses the
intuition and details of our model for SDN. In section IV, we
reduce our SDN model to network utility maximization problem.
Section V presents the design of distributed hopping algorithms.
Section VI describes an implementation of scalable control
mechanism. Section VII validates our DHA. Section VIII
concludes this paper.

II. RELATED WORK ON ELASTIC CONTROL

Current static map between controllers and switches prevents
controllers from exchanging the network loads according to the
traffic changes. To address this problem, ElastiCon [9] is
provided to dynamically grow or shrink the amount of

controllers set and migrate the switches among controllers along
with the network traffic. Similarly, V. Yazıcı1 [10] proposed a
coordination framework for scalability and reliability of
distributed control plane. But the SMP problem about how to
select migrated switches and their target controllers is not solved
properly.

B. Heller et al. [11] solve how to place the controllers based
on propagation latency. But this work only focused on where to
place multiple controllers statically. Guang Yao et al. [12]
consider controller placement problem from the view of the
controller load.

To achieve more performance and scalability in large-scale
WAN, Md. Faizul Bari et al. [13] provide a dynamic controller
provisioning framework to adapt the number of controllers and
their geographical locations. The framework minimizes flow
setup time and communication overhead by solving an integer
linear program. But it has to perform a reassignment of the
entire control plane based on the collected traffic statistics. This
operation easily leads to network instability because it incurs
massive state synchronizations. Furthermore, both its greedy and
simulated annealing approaches are centralized algorithms
which do not adequately utilize the resource of distributed
controllers.

To sum up, the existing solutions to dynamic controller
provisioning problem (DCPP) are changing the number of
controllers and their location via reassigning the switches for
controllers. This operation is likely to incur network instability
due to a large number of state synchronizations among
controllers.

This article has two differences compared with the existing
works. First, our pivot is to solve the SMP problem so that we
can eliminate the imbalance of the control plane with the
available resource. Second, based on the architecture of
distributed controllers, we design a synthesizing distributed
algorithm that each controller runs its own algorithmic
procedure independently.

III. SYSTEM MODEL

A. The Motivations

The objective of the switch migration is to serve more
network flows under available resource and maximize the
resource utility in the control plane. In practice, there are many
cases that need to change the mappings. Firstly, since a switch
request to a controller may peak at different times, there is an
opportunity to increase controller resource utilization by moving
more switches into the same controller during off-peak seasons.
Then controllers without switches could be shut down or sleep
for saving power and communication cost. This can hamper the
control plane sprawl, and we call this operation as switches
consolidation.

Secondly, once some switches encounters their peak traffic,
they can use up all available resources at the controller where

they are placed. One big problem we may encounter is that
controllers may become overloaded while other controllers
maybe underutilized. in order to improve network performance
and resource utilization, a possible configuration is moving
some switches from heavy controllers to light ones. We call this
operation as load balance.

Thirdly, if all active controllers become overloaded, it is
impossible to eliminate hotspots by switch migrations. The
operator will deploy some new controllers, and switches will be
migrated to such new controllers.

With live switch migration, the switch traffic being served at
the same time may be effectively increased by migrating
switches with additional resource needed from resource-
deficient to resource-rich controllers. However, such migration
has to be performed with a well-designed mechanism to fully
utilized available resources.

Note that, the preceding three cases could be detected by a
load estimation application on the controller. Our algorithm
could be used to solve them by designing specific optimal
objectives. In the first case, we should design a control power
function as payoff function, and then minimize it in such
controllers. In the second case, we should design a utility
function as payoff function, and then maximize network flows
requests under available resource. Essentially, the third one is a
special case of second one. For brief, we discuss load balance
case in the residual part of this paper. Our future work will
explore the first case which could toward a green network.

B. SDN Model

Our pivot in this paper is the switch migration problem
towards more balanced control plane. So we assume that the
SDN controllers have been optimally placed in the distributed
topology.

As the literature [12] stated, the load of a SDN controller
consists of many factors, such as processing of PACKET_IN
events, maintaining the local domain view, communicating with
other controllers, as well as installing flow entries. In different
scenario, the proportions of those factors differ greatly. But the
processing of PACKET_IN events is generally regarded as the
most prominent part of the total load [15]. Accordingly, the
arriving rate of PACKET_IN events on a controller is counted to
measure its load.

Therefore, we give our SDN model as follows. We consider

a SDN  consisting of N controllers  1 2, , , Nc c c  , and M

switches  1 2, , , Ms s s  . Let ia

be the control load generated

by switch is , and id

be the upper load limits of switch is .

Accordingly, the switch is
can be denoted as  : ,i i is a d .

We use  : ,j j jc A S

as the controller model. jA represents the

capacity for the controller jc , and jS  denotes the set of

switches managed by controller jc .

IV. NETWORK UTILITY MAXIMIZATION PROBLEM IN SDN

Our primary objective is to find out how switch migration
policies should be employed so that the network utility is
maximized. We assume that the more events the controller
handles under the available resource, the higher the utilities will
be produced. Based on the our SDN model, we formulate switch
migration problem as a centralized network utilization
maximization problem in SDN,

: max
j

j

j
S

c

SMP U




 (1)

. .
i j

i j
s S

s t a A


 , jc  (2)

 i ia d , ,i j js S c   (3)

j jS S   , j j  , jS 

and jS   (4)

j

j
c

S





 (5)

where jU is network utility produced by controller jc .

In SMP , the constraints (2) limit that the total load cannot
exceed controller’s capacity. The constraints (3) limit the upper
bound of each switch to avoid that a small part of switches
exhausts controller resource. The constraints (4) ensure that
different controllers do not overlap. And the constraints (5)
ensure the self-contain of set .

We believe that once a controller is powered on, the more
resource it is possessed, the more utilities it will produce if all
the resource consumers are legal. In addition, we assume that
network utility function is twice differentiable, increasing and
strictly concave. Hence, we define network utility function for

jc  with log function,

 log
i j

j i
s S

U a


 

(6)

Then the objective function can be reformulated as,

max max
j j

j j i j

j ij
S S

c c s S

U B
  

  
 

 (7)

Where  ijB t denotes the network utility produced by switch i

on the controller j , i.e.,

 logij iB a

(8)

Under the constraints of SMP , the more load a controller serves,
the more network utilities it will produce.

V. DISTRIBUTED HOPPING ALGORITHMS

Theoretically, the problem SMP can be reformulated as 0-1
integer linear program, which is a typically combinatorial
network optimization problem, and very difficult to solve.
Although we can approach the optimal solution through
lagrangian relaxation with quadratic equality constraints and
solve its dual problem, or decoupling it into several knapsack
problems, it incurs time consuming [16].

Actually, many important network design problem can be
formulated as a combinatorial network optimization problem,
and a surge of studies have been provided to solve it and have
made a significant progress, but many of them are designed to
centralized implementations [17] or time-consuming as the
network size becomes larger [18][19]. In our scenario, we need a
approach that can be concurrently processed in a distributed
manner, because each SDN controller manages its local switches
and interacts with its neighbors. Moreover, network running the
distributed algorithms are more robust to the network dynamics
(e.g., switch migration and controller sleep).

In this article, we refer to a markov approximation
framework using the log-sum-exp function to approximate the
optimal value of our SMP. Based on this, we provide a
distributed hopping algorithm in a synthesizing form. In the
subsequent section, we first describe the log-sum-exp
approximation of SMP. Then we illustrate the detailed design of
DHA.

A. Log-Sum-Exp Approximation

Let  denote the  -algebra of , and  is consisted of

all the subsets of  (including empty set and ), we define a
network configuration as a network partition.

Definition 1 Network Configuration 1 , , , ,f f f
j Nf S S S    

is a configuration of network  if

 f
jS  , and ,f f

j jS j jS     ,


j

f
j

c
S





 ,

where f
jS denotes the switch set controlled by jc under the

configuration f . Let  be the set of all feasible f .

Then SMP problem can be rewritten as follows,

 : max
j i

f
j

f
ij

f
c s S

SMP B f


 

 




 (9)

 . .
ji
f

i j

s S

s t a f A


 , jc  and f  (10)

 i ia f d , is  and f  (11)

where  ijB f denotes ijB

calculated by equation (8) under

configuration f .  ia f represents control load generated by

switch is under configuration f . The problem maximizes

network utility by choosing a optimal configuration f . However,

since the feasible configuration set  is exponentially large, it
is still a NP-hard combinatorial network optimization problem.

Let fp be the percentage of time that configuration f is in

use on configuration space  . An equivalent formulation of the

problem fSMP is as follows,

 
0

: max
f f

jj i

f
f ij

p
f c s S

SMP EQ p B f


  

   
 

 (12)

Besides all the constraints of the problem fSMP , the equation

1f
f

p





 is satisfied for the problem fSMP EQ .

To solve this problem, we use the log-sum-exp function to
approximate the optimal value of fSMP EQ as follows,

   
1

max log exp
j ji

f f
j ji

ij ij
f

c f cs SsS

B f B f


   

  
  

  
  

    


  

 (13)

where  is a positive constant. As the Theorem 1 in literature

[14] stated, we solve the approximated version of the problem

fSMP EQ , off by an entropy term
1

logf f
f

p p
 




. So the

objective of fSMP EQ can be rewritten in approximated form,

 
0

1
: max log

f
j

f
j i S

f
f ij f f

p
f c fs

SMP MA p B f p p


  

    
  

 (14)

This additional entropy term opens a new design space for
exploration.

Since the objective function of problem fSMP MA is twice
differentiable, increasing and strictly concave for all fp , and all

the constraints are linear, Karush-Kuhn-Tucker (KKT)
conditions are necessary and sufficient for an existing optimal
solution. We can conclude that,

Theorem 1 The optimal solution of the problem fUM MA

is  *
fp B , f  like that,

  

 

 

*

exp

exp

f
j

f
j

j i

j i

ij
c s

ij
f c s

S

f

S

B f

B

p B

f

 

  

 
 
 
 

 
 
 
 



 

  



 

, f 

 The optimality gap between fSMP and fSMP MA is

bounded by 1
log


 , where 

represents the size of  .

The symbol        11 12, , ij MNB B f B f B f B f     .

The proof can refer to our technical report about this paper
[21].

B. Distributed Hopping Algorithm Design Based on Markov
Chain

As stated in Lemma 1 of the literature [14], there exists at
least one continuous-time time-reversible ergodic markov chain

with stationary distribution  *
fp A . The state space  has to

satisfy two conditions. First, with the property of ergodicity, any
two states in this state space can communicate with each other
through at least one path. Second, the markov chain must obey

detailed balance equation, i.e.,        , ,fff ff fp B pB BBq q 

where  ,f fq B
denotes the transition rate from the strategy f to

f  .

We define neighbor set  j

of jc

as the controllers whose

switch directly links to at least one of switch in f
jS . The

transition rate  ,f fq B
will be not zero, if both configurations

1 21 , , , , , ,f f f f
j j Nf S S S S      and

1 21 , , , , , ,f f f f
j j Nf S S S S         

satisfy,

 C1:
1 2

\{ , }j j jc c c  � , f f
j jS S  ,

1 1 2 2
2f f f f

j j j jS S S S     , where 

represents the element

number of set. That means only one switch is migrated
from one switch set in f to another in f  .

 C2:  
2 1jc j , i.e., the switch migration only happens

among neighbors.

We define the set  f as  ff   satisfies to the above

two conditions with f . We can see that the jump from f to f 
is scale-limited so that only two correspondingly neighboring
controllers change their utilization ratios and take the reminder

invariable. Accordingly, let  ,f f 

denotes the invariable

domains under both configuration f and f  . It will appear

between both sides of detailed balance equation, we thus ignore

it. The transition rate  ,f fq B in our scenario is formulated as

the revised version of OPT 1 in the literature [14], i.e.,

   
 

 

,
,

1

exp
f
jj i

ij
c s

f

f f
f f S

f

B B fq 






  

   
   

   
  

 
   
  

 



 

 (15)

Where the function  
c

b
a a , if b c else 0.  ,f fq B

can be

calculated in a symmetric way. If we limit that the switch only
migrated to its neighbors, we can see that the transition rate can
be calculated in a local way.

In SDN, there is a logically centralized global view where all
controllers share the information. Therefore, each controller can

collect fresh value  ijB f

in  ,f f   to calculate  ,f fq B

and  ,f fq B . Let    ,f f f
f

q B q B


 


, the network will sojourn

in the state f for a period that reduces to the exponential

distribution with parameter  fq B . Based on the theorem 1, we

can deduce that,

     
 ,

1

exp
f
jj i

ij
c

f
f f s S

q B B ff




  

   
   

   
  




 
 

 (16)

The configuration f is composed of the local partitions of

all individual controllers. The transition from configuration f to

f  is taken place by a switch migration from one controller to

its neighbor. If each controller counts down a clock and waits
for transition until clock terminates, we can design that the
transitions are present at two neighbor controllers. Then, the
Markov Chain can be calculated in a distributed manner.

We briefly describe the distributed hopping algorithm (DHA)
as follows. The following procedure runs on each controller
independently, and we focus on a particular controller

nc .

Stage 1: Initially, given an SDN topology with distributed
controllers, any controller

nc is allocated a switch domain under

the configuration f .

Stage 2: Controller
nc randomly selects a switch s from its

domain f
nS

with the size of f

nS and a controller
nc  from its

neighbor set  n . Then
nc will count down a random number.

The random number is generated by the exponential distribution
with mean f

nu which represents as follows,

    
 

1

,

ˆexp
f
jj i

f
n

f
n ij

Sc f sf

S B fu n
  





   
   

   
 



 
 
 

 (17)

Stage 3: If the count is expired and no existing switch

migration activity in its neighbors is sensed, the controller
nc

will broadcast the coming migration activity between
nc and

nc 

to its neighbors. Then the controller
nc will migrate the selected

switch into the controller
nc 

. After migration, the controller
nc

will update all utilization ratios  ˆ
ijB f of the switches in

 ,f f  

into the network global view, and broadcast it to

its neighbors.
Stage 4: Conversely, if there is such an activity between its

neighbors, the controller
nc resets the timer. The algorithm

returns to Stage 2.
The pseudocode of DHA is shown in Algorithm 1 which

runs on each individual controller independently. We focus on a
particular controller

nc .

Algorithm Distributed Hopping Algorithm
1: Initialization:
2: Initial configuration f , controller nc with switch set f

nS ;

3: Let
nc ’s neighbor set be  n ;

4: Let 0k  , tag =0;

5: End

6: Procedure Selection(nc)

7: Randomly select a switch s from f
nS ;

8: Randomly select a controller nc  from  n ;

9: Acquires total utilization ratios of  ,f f   ;

10: Generates a timer with  ' ', f
n nT rand exp u ;

11: Begin counting down nT

12: while the timer nT does not expire do

13: if sense the existence of switch migration activity then
14: tag = 1;
15: break;
16: end if
17: end while
18: If tag == 1 then
19: Terminates current countdown timer and invoke Section(nc);

20: Tag = 0;
21: else
22: Controller nc migrate switch s to controller nc  ;

23: Announces to its neighbors;
24: end if

We then have the conclusion as follows.
Theorem 2 The process of distributed hopping algorithm is

the implementation of time-reversible Markov Chain with
stationary distribution  *

fp B , f  .

The proof can refer to our technical report about this paper
[21].

VI. IMPLEMENTATION

A. DHA-CON

In this section, we implement a control mechanism prototype
atop Beacon controller [26] based on DHA algorithm, called
DHA-CON, including a load estimation module, a DHA
decision module and a distributed data store module.
Load Estimation. A load estimation module runs as a control
application. It tracks the controller loads, and predicts the

average message arrive rate from each switch. We set two
thresholds, upper limit and lower limit, to indicate whether
startup our DHA modules. If the loads are less than lower limit
or bigger than upper limit for one minute, load estimation
triggers DHA module to switch migration.
DHA Decision. Each controller runs a DHA instance to decide
the switch migration. There are two operating models for DHA,
the balance one and the green one. First, if a controller is a hot
spot, i.e., its loads are bigger than the upper limit for one minute,
DHA will work in the balance model to offload part of loads for
equilibrium. Second, if a controller is cold spot, i.e., its loads are
less than lower limit, DHA will work in the green model to
offload all loads and shut down this controller.
Distributed data store. A distributed data store provides a
logically central view for controller cluster. It stores all switches
information, including data from load estimation module.

B. Controller-to-Controller Interface

We need to extend eastbound and westbound interface so
that controllers could communicate with each other during DHA

process. As shown in Fig. 1, suppose controller jc with

neighbors  j , each runs a DHA thread. When the countdown

timer in jc expires, and there are no existing migration activities

in its neighbors, it will emit migrating request message to its
selected destination dc . This message includes the migrating

switch ID. Then dc will reply an ACK message to jc . The

controller jc broadcast notification message to its neighbors to

suggest that there is a migration activity between jc and dc .

Finally, the switch migration could be started. We refer the
reader to [9] for details of messages needed during switch
migration.

Fig. 1. The message interactions among controllers

After one time of switch migration, controller jc and dc

update their utilization ratios in the central data store, and
broadcast updates to their neighbors respectively.

VII. THE NUMERICAL EVALUATION

A. Simulation Setup

In this section, we evaluate the performance of our prototype
under the experimental environment shown in Fig. 2. Consider
performance interferences between Mininet and controllers, we
deploy Mininet [20], Beacon controller and our DHA-CON on
different physical machines. Each physical machine runs Ubuntu
12.04 LTS with JDK 1.7.

Instead of the artificial topologies, we use two real network
topologies Chinanet [22] (38 nodes and 59 links) and Cernet [23]
(36 nodes and 53 links) from zoo topology. Chinanet is a real
ISP topology from China Telecom, one of three largest ISPs in
China. Cernet is the largest education and research network in
China. In addition, we install Beacon controller in an individual
machine to simulate single centralized controller. Other five
physical machines run DHA-CON instances. All physical
machines have exactly the same configuration with 3.4GHz Intel
Core i7 processor, 4GB of DDR3 RAM and a 1 Gbps NIC. They
are connected by a H3C S5500 switch. We use iperf [24] to
generate TCP flows between hosts. To simulate realistic traffic,
all flows are generated as traffic characterization described by
[25] such as flow size distribution and arriving rate.

Fig. 2 the experimental topology

We focus on verifying whether our distributed hopping

algorithm can improve the performance and scalability of
distributed control plane. We compared our DHA-CON (4
controllers) with the scenarios of single controller (S-CNTL),
static distributed controllers (D-CNTL) (4 controllers), and
Dynamic Controller Provisioning Problem with Greedy
Knapsack and Simulated Annealing (DCP-GK and DCP-SA). In
DCP-GK or DCP-SA, we initially deploy four controllers, and
we will add a new one when one of its controllers overload.
Specifically, we first compare average flow setup time along
with traffic flows. Then, we evaluate the migration cost caused
by DHA. Third, we compare the average utilization ratios of

controllers. Finally, we evaluate utility gap of DHA. In our
experiment, we define utility gap as the difference between
system utility achieved by DHA and the optimal utility obtained
by exhaustively searching algorithm which search the feasible
configuration space.

B. Parameters Measurement

Before our evaluation, we have to get the values of some
parameters in DHA, that is, controller capacity and the upper
limits of switch. We use the topology that two physical
machines are connected with a switch. One machine runs a
Beacon instance, another runs Cbench [27], a program for
testing OpenFlow controllers. Each machine has one NIC with
1Gbps.

Cbench works in throughput mode with the command,
cbench -c 192.168.1.3 -p 6633 -m 10000 -l 10 -s 16 -M 1000 -t.
We find that the average throughput of Beacon is about 1500
kilo requests per second with 4 threads.

In our experiment, since the switch bandwidth is limited by
the loopback interface of Mininet, it is difficult to overload the
distributed controllers. So we have to restrict the controller
capacity at a low level so that the controller is over-subscribed
less than the factors of 1:5  (In datacenter network up-links

from ToRs are typically 1:5 to 1:20 oversubscribed [28]). The
capacity of each controller in our experiment is limited to 300
kilo requests per second. And the upper limit of switch is simply
calculated by equation (18), where k represents the number of
switches under the controller, and ia represents average loads

generated by switch is .

 1
i id throughput k r a   (18)

At the right hand of the equation, the first item, called basic
item, is calculated based on the controller throughput, control
scale and over-subscription ratio. The second item, called
individual item, is a random number not beyond ia .

C. Numerical Results

Our objective is to increase network utilities, so that they can
handle as many OF event requests as possible with their
available resources. We set 50  during simulations.

 (a) Chinanet (b) Cernet

Fig. 3 Flow count

0 1 2 3 4 5 6
0

200

400

600

800

1000

1200

Time (hour)

F
lo

w
 c

ou
nt

 (
k)

0 1 2 3 4 5 6
0

400

800

1200

1600

2000

Time (hour)

F
lo

w
 c

o
un

t
(k

)

We run each simulation for 6 hours. Fig. 3 shows the flow
counts on Cernet and Chinanet respectively. Simulations are
repeated for three times. At each time, we record flow setup time,
the number of packets exchanged between controllers, and
controller utilizations for different scenarios. We show the
average results of three repeated simulations.
Flow setup time. In the simulation, we use average flow setup
time to measure the effect of our DHA-CON, because it reflects
controller load changes caused by switch migration.

We compare the average flow setup time of DHA-CON (4
controller instances), S-CNTL, D-CNTL (4 controller instances),
DCP-GK and DCP-SM (4~5 controller instances) in two
different topologies. Fig. 4 shows their time curves. We can see
that S-CNTL is a constant, since single controller is overloaded
during the simulation. However, the flow setup time for other
four scenarios fluctuates along with flow count, yet has different
ranges. That is, D-CNTL has the largest fluctuation, DCP-GK
takes second place, and DHA-CON and DCP have less
fluctuation.

(a) Chinanet (b) Cernet

Fig. 4 Average flow setup time

(a) Chinanet (b) Cernet

Fig. 5 Empirical CDFs

There are several reasons to explain the above results. First,

single controller has the lowest scalability due to its resource-
limited architecture. Second, compared with S-CNTL, although
D-CNTL has a distributed control plane, its static architecture is
likely to induce some heavy controllers that suffer from long
flow setup time. Third, DCP-GK and DCP-SM could eliminate
overloaded controller via adding a new controller, and DHA-
CON achieves such scalability via switch migration. That is,
DCP-GK and DCP-SM must run reassignment between
controllers and switches while our DHA-CON only migrate
several switches from one overloaded controller to light one.

The empirical CDFs in Fig. 5 definitely present that dynamic
control plane (i.e., DHA-CON and DCP) are less vulnerable to
flow count than D-CNTL.

Overhead. We compare the overhead for five scenarios. Fig. 6
presents the communicating overhead and average flow setup
time with Chinanet and Cernet topologies. S-CNTL has the
lowest communicating overhead because there are no controller-
to-controller messages. Compared with S-CNTL, D-CNTL has
higher overhead, because controllers need to state
synchronization for global network view. DHA-CON generates
more packets than D-CNTL, since it needs to migrate switches
except state synchronization in DCNTL. But the cost for
migration switches is small, no more than 20% of D-CNTL.
DCP-GK and DCP-SM have highest communicating overhead.
Their cost is twice times that of D-CNTL, and 1.5 times that of
DHA-CON, because DCP that reassigns the mappings between
controllers and switches will incur more switch migrations than
DHA-CON.

As mentioned earlier, average flow setup time for DHA-CON
is lowest than other scenarios, about 0.2 s. The average flow
setup time for DCP-GK and DCP-SM are close to our DHA-
CON, about 0.25 s for Chinanet and Cernet respectively. But the
average flow setup time for S-CNTL and D-CNTL are more
than 0.65 s and 0.35 s for both topologies.

(a) Chinanet (b) Cernet

Fig. 6 Summary of Overhead and Average Flow Setup Time

(a) Chinanet (b) Cernet

Fig. 7 Average controller utilization

Average utilization ratio. To validate the scalability of DHA-
CON, we count the average utilization ratio for different
scenarios. As show in Fig. 7, S-CNTL has 100% utilization due
to its limited resource. Each controller in DHA-CON has more
than 90% utilization. Since DHA-CON balances the loads
among controllers so that more requests can be served.
Controller in D-CNTL has less than 80% utilization in average
because the load imbalance among different controllers. DCP-

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

Time (hour)

A
vg

. f
lo

w
 s

et
up

 t
im

e(
m

s)

S-CNTL

D-CNTL

DCP-GK
DCP-SM

DHA-CON

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

Time (hour)

A
vg

. f
lo

w
 s

et
up

 t
im

e(
m

s)

S-CNTL
D-CNTL

DCP-GK
DCP-SM
DHA-CON

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Flow setup time(ms)

E
m

pi
ri

ca
l

C
D

F

S-CNTL

D-CNTL
DCP-GK
DCP-SM
DHA-CON

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Flow setup time(ms)

E
m

pi
ri

ca
l

C
D

F

S-CNTL
D-CNTL
DCP-GK
DCP-SM

DHA-CON

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
vg

.F
lo

w
 s

et
up

 t
im

e
(s

)

S-CNTL
D-CNTL

DCP-GK
DCP-SM

DHA-CON

60

80

100

120

140

160

180

O
ve

rh
ea

d
(p

ac
ke

ts
)

Avg.Flow setup time
Overhead

0

0.25

0.5

0.75

1

A
vg

. F
lo

w
 s

et
up

 ti
m

e
(s

)

S-CNTL
D-CNTL

DCP-GK
DCP-SM

DHA-CON

0

50

100

150

200

O
ve

rh
ea

d
(p

ac
ke

ts
)

Avg.Flow setup time
Overhead

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time (hour)

%
 U

ti
li

za
ti

on

S-CNTL

D-CNTL
DCP-GK

DCP-SM
DHA-CON

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time (hour)

%
 U

ti
li

za
ti

on

S-CNTL

D-CNTL
DCP-GK

DCP-SM
DHA-CON

GK and DCP-SM have lowest utilization in average. Although
DCP could serve the same total loads with DHA-CON, but it
needs more controllers than DHA-CON (one more than DHA-
CON in our simulation).
Utility gap. Theorem 1 provides a utility loss bound for our
DHA algorithm. In the worst case, the Log-sum-exp

approximation can lead to utility loss of
1

log n


, where n is the

number of feasible network configurations. In our simulations,
we have,

38

36

1
log4 0.46 for Chinanet

1 50
log

1
log4 0.43 for Cernet

50

n





 
 


We obtain the optimal network configuration by
exhaustively searching the feasible network configurations.
When 50  , the average actual utility loss is 0.23 and 0.22 for

Chinanet and Cernet. We see that the performance loss bound is
guaranteed, and the observed utility loss is quite smaller than the
bound.

VIII. CONCLUSIONS

In this paper, we make the first attempt to explore SMP
problem for more scalable control plane under the available
resource. We first model this problem as a NUM problem from
the view of network loads. And then, we design a synthesizing
distributed algorithm to solve it. Finally, we implement a
prototype and validate it in two real topologies. Of cause, the
control load and locality are not the only important factors when
choosing target controllers. Resilience is also an important
aspect. We will study them in the future.

References
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, et al.,

“Openflow: enabling innovation in campus networks,” SIGCOMM CCR,
2008, pp.1-6.

[2] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Mckeown, and S.
Shenker, “NOX: Towards an Operating System for Networks,” in
SIGCOMM CCR, 2008.

[3] David Erickson, "The Beacon OpenFlow Controller," In Proc. 1st
Workshop on Hot Topics in Software Defined Networking (HotSDN 2013),
pages 13-18, Hong Kong, 2013. ACM Press.

[4] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control Plane
for OpenFlow,” in INM/WREN, 2010.

[5] Teemu Koponen, Martin Casado, Natasha Gude, et al., “Onix: a distributed
control platform for large-scale production networks,” In Proc. OSDI 2010,
pages 351-364, Berkeley, 2010. USENIX Association.

[6] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: a framework for
efficient and scalable offloading of control applications. In Proc. HotSDN
2012, pages 19-24, New York, 2012. ACM Press.

[7] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of
data centers in the wild,” in IMC, 2010.

[8] OpenFlow.https://www.opennetworking.org/images/stories/downloads/sdn
-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

[9] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, R. Kompella, "Towards an
Elastic Distributed SDN Controller," In Proc. 1st Workshop on Hot Topics
in Software Defined Networking (HotSDN 2013), pages 7-12, Hong Kong,
2013. ACM Press.

[10] V. Yazıcı1, M. Oğuz Sunay1, Ali Ö. Ercan1. Controlling a Software-
Defined Network via Distributed Controllers. In NEM submit 2012
arXiv:1401.7651(2012).

[11] B. Heller, Rob Sherwood, and Nick McKeown. The controller placement
problem. In Proc. 1st Workshop on Hot Topics in Software Defined
Networking (HotSDN 2012), pages 7-12, New York, 2012. ACM Press.

[12] Guang Yao, Jun Bi, Yuliang Li, and Luyi Guo. On the Capacitated
Controller Placement Problem in Software Defined Networks. IEEE
COMMUNICATIONS LETTERS, 2014.

[13] Md. Faizul Bari, Arup Raton Roy, Shihabur Rahman Chowdhury, Qi
Zhang, Mohamed Faten Zhani, Reaz Ahmed, and Raouf Boutaba. Dynamic
Controller Provisioning in Software Defined Networks. In CNSM, pp.18-
25. 2013.

[14] M. Chen, S. Liew, Z. Shao, and C. Kai, “Markov Approximation for
Combinatorial Network Optimization”, Proceedings of IEEE INFOCOM
2010, San Diego, CA, US, March, 2010.

[15] A. Tootoonchian, S. Gorbunov, and Y. Ganjali, et al., “On controller
performance in software-defined networks,” in Proc. of HotICE, 2012.

[16] Y. Feng, B. Li, and B. Li, “Bargaining towards maximized resource
utilization in video streaming datacenters,” in Proc. of INFOCOM, 2012.

[17] P. Laarhoven and E. Aarts, Simulated annealing: theory and applications.
Springer, 1987.

[18] S. Rajagopalan and D. Shah, “Distributed algorithm and reversible
network,” in Proceedings of CISS, 2008.

[19] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. Poor, “Towards Utility
optimal Random Access Without Message Passing,” Special issue in Wiley
Journal of Wireless Communications and Mobile Computing, Dec, 2009.

[20] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proceedings of HotNets
2010, pages 19:1–19:6.

[21] DHA-CON-TR-01, http://pan.baidu.com/s/1o67ItiM

[22] http://www.topology-zoo.org/files/Chinanet.gml

[23] http://www.topology-zoo.org/files/Cernet.gml

[24] http://iperf.sourceforge.net.

[25] S. Gebert, R. Pries, D. Schlosser, and K. Heck. “Internet access traffic
measurement and analysis”, In Traffic Monitoring and Analysis, volume
7189 of LNCS, pages 29–42. 2012.

[26] David Erickson, "The Beacon OpenFlow Controller," In Proc. 1st
Workshop on Hot Topics in Software Defined Networking (HotSDN 2013),
pages 13-18, Hong Kong, 2013. ACM Press.

[27] ROB SHERWOOD AND KOK-KIONG YAP. Cbench: an OpenFlow
Controller Benchmarker. http://www.openflow.org/wk/index.php/Oflops.

[28] Albert Greenberg, James R. Hamilton, Navendu Jain, et al., “VL2: A
Scalable and Flexible Data Center Network,” in Proc. of SIGCOMM’09,
Pages 51-62, Barcelona. Spain. Aug. 2009, ACM Press.

