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Abstract—Adaptive resource allocation arises naturally as a
technique to optimize resource utilization in communication
networks with scarce resources under dynamic conditions. One
prominent example is cellular communication where service
providers seek to utilize the costly resources in the most effective
way. In this work, we investigate an uplink resource allocation
scheme that takes into account the buffer occupation at the
transmitter to retain a given level of quality of service (QoS).
First, we regard exact results for the class of Poisson traffic
where we investigate the sensitivity of the resource adaptation and
QoS level to the actuating variables. We show relevant resource
savings in comparison with a static allocation. Further, we regard
a queueing setting with general random arrival and service
processes. In particular, we consider the service of wireless fading
channels. We show two different resource adaptation mechanisms
that depend on the strictness of different assumptions. Finally, we
present simulation results that show substantial resource savings
using the queue-aware scheduling scheme, where we provide
insight on the implementation and operation of such an adaptive
system.

I. INTRODUCTION

Many components of communication networks are subject
to variability. This includes the usage behavior of communi-
cating parties, as well as, the service provided by the network.
While the user behavior translates to a variable resource
demand, the provisioned service is constricted by expenditure
and the technological state-of-the-art. This inherent variability
is the raison d’être for many optimizations found in commu-
nication networks. An intrinsic difficulty in cellular wireless
communication is the fading nature of the channel which
causes the transmission rate to vary over time. Hence, to better
utilize the wireless channel, respectively, to provide quality of
service guarantees in cellular communication networks, a base
station has to estimate the statistical properties of the wireless
fading channel. For example in LTE this estimate is captured
in the channel quality indicator (CQI) [1].

In addition to channel quality estimates, current LTE sys-
tems offer a valuable source of information, i.e., buffer status
reports (BSR) [2], that can be exploited for adaptive resource
allocation [3]. In Fig. 1a) we depict a user equipment (UE)
that transmits BSRs in uplink direction to signal the buffer
occupancy to the base station. The base station takes the buffer
occupancy into account when updating the resource allocation
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Fig. 1.a) Example of queue-aware scheduling in cellular networks. The base
station decides on the amount of uplink service S depicted as a varying
number of resource blocks (gray) granted to a UE depending on its transmit
buffer filling B. The scheduling epoch is denoted ∆.
b) Abstraction of queue-aware scheduling with a single user as a queueing
system with an adaptive mean service rate µ(t). The service rate is adjusted
at scheduling epochs of length ∆, to maintain a small queue.

to the UE. This is illustrated in Fig. 1a) as a variable amount
of (shaded) time-frequency resource blocks that are granted to
the UE. In addition, Fig. 1 comprises the scheduling epoch ∆,
i.e., the recurrence period of the resource scheduling operation.

Promising applications of adaptive resource allocation in-
clude jitter control, substantial radio resource savings, as well
as, battery savings on the UE side. Jitter, i.e., high delay
variations, may arise in wireless communications due to the
fading characteristics of the channel. It is known that jitter
has a strong adverse influence on the quality of experience.
Adaptive resource allocation can mitigate the impact of the
channel fading to reduce jitter at the receiver. Further, adaptive
resource control may achieve substantial resource savings
compared to static resource grants due to a more effective
use of available information.

Despite the expected benefits and the recent significant
progress in the analysis of QoS metrics, few strategies are de-
rived that use analytical models to consider adaptive resource
optimization under QoS constraints. In this work we provide
an analytical approach to adaptive resource allocation based
on buffer occupancy. We present a queue-aware scheduling
scheme that adapts the amount of resources provided to a
single UE under probabilistic QoS constraints.

Consider the scenario in Fig. 1a) where traffic denoted A
arrives at a UE transmit buffer. The UE regularly signals BSRs
that include the transmit buffer filling B to the base station,
which in turn seeks to adapt the service S, i.e., the uplinkISBN 978-3-901882-68-5 c© 2015 IFIP



bandwidth resource grants, based on the knowledge of BSR
and CQI. First, we regard the abstraction in Fig. 1b) with a
queuing system fed by Poisson traffic arrivals of mean rate
λ and a time-varying mean service rate µ(t). We present a
study of exact results for Poisson traffic that clearly shows
resource savings when queue-aware scheduling is deployed.
One desired property of adaptive resource allocation is ro-
bustness with respect to variations of the actuating variables.
Hence, we present a sensitivity study that shows the impact
of actuating variables, as well as, the system robustness with
respect to misadaptation. In a practical scenario this would,
for example, capture imperfect CQI. For general arrival and
service processes we present an analytical framework to im-
plement queue-aware scheduling that is based on the stochastic
network calculus. We distinguish two regimes for the adaptive
system that we denote frequent and infrequent adaptation.
Consequently, we provide a detailed analysis of two resource
adaptation schemes showing evaluation results and insight on
the implementation and operation of such systems. We include
a compact investigation of the adaptive system in multi-user
scenarios. The main contributions of this paper are:
• For the class of Poisson processes, we present exact

results to quantify best-case resource savings, i.e., given
full knowledge of the traffic and service statistics.

• Our model reveals an important relation of the average
traffic arrival rate, the scheduling epoch length, and the
target queue constraint. We identify two regimes, one
where adaptive scheduling is effective and one where it is
not. The result is significant as it shows in a mathematical,
exact framework that there are relevant cases where
an adaptive system cannot benefit from the additional
information provided by BSRs.

• Our results show that the adaptive system can stabilize
the queue even in case of a systematic service rate
misadaptation. This robustness is important, since in
practice an adaptive system can only estimate the number
of radio resource blocks that are required to achieve a
target service rate.

• Our mathematical treatment of queue-aware scheduling is
applicable to a broad class of arrival and service processes
known in the stochastic network calculus.

The rest of this paper is structured as follows. In Sect. II we
discuss related work on the analysis of adaptive resource allo-
cation techniques and queueing systems with variable service
rates. Sect. III presents a study of exact results for Poisson
traffic. In Sect. IV we introduce a model for wireless systems
and provide an introduction to the analytical framework. Sect.
V-A and V-B present a description of the implementation of
frequent and infrequent adaptation including evaluation results
and insight on the implementation. In Sect. V-C we include
simulation results for multi-user scenarios under different
scheduling policies. We conclude the paper in Sect. VI.

II. RELATED WORK

We find that studies related to this work were mainly
conducted in the context of i) the optimization of service

policies for queueing systems and ii) the optimization of
power and rate control in cellular networks. First, we will
review works with the first objective i) showing the main
difference to the work at hand.

The authors of [4]–[6] consider a dynamic control approach
(speed scaling) of the service rate of M |M |1, respectively
M |GI|1 processor sharing queues, that depends on the queue
state at each time instant. The service rate is optimized with
respect to service costs that are defined as a function of the
queue length at each time point, as well as, the instantaneous
service rate. The result is a service policy, i.e., an optimization
for entire service sample paths with respect to a given criterion.
For example, the authors of [4] provide recursive algorithms to
minimize the average service costs. General tradeoffs in the
design of speed scaling controllers for queues are shown in
[7], e.g., combining the response time with job energy con-
sumption. The authors show that for certain schedulers only
two of the three attributes “optimality, fairness and robustness”
can be achieved. The work in [8] studies multi-class M |G|1
queues with variable service rates. The authors show schedul-
ing policies that minimize service costs associated with the
instantaneous service through convex functions. The authors
of [9] consider an M |M |1 queue with time varying externally
Markov modulated server speed. Although not explicitly given,
the authors show a method to numerically obtain the average
waiting time. In [10] the authors straightforwardly employ
the Pollaczek-Khinchine formula in conjunction with a power
model, that is known for networks on-chip to minimize the
average power consumption in an M |G|1 queue.

The work at hand differs basically from the related work
above in the analysis of an epoch based adaptation scheme
that takes general arrival and service processes into account.
We consider a probabilistic QoS constraint as optimization
metric in contrast to service cost functions.

The second category of related works comprises rate and
power optimization in cellular networks such as [11]–[14].
Typically, the criterion for optimization is the average queue-
ing delay. In [11] the authors regard a transmitter with variable
rate that serves a queue filled at a constant rate. The authors
perform optimizations over power and rate policies for a single
user scenario to minimize the average delay under power con-
straints. The technique used is dynamic programming which
provides numerical solutions for a predefined cost function
that consists of a weighted sum of the buffer length and the
transmission power. Using a similar approach the authors of
[13] provide an optimal service policy for a finite service
sample path length. They assume a channel of Gilbert-Elliot
type and a linear relationship of transmission power and
rate. The work in [14] considers a scenario with arrivals and
service processes given by Markov chains where data arriving
from higher layers is buffered until transmission. The authors
provide results on regulating the user transmission rate and
power to control the average transmission power and average
delay using concepts from Markov decision theory. Further,
BSRs, respectively, the transmit queue length, have been used
for scheduling optimization in [3], [15], [16]. In [3] BSRs
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Fig. 2. Required service rate µ to satisfy the bound (1) depending on the initial queue state k at the beginning of the scheduling epoch. Influence of parameters:
(a) bound on the queue length at the end of the epoch qmax, (b) arrival rate λ, (c) violation probability ε, (d) scheduling epoch length ∆. Baseline (blue
curve): qmax = 10, λ = 10, ε = 10−2,∆ = 1.

are used to improve packet drop rates in OFDM downlink
transmissions. In [15] the authors model the polling service
of an IEEE 802.16 network using a Markov model to show
the impact of queue length aware rate and bandwidth control
on the average delay. In [16] BSRs are used in a scheduling
metric to distribute physical resource blocks over different UEs
at relay nodes.

Key differences to the related work above are that we
regard an online scheme that enables adapting the parameters
for a scheduling epoch during the runtime of the system. In
contrast to objectives in the related work such as minimizing
the average delay or a weighted sum of buffer length and
the transmission power, we adapt the resource allocation with
respect to the tail of the queue size distribution. This provides
a natural relation of the provided quality of service during a
scheduling epoch to the adaptively allocated resources.

III. EXACT RESULTS FOR POISSON TRAFFIC:
TRADEOFFS AND SENSITIVITY

In this section, we develop a model of queue-aware schedul-
ing for Poisson traffic. We use this basic model to provide
exact results that yield relevant insights. We will relax the
assumptions in Sect. IV where we consider general arrival
and service processes.

A. Epoch-based Resource Allocation

Next, we use the model of a single queue to express the
adaptation of the mean service rate µ(t) at multiples of the
scheduling epoch length ∆ to provide a probabilistic bound
on the queue length at the end of the scheduling epoch.
The service rate µ(t) is chosen for a scheduling epoch ∆
depending on the initial queue length at the start of the epoch,
as well as, the arrival rate λ. With respect to the wireless
application scenario in Fig. 1, the adaptive system models a
base station that decides on the amount of resources it will
provide to a UE during a scheduling epoch given knowledge
of the UE transmit buffer filling and its average arrival rate.
In the following, we investigate the tradeoffs and fundamental
limits of such a system and conduct a sensitivity analysis
with respect to misadaptation. We will show that queue-
aware scheduling achieves target QoS constraints and provides
significant resource savings.

The service rate µ(t) is adjusted based on the queue state k
at the beginning of the epoch. During the epoch ∆ the average
service rate is fixed such that the probability that the queue is
in a state higher than qmax after ∆ is bounded by ε, i.e.,

∞∑
l=qmax+1

pkl(∆) ≤ ε (1)

with pkl(∆) being the probability that the queuing system is
in state l at time ∆ after initially being in state k. The transient
behavior of the M |M |1 queuing system has been investigated
in [17], [18] leading to the closed form solution

pkl(∆) = e−(λ+µ)∆
[
ρ

l−k
2 Il−k(z∆) + ρ

l−k−1
2 Il+k+1(z∆)

+ (1− ρ)ρl
∞∑

j=l+k+2

ρ−
j
2 Ij(z∆)

]
(2)

with utilization ρ = λ/µ, z = 2µ
√
ρ and the modified Bessel

function of the first kind I(·)(·). We denote this system as the
adaptive system, where we compute µ for the next epoch from
(2) given the queue size at the beginning of the epoch is k.
External parameters are qmax, λ, ∆, ε.

First, we illustrate the operation of the adaptive system.
Figure 2 shows the required service rate µ given the queue
state k at the beginning of the scheduling epoch. This adaptive
system may be viewed as a controller with input parameter
k and an actuating variable µ. Next we evaluate how the
parameters of the adaptive system, qmax, λ, ε and ∆, influence
the adaptation of the service rate µ. Fig. 2(a) - 2(c) show
the required service rate, that increases with the initial state
k. It also shows the increase of the required service rate µ
with tighter constraints, i.e., with decreasing qmax, increasing
arrival rate λ or decreasing violation probability ε from (1).
Note that the curves are equidistant with linear change in qmax

and λ, respectively, with logscale change in ε. Also note the
nonlinear behavior for boundary scenarios, i.e., small qmax

and small initial k. Fig. 2(d) shows the impact of the length
of the epoch ∆ on the required service rate. Smaller ∆ cause
a stronger adjustment.

B. Improvement on the Static System
Next, we compare the adaptive system to a static M |M |1

system with identical arrival rate λ and a fixed equivalent
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Fig. 3. a) The regimes of adaptation: Different qmax ∈ {5, 10, 15} with
corresponding static equivalents. The adaptive M |M |1 system outperforms
the equivalent system with constant µ. b) Resource saving with adaptive
allocation. The utilization increases with qmax as the adaptive M |M |1 system
makes efficient use of the variations of the service rate µ. In comparison we
show the utilization for static scenarios that attain the same probabilistic bound
on the queue length. The adaptive system runs at a higher utilization than the
comparable static system and hence saves resources.

service rate µ = E[µ(t)]. We denote this system the static
system and show results from discrete event simulations that
compare its performance to the adaptive system. Figures 3
and 4 use the basic parameter set λ = 10, ∆ = 1, ε = 10−2

and for the simulation results we considered 104 epochs. First,
consider the case qmax = 10 in Fig. 3(a). The figure shows the
CCDF of the queue length at multiples of the scheduling epoch
∆ for the adaptive and for the static system. The adaptive
system attains the QoS requirement, i.e., the queue length
exceeds qmax = 10 at most with probability ε = 10−2, and
outperforms the static system in terms of the queue length
distribution. The reason behind this performance difference is
that the adaptive system reduces the service rate for epochs
with small initial queue fillings (and vice versa for epochs
with large initial queue fillings). Hence, the adaptive system
continuously minimizes idle times where resources would be
effectively wasted. A downside is that data may wait longer
in the queue if the queue length is much smaller than qmax.
The adaptive system allocates only low µ in case of a small
initial queue length, e.g., µ = 0 for k ≤ 2 and qmax = 20 (see
Fig. 2(a)). Data arriving during such a scheduling epoch wait
longer in the queue than in case of the static system.

Next, we inspect the utilization of the adaptive system
defined as λ/µ, i.e., the arrival rate divided by the average
service rate of the adaptive system. Figure 3(b) shows that the
adaptive system runs at a higher utilization with increasing
qmax. We find that a key relation is the ratio of λ∆ to
qmax for a given ε, i.e., the average amount of arrivals in
one epoch vs. the bound on the queue length at the end of
the epoch. The figure shows that for increasing qmax with
respect to λ∆ the adaptive system may run under very high
utilization, while still maintaining the probabilistic bound (1).
The figure also depicts the required utilizations for the static
system to provide the same probabilistic bound on the queue
distribution. The difference in Fig. 3(b) reveals the substantial
resource saving provided by the adaptive system. Observe
that the difference between the adaptive system and the static
system is apparent for qmax � λ∆. The adaptive system is
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Fig. 4. a) Robustness with respect to service rate misadaptation. The provided
service rate at each scheduling epoch is a scaled version νµ of the required
service µ. For ν 6= 1 the CCDF is shifted but the queue does not grow
unbounded. b) Robustness with respect to service rate limitation. The provided
service rate is bounded by µmax. The CCDF is shifted with respect to the
unconstrained scenario.

aware of the queue length at the beginning of the scheduling
epoch, yet, the actual arrivals are unknown in advance and may
vary significantly. The information on the initial queue length
becomes less helpful if the unknown, i.e., the traffic amount
in ∆, predominates, i.e., if qmax � λ∆. This is also reflected
by the CCDFs for qmax = {5, 15} in Fig. 3(a). Hence, the
adaptive system is favorable for qmax � λ∆.

C. Robustness

One desired property of such an adaptive system is ro-
bustness with respect to misadaptation, which we define as
a queue that does not grow unbounded if the actual service
rate is only a scaled version νµ of the required service rate µ.
This robustness property is important in practice. For example,
consider the cellular system from Fig. 1, where the base station
uses CQI to estimate the channel condition. It is desirable that
an adaptive resource allocation scheme is robust with respect
to deviations of these estimates from actual channel conditions.
For a static system an allocation of νµ could lead to instability,
hence, to an unbounded queue. Figure 4(a) shows the impact
of misadaptation for different values of ν and qmax = 10. We
observe that the queue length distribution is shifted for ν 6= 1
and that the probabilistic bound is violated as expected for
ν < 1. However, the queue length does not grow unbounded.

A second requirement of practical implementations is that
the adaptive service rate µ(t) is upper bounded by some finite
µmax. We simulate the operation of the adaptive system under
service limitation and show the results in Fig. 4(b). Note that
the queue length distribution is shifted away with respect to
the unconstrained scenario with stricter µmax.

In this section, we provided a proof of concept for queue-
aware scheduling for the example of Poisson traffic. The
adaptive system retains a given probabilistic bound on the
queue length while it may substantially save resources. Inter-
esting though are constellations, which we showed, that hardly
comprise resource savings. This reveals that the operation of
queue-aware scheduling is non-trivial and requires a careful
analysis. The question of how to exploit the potential resource
savings in a wireless system that deviates from the Poisson
assumption is a difficult challenge. In the next sections we will



relax the Poisson traffic assumption and present implementa-
tions of queue-aware scheduling for wireless fading channels
and general traffic arrivals.

IV. MODELING WIRELESS SYSTEMS

Next, we will formulate a basic queueing model from
the network calculus to include general arrival and service
processes. We will adopt a basic channel model for wireless
communication systems that is known from [19].

A. Queueing Model

We apply concepts of the framework of the stochastic
network calculus [20]–[24], and consider a discrete time,
lossless and work-conserving queueing system. Cumulative
traffic arrivals to the system are denoted A(τ, t), i.e., the
cumulative amount of bits arriving in the time interval (τ, t]
for t ≥ τ ≥ 0. Hence, A(t, t) = 0 for all t ≥ 0 and there
are no arrivals for t ≤ 0. By convention we use A(t) to
denote the arrivals between (0, t], where A(t) is a non-negative
non-decreasing random process that passes through the origin.
Further, we use λ to denote the average arrival rate, i.e.,
λ = limt→∞A(t)/t. The cumulative departures of the queuing
system up to time t denoted D(t) are related to the arrivals
through the service provided by the system. The queuing
model considers the service in (τ, t] as a random process
S(τ, t) which is non-increasing in τ and non-decreasing in
t. Further, note that S(t, t) = 0 for all t ≥ 0.

For a work-conserving system with a time-varying service
S(τ, t) it holds for all t ≥ τ ≥ 0 where τ, t fall into the
same busy period that D(t) ≥ D(τ) +S(τ, t) [25], [26]. This
is referred to as strict service. Systems offering strict service
also provide a so-called adaptive service curve [22], [26] such
that for all t ≥ τ ≥ 0 it holds that

D(t) ≥ min

[
D(τ)+S(τ, t), inf

u∈[τ,t]
{A(u)+S(u, t)}

]
. (3)

The stochastic evaluation of queueing systems with respect to
performance metrics, e.g., backlog and delay, frequently uses
non-random lower bounding functions S(t− τ) of the service
process S(τ, t) defined for all t ≥ τ ≥ 0 as

P [S(τ, t) ≥ S(t− τ)] ≥ 1− εp, (4)

with a violation probability εp. For systems providing adaptive
service (3) we require, however, a bound on S(τ, t) that is
valid for an entire interval to derive a probabilistic extension
of (3) as defined in [22] for t ≥ τ ≥ 0 as

P

[
D(t) ≥ min

[
D(τ) + S(t− τ),

inf
u∈[τ,t]

{A(u) + S(t− u)}
]]
≥ 1− εs. (5)

A bound on S(τ, t) for an entire interval is given as

P [S(u, t) ≥ S(t− u), ∀u ∈ [τ, t]] ≥ 1− εs (6)

for t ≥ τ ≥ 0. It is known as an ε-effective service curve
in [22], [27]. For a function S(t) satisfying (4) with εp we

find that it satisfies (6) with εs = (t − τ)εp. This is directly
obtained by using Boole’s inequality as

P [∃u ∈ [τ, t] : S(u, t) < S(t− u)]

≤
t−1∑
u=τ

P [S(u, t) < S(t− u)] =
t−1∑
u=τ

εp = (t− τ)εp = εs.

In the following, we review a known model of the Rayleigh
fading channel including a corresponding bound in the sense
of (6) on its service process S(τ, t).

B. Wireless Channel Model

We adopt the basic concept of a wireless transmission over
a fading channel from [19]. We estimate the capacity in one
time slot in a block fading model from the Shannon capacity
formula as C = W log2(1 + γi) with channel bandwidth
W and γi denoting the signal-to-noise ratio (SNR) in the
ith block. We consider a time slotted service process with
a slot length that is congruent with the block length in the
block fading model. The service process is composed of iid
increments1 ci given as ci = Wδ

ln 2 ln(1 + γi), with fixed time
slot length δ and random γi. Here, ci presents the number
of bits that can be served in the ith slot. For convenience
we will use the shorthand notation β = Wδ

ln 2 . Considering a
Rayleigh fading channel, it follows that γi is exponentially
distributed with parameter η and average SNR E[γ] = 1/η.
The service process S(τ, t) is given as S(τ, t) =

∑t
i=τ+1 ci,

for 0 ≤ τ < t. Given the service process S(τ, t) for a Rayleigh
fading channel with SNR parameter 1/η, the function

S(t) =
1

θ

(
ln(εp)−t

[
η+θβ ln(η)+ln (Γ(1− θβ, η))

])
(7)

satisfies the condition (4) with violation probability εp. Here,
θ > 0 is a free parameter that can be optimized and Γ(·, ·)
denotes the incomplete gamma function. The derivation of (7)
is given as

P [S(τ, t) < S(t− τ)] ≤ eθS(t−τ)MS(−θ, t− τ)

= eθS(t−τ) (Mci(−θ))
t−τ

:= εp, (8)

where we used Chernoff’s lower bound with the Laplace
transform MS(−θ, t − τ) of S(τ, t) for θ ≥ 0. Then we
used the iid property of the increments of S(τ, t) and equated
the expression to εp. Using the Laplace transform of one
increment Mci(−θ) = eηηθβΓ(1− θβ, η) that is known from
[28] and solving for S(t) yields the result (7).

In the next section we will use the channel and queueing
model to implement two queue-aware scheduling schemes.

V. IMPLEMENTATION OF QUEUE-AWARE SCHEDULING

In this section we will show two implementations of queue-
aware scheduling that we denote frequent and infrequent
adaptation, respectively. We will draw conclusions on the
requirements and operation of such adaptive systems. In
addition, we will present a study of deploying the adaptive

1The assumption is reasonable if the time slot duration is large enough
compared to the channel coherence time [19].
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Fig. 5. Performance of frequent adaptation: a) + b) The adaptive system uses either a backlog constraint or a combined backlog and delay constraint to grant
resources to the transmitter in every scheduling epoch. c) Amount of resource blocks β required to retain a given backlog bound bmax and ε = 10−2. The
static system has a fixed β. For the adaptive system we plot the average β. The adaptive system saves resources by running at a high utilization.

system in a multi-user cellular network showing performance
results for different types of schedulers.

A. Frequent Adaptation

First, we present queue-aware scheduling with frequent
adaptation. Here, we assume a small epoch length ∆ in the
sense of λ∆� bmax, where bmax is the desired backlog bound
at the end of the scheduling epoch that may be exceeded at
most with probability ε. The system is the Rayleigh fading
channel as described in Sect. IV.

Generally, the backlog of a queueing system at time t
is defined as B(t) = A(t) − D(t). In the following, we
will denote the start of the current epoch by τ if not stated
otherwise. Given the epoch (τ, τ+∆] with arrivals A(τ, τ+∆)
and initial backlog B(τ) we calculate the required resources,
e.g., bandwidth, such that P [B(τ + ∆) ≤ bmax] ≥ 1 − ε is
attained. Taking the definition of backlog, it follows directly
for systems offering strict service D(t) ≥ D(τ) + S(τ, t) for
t ≥ τ ≥ 0 where τ, t fall into the same busy period that

B(t) ≤ B(τ) +A(τ, t)− S(τ, t),

i.e, a basic relation of the backlog at time τ and at time t
given the arrivals A(τ, t) and the service S(τ, t). Let τ be the
beginning of the epoch and t = τ + ∆ be the end of it. We
substitute S(∆) from (4) for S(τ, τ + ∆) to find

P
[
B(τ + ∆) ≤ B(τ) +A(τ, τ + ∆)− S(∆)

]
≥ 1− ε,

with ε being the violation probability from (4). Given the non-
trivial case B(τ) + A(τ, τ + ∆) > bmax, we equate B(τ) +
A(τ, τ + ∆)− S(∆) with bmax and solve for

S(∆) = B(τ) +A(τ, τ + ∆)− bmax (9)

that is the required service to ensure bmax with violation
probability ε. Finally, we substitute the service characterization
of the Rayleigh fading channel (7) for S(∆) in (9) to compute
the required resource allocation β given average SNR 1/η.

A refinement of the implementation above is to include an
additional statistical delay constraint. As a secondary effect,
such a delay constraint ensures that small backlogs which

may not endanger the backlog bound bmax will eventually be
cleared. Overall the system allocates the service to fulfill both
of the following conditions:

§1 the backlog at the end of the epoch is statistically
bounded by bmax, i.e., P [B(τ + ∆) ≤ bmax] ≥ 1−ε

§2 the backlog at the beginning of the scheduling epoch
is cleared within a given delay bound d = v∆ with
v ≥ 1.

In a practical implementation of a cellular uplink transmis-
sion the base station possesses the required information, i.e.,
BSR and the received data amounts D(t), to implement the
above rules for uplink resource allocation. Using the backlog
definition, the base station is able to infer arrivals within any
epoch A(τ, τ+∆) for all epoch starts τ using B(τ), B(τ+∆)
together with D(τ, τ + ∆) to enforce §2.

As the base station cannot know the exact arrivals a priori,
we make use of the condition λ∆ � bmax that permits
neglecting the arrivals A(τ, τ + ∆) in (9) such that we can
approximate the required service during ∆. In this case, the
obtained bound for B(τ + ∆) would comprise an error of
roughly the ε-quantile Aε of A(τ, τ + ∆). We denote this
queue-aware scheduling without knowledge of the arrivals as
“blind adaptation.” It shows how the lack of arrival infor-
mation impacts the system performance. Given information
on A(τ, τ + ∆), e.g., a bound on its distribution, or given
Aε, the adaptive system can compute a more precise estimate
of the service required in the next scheduling epoch. Similar
considerations are made in Sect. V-B.

Next, we consider an implementation of our frequent adap-
tation scheme (§1 and §2) in a baseline scenario of an LTE
cellular system with 10 MHz channel bandwidth comprising
50 available resource blocks each of 180 kHz width and
δ = 0.5 ms length [1], [2]. We use the Rayleigh wireless
channel model with average SNR of 1/η = 3 dB. The base
station receives BSRs B(n∆) with n ∈ N and adapts β which
is the bandwidth (amount of resource blocks) granted to the
UE for the upcoming scheduling epoch n + 1. Using CQI,
the base station has channel state information that permits
estimating the SNR.



For a numerical evaluation, we consider ∆ = 10 slots and
memoryless arrivals. We normalized the system parameters
such that E[ci] = 1.33 with β = 1 and average arrival rate
of λ = 0.65. The backlog bound is bmax = 50 and the
delay bound for the combined algorithm is d = 5∆, both
with violation probability ε = 10−2. Fig. 5 shows backlog
and delay CCDFs with a sole backlog constraint §1 compared
to the backlog and delay constraint combination §1 and §2.
The simulation length is 105 slots. Observe that due to “blind
adaptation” the CCDF for the system using only §1 deviates
at ε = 10−2 by roughly the ε-quantile of A(τ, τ + ∆),
i.e., Aε = 25. Fig. 5(b) shows larger delays if only using
§1 compared to the combination of §1 and §2. Adding a
delay constraint substantially improves the performance. The
additional constraint leads to increased resource grants as the
base station complies with the tighter condition of §1 and §2.

Fig. 5(c) shows the resource savings of queue-aware
scheduling given a fixed QoS constraint, i.e., bmax with
ε = 10−2. First, we run a static version of the queue-aware
scheduling system to find the amount of fixed resource blocks
β that attains the QoS constraint, i.e. bmax at ε (dashed line).
We compare the static system to the adaptive one given the
same QoS constraint, i.e., bmax and ε. We plot the average
amount of resource blocks granted (average β) for different
bmax (solid line). The adaptive system is efficient as it provides
substantial resource savings (high utilizations) for a wide range
of QoS constraints.

B. Infrequent Adaptation

In this section we regard large scheduling epochs ∆, in
the sense that λ∆ is in the order of bmax. Here, the amount
of arrivals during the epoch ∆ is non-negligible. Hence, we
use bounds on the arrivals together with (6) to obtain a
probabilistic bound on the backlog at the end of the epoch.

First, we use the formulation (5) together with an ε-effective
service curve (6) that is violated with probability εs and some
algebraic manipulations to express the backlog at the end of a
scheduling epoch B(τ+∆) given the backlog at the beginning
of the scheduling epoch B(τ) as

P

[
B(τ + ∆) ≤ max

[
B(τ) +A(τ, τ + ∆)− S(∆),

sup
u∈[τ,τ+∆]

{A(u, τ + ∆)− S(τ + ∆− u)}
]]
≥ 1− εs.

(10)

Equipped with (10) we implement a queue-aware scheduling
that regulates S(t) to ensure that

P [B(τ + ∆) ≤ bmax] ≥ 1− εs. (11)

Equation (10) establishes the following requirements on S(t)
for the scheduling epoch:

S(∆) ≥ B(τ) +A(τ, τ + ∆)− bmax, and (12)
S(τ +∆−u) ≥ A(u, τ + ∆)− bmax, ∀u∈ [τ, τ + ∆]. (13)

The adaptive system takes the following input: i) the queue
size at the beginning of the scheduling epoch B(τ), ii) the

target backlog bound bmax with violation probability εs, and
iii) the arrivals between τ and τ + ∆. In the cellular scenario
B(τ) is available through BSRs. The arrivals of the upcoming
epoch are, however, not known a priori. Since in case of
infrequent adaptation the arrivals cannot be neglected, we use
upper envelope functions E(t) as an estimate. These arrival
envelopes can be either deterministic [26], i.e., A(u, τ+∆) ≤
E(τ + ∆ − u) for all u ∈ [τ, τ + ∆] or probabilistic of the
form [20], [21], [29]

P

[
sup

u∈[τ,τ+∆]

{A(u, τ + ∆)− E(τ + ∆− u)} > 0

]
≤ ε

(14)
with a violation probability ε. Arrival envelopes can be con-
structed for a wide range of traffic models [20], [23], they can
be computed from traffic traces, or they can be enforced, e.g.,
by a traffic shaper. We substitute the arrivals in (12), and (13)
by the envelope E(t) to obtain valid requirements on S. In
case we use a probabilistic bound on the arrivals as in (14)
we can upper bound the violation probability in (10) by the
sum of εs of the ε-effective service curve (6) and ε of (14).

In the following, we show the calculation for an LTE
cellular system assuming a Rayleigh wireless channel model
as given in Sect. IV. The formulation (7), which satisfies (4),
has two parameters, the average SNR 1/η and the granted
bandwidth β. We consider an adaptive system that manipulates
the bandwidth grants β to retain the backlog bound (11). A
direct extension based on adaptive power regulation through η
is possible, but not considered here for reasons of space. For
evaluation, we assume leaky bucket constrained arrivals with
known envelope E(t) = σ + %t. Given bmax and the epoch
∆ we fix S(t) = %[t − ζ]+ as a latency-rate function with
latency term ζ = bmax−σ

% , where [x]+ denotes max{x, 0}. The
latency-rate shape of S(t) is chosen in congruence with the
shape of E(t) such that the vertical deviation between both
is constant and equal to bmax. The rationale is that we are
looking for the minimum resource allocation that retains the
specified QoS bound. First, we start with the condition (13).
We calculate (6) to find β for a given violation probability as

P [∃u ∈ [τ, τ + ∆] : S(u, τ + ∆) < S(τ + ∆− u)]

≤
τ+∆−ζ−1∑

u=τ

P [S(u, τ + ∆) < S(τ + ∆− u)]

≤
∆−ζ−1∑
u=0

inf
θ>0
{eθS(∆−u)MS(−θ,∆− u)}

≤
∆∑

x=ζ+1

inf
θ>0
{eθ%xMci(−θ)x}

≤
∆∑

x=ζ+1

inf
θ>0
{e(θ%+η)xηθβxΓ(1− θβ, η)x} = ε′s. (15)

Here, we followed the basic steps of the derivation of (6),
while adapting the expressions to the latency-rate service curve
shape. In the first step in (15) we applied Boole’s inequality
and restricted the sum as S(τ, t) is non-negative. In the second
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Fig. 6. Infrequent adaptation: The system retains the probabilistic backlog
bound.

step we applied Chernoff’s lower bound. Using a variable
transformation x = ∆ − u, the fact that S(t) is a latency
rate function, and the iid property of the service process we
arrive at the third line. In the last line we inserted the Laplace
transform of the service increments Mci(−θ) given in Sect.
IV-B. We can prove that a solution of (15) exists, however, β
cannot be expressed explicitly.

Next, we consider the condition on S(∆) that follows from
(12). We use an envelope formulation E(t) = B(τ)+σ+%t =
σ′′+%t set t = τ+∆ and calculate P [S(τ, τ + ∆) < S(∆)] ≤
ε′′p similar to (8). Then, we insert the latency rate function
S(∆) = %[t − ζ ′′]+ with ζ ′′ = bmax−σ′′

% and the Laplace
transform Mci(−θ) from Sect. IV-B to relate β to ε′′p . We
obtain a bound on the violation probability εs of the backlog
bound in (11) as the sum of ε′′p from above and ε′s from (15),
i.e., using the combination of the requirements (12) and (13).

In the following we present simulation results for queue-
aware scheduling with infrequent adaptation in an LTE sce-
nario as depicted in Fig. 1. The baseline scenario remains
unchanged with respect to Sect. V-A except for ∆ = 100 slots
and bmax = 65, i.e., λ∆ = bmax where λ = 0.65 as before
and the violation probability εs = 10−2. An arrival envelope
with parameters σ = 10 and % = 0.66 is enforced on Poisson
traffic with mean rate λ. We apply a numerical binary search
to find β that satisfies (15) for a given εs.

Fig. 6(a) shows the adaptive system successfully providing
the configured probabilistic bound on the backlog at the end of
the scheduling epoch. We observe in Fig. 6(b) a base level of
delays, here around 50 slots, after which the CCDF shows a
sharp bend. The intuition behind this is that the adaptation
algorithm saves resources by leaving a residual amount of
backlog not cleared if it does not threaten to violate the QoS
constraint. Observe that in Fig. 6(b) the delay variation (jitter)
is small with respect to the base level of delays.

The decision whether to use infrequent or frequent adapta-
tion strongly depends on the length of the scheduling epoch
∆ and the relation of bmax to the amount of traffic which
is expected in ∆. Given base stations that do not have any
information on the arrivals at the UE (except for the average
rate) the choice would be frequent adaptation. Given more
information on the arrivals, e.g., a probabilistic/deterministic
bound for the time span ∆, the base station can deploy the

more refined algorithm of infrequent adaptation over longer
scheduling epochs, which reduces signalling and can save
computational resources at the base station.

C. Multi-user Scheduling

We conclude this section with a concise evaluation of
queue-aware scheduling for a system serving multiple users
with overall resource constraints. We utilize the infrequent
adaptation algorithm with unchanged parameters as above.
For ease of exposition, we consider M homogeneous and
statistically independent UEs in a cell, each signalling BSRs
to the base station. The heterogeneous case follows at the
expense of additional notation. The base station deploys the
adaptive system to calculate the amount of resource blocks
βj , for j ∈ [1,M ], to assign to the jth UE in the current
scheduling epoch. Consider that the base station has a finite
overall amount of available resource blocks βs to distribute
in an epoch. Hence, the base station may deploy one of the
following three scheduling algorithms on top of the queue-
aware scheduling, i.e., i) deterministic (FDMA), ii) prior-
ity, and iii) proportional fair scheduling. The deterministic
scheduler i) divides the available resources βs equally over
M users, i.e., user j receives β̂j = min{βj , βs/M}. In
case of the priority scheduler ii) we regard M ordered
priority classes each with one user, where the user in class j
receives β̂j = min{βj , βs −

∑j−1
k=1 β̂k} resources. In the case

of proportional fair scheduling iii) we employed the same
resource distribution as for priority scheduling, however, we
reordered the priority list at the beginning of every scheduling
epoch based on a score that is calculated for each user j
similar to the definition in [30]: For the jth user the score is
given as Sj(τ, τ + ∆)/(Dj(τ)/τ), i.e., the amount of service
that user j expects in the scheduling epoch divided by the
average transmission rate of the user up to the beginning of
the scheduling epoch τ .

We consider a simulation of the multiuser system with the
following parameters: bmax = 65, ε = 10−2, ∆ = 100
slots, M = 10 users, and a simulation length of 105 slots.
Fig. 7 shows the performance of the multi-user system under
different utilizations. For the priority scheduler the CCDF of
the first priority user remains unchanged through all con-
sidered utilizations. Observe that for very high utilization
the priority scheduler starves low priority classes to provide
high priority classes with enough resources to attain the
QoS constraint. In case of proportional fair scheduling and
deterministic scheduling the resources are “fairly” distributed
such that either none or all UEs are provided with the QoS
constraint. The backlog CCDFs for all UEs are identical such
that we display only one for the proportional fair case and one
for the deterministic case. An interesting observation is that
the CCDF of the backlog for a single user scenario without
the overall resource constraint βs as displayed in Fig. 6(a)
matches the CCDF of the priority user #1 in Fig. 7. The
adaptive system shows strong performance providing the QoS
constraint to all UEs while running at utilizations of up to
0.9. The deterministic scheduler behaves similarly to the single
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Fig. 7. Multi-user scenario: Backlogs in the adaptive system under different
scheduling algorithms. Notable difference only at very high utilizations.

user case in Sect. V-B as the users’ uplinks can be regarded
as parallel independent systems. Yet, it relates through the
condition on β̂j to the study of fixed service rate constraints in
Sect. III. For the priority scheduler the system benefits from
statistical multiplexing effects when distributing the overall
available resources βs. In case of proportional fair scheduling
βs is evenly distributed such that either none or all UEs are
provided with the QoS constraint.

VI. CONCLUSIONS

In this work, we presented an adaptive resource allocation
scheme that provides probabilistic quality of service guaran-
tees based on transmit buffer occupation. Adaptive resource
allocation enables the optimization of the resource utilization
in communication networks under dynamic conditions. First,
we used exact formulae for the class of Poisson traffic to show
substantial resource savings under certain conditions compared
to static resource allocations. We also showed the robustness of
the adaptive system with respect to misadaptation and resource
limitation. Motivated by the exact results we provided a
general framework for implementing queue-aware scheduling
that takes as input general traffic arrival and service processes.
We considered a wireless channel model and described two
algorithms for adaptive resource allocation. Using the example
of a cellular network we presented simulation results that
show the performance gain with queue-aware scheduling.
The adaptive system saves resources, while retaining a given
QoS level. We showed a brief example of the performance
of the adaptive system in multi-user scenarios together with
insight and recommendations for the operation of queue-aware
scheduling.

REFERENCES

[1] C. Cox, An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G
Mobile Communications. Wiley, 2012.

[2] 3GPP specification TS 36.321, “Evolved Universal Terrestrial Radio Ac-
cess (E-UTRA); Medium Access Control (MAC) protocol specification,”
Mar. 2012, release 8, version 8.12.

[3] J. Huang and Z. Niu, “Buffer-Aware and Traffic-Dependent Packet
Scheduling in Wireless OFDM Networks,” in Proc. of IEEE WCNC,
Mar. 2007, pp. 1554–1558.

[4] J. M. George and J. M. Harrison, “Dynamic control of a queue with
adjustable service rate,” Oper. Res., vol. 49, no. 5, pp. 720–731, Sep.
2001.

[5] K. Adusumilli and J. Hasenbein, “Dynamic admission and service rate
control of a queue,” Queueing Systems, vol. 66, no. 2, pp. 131–154,
2010.

[6] A. Wierman, L. Andrew, and A. Tang, “Stochastic analysis of power-
aware scheduling,” in Proc. of Allerton Conference on Communication,
Control, and Computing, Sep. 2008, pp. 1278–1283.

[7] L. L. Andrew, M. Lin, and A. Wierman, “Optimality, fairness, and
robustness in speed scaling designs,” SIGMETRICS Perform. Eval. Rev.,
vol. 38, no. 1, pp. 37–48, Jun. 2010.

[8] C.-p. Li and M. J. Neely, “Delay and rate-optimal control in a multi-
class priority queue with adjustable service rates,” in Proc. of IEEE
INFOCOM, 2012, pp. 2976–2980.

[9] S. R. Mahabhashyam and N. Gautam, “On queues with markov modu-
lated service rates,” Queueing Syst. Theory Appl., vol. 51, no. 1-2, pp.
89–113, Oct. 2005.

[10] A. Bianco, M. Casu, P. Giaccone, and M. Ricca, “Joint delay and power
control in single-server queueing systems,” in Proc. of IEEE GreenCom,
Oct 2013, pp. 50–55.

[11] I. Bettesh and S. Shamai, “Optimal power and rate control for minimal
average delay: The single-user case,” IEEE Trans. Inform. Theory,
vol. 52, no. 9, pp. 4115–4141, Sep. 2006.

[12] E. Yeh and A. Cohen, “Throughput and delay optimal resource allo-
cation in multiaccess fading channels,” in Proc. of IEEE International
Symposium on Information Theory, Jun. 2003, pp. 245–245.

[13] B. E. Collins and R. L. Cruz, “Transmission policies for time varying
channels with average delay constraints,” in Proc. of Allerton Conference
on Communication, Control, and Computing, 1999, pp. 709–717.

[14] R. A. Berry and R. G. Gallager, “Communication over fading channels
with delay constraints,” IEEE Trans. Inform. Theory, vol. 48, no. 5, pp.
1135–1149, 2002.

[15] D. Niyato and E. Hossain, “Queue-aware uplink bandwidth allocation
and rate control for polling service in IEEE 802.16 broadband wireless
networks,” IEEE Trans. Mobile Computing, vol. 5, no. 6, pp. 668–679,
Jun. 2006.

[16] M. Mehta, S. Khakurel, and A. Karandikar, “Buffer-based channel
dependent UpLink scheduling in relay-assisted LTE networks,” in Proc.
of IEEE WCNC, Apr. 2012, pp. 1777–1781.

[17] L. Kleinrock, Queueing Systems, Volume 1: Theory. Wiley & Sons,
1975.

[18] J. Abate and W. Whitt, “Calculating time-dependent performance mea-
sures for the M/M/1 queue,” IEEE Trans. Communications, vol. 37,
no. 10, pp. 1102–1104, 1989.

[19] H. Al-Zubaidy, J. Liebeherr, and A. Burchard, “Network-layer per-
formance analysis of multihop fading channels,” IEEE/ACM Trans.
Networking, vol. PP, no. 99, Oct. 2014.

[20] F. Ciucu, A. Burchard, and J. Liebeherr, “Scaling properties of statistical
end-to-end bounds in the network calculus,” IEEE/ACM Trans. Network-
ing, vol. 14, no. 6, pp. 2300–2312, Jun. 2006.

[21] R. L. Cruz, “Quality of service management in Integrated Services
networks,” in Proc. of Semi-Annual Research Review, Center of Wireless
Communication, UCSD, Jun. 1996.

[22] A. Burchard, J. Liebeherr, and S. Patek, “A min-plus calculus for end-to-
end statistical service guarantees,” IEEE Trans. Inform. Theory, vol. 52,
no. 9, pp. 4105–4114, Aug. 2006.

[23] M. Fidler, “A survey of deterministic and stochastic service curve models
in the network calculus,” IEEE Communications Surveys and Tutorials,
vol. 12, no. 1, pp. 59–86, 2010.

[24] M. Fidler and A. Rizk, “A guide to the stochastic network calculus,” in
Proceedings of the 7th GI/ITG-Workshop MMBnet, Sep. 2013, pp. 1–11.

[25] C.-S. Chang, Performance Guarantees in Communication Networks.
Springer-Verlag, 2000.

[26] J.-Y. Le Boudec and P. Thiran, Network Calculus A Theory of Deter-
ministic Queuing Systems for the Internet, ser. LNCS. Springer-Verlag,
2001, no. 2050.
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[28] M. Fidler, R. Lübben, and N. Becker, “Capacity-Delay-Error-
Boundaries: A Composable Model of Sources and Systems,” IEEE
Trans. Wireless Communications, vol. 14, no. 3, pp. 1280–1294, Mar.
2015.

[29] O. Yaron and M. Sidi, “Performance and stability of communication
networks via robust exponential bounds,” IEEE/ACM Trans. Networking,
vol. 1, no. 3, pp. 372–385, Jun. 1993.

[30] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research society, pp. 237–252, 1998.


