Pragmatic Router FIB Caching

Kaustubh Gadkari*, M. Lawrence Weikum', Dan Massey* and Christos Papadopoulos*
*Department of Computer Science
Colorado State University
Email: {kaustubh, massey, christos}@cs.colostate.edu
TEmail: lawrencemq @ gmail.com

Abstract—Several recent studies have shown that router FIB
caching offers excellent hit rates with cache sizes that are an
order of magnitude smaller than the original forwarding table.
However, hit rate alone is not sufficient - other performance
metrics such as memory accesses, robustness to cache attacks,
queuing delays from cache misses etc., should be considered
before declaring FIB caching viable.

In this paper, we tackle several pragmatic questions about
FIB caching. We characterize cache performance in terms of
memory accesses and delay due to cache misses. We study cache
robustness to pollution attacks and show that an attacker must
sustain packet rates higher than the link capacity to evict the
most popular prefixes. We show that caching was robust, even
during a recent flare of NTP attacks. We carry out a longitudinal
study of cache hit rates over four years and show the hit rate
is unchanged over that duration. We characterize cache misses
to determine which services are impacted by FIB caching. We
conclude that FIB caching is viable by several metrics, not just
impressive hit rates.

I. INTRODUCTION

The growth of forwarding table (FIB) sizes, fueled by fac-
tors such as multi-homing, traffic engineering, deaggregation
and the adoption of IPv6, has led to a renewed interest in
FIB caching methods. Past work [9] has shown repeatedly that
there is significant traffic locality in the Internet that makes FIB
caching beneficial. However, FIB caching has not transitioned
to practice. Part of the reason might be that past work has
focused on demonstrating that FIB caching is beneficial, leav-
ing several practical and engineering questions unanswered.
These include, how should the cache be implemented in a
modern line card? Who suffers most from cache misses and
how? How long does it take for a miss to be serviced? What
are the memory bandwidth requirements for cache updates?
How easily can one attack the cache? In this paper we address
such practical questions and show that FIB caching is not only
highly beneficial, but also very practical. We hope that our
work answers important engineering questions and leads to
renewed interest in building routers with caches.

Is FIB caching still relevant? Can’t Cisco already support
a million entries in their line cards? Opinions range from “it’s
not an issue” to “the sky is falling”. We do not attempt to take
a position in this debate but seek only to inform. There are
recent trends, however, that make the matter worth revisiting.
One is the slow but steady growth of IPv6, which steadily
adds more prefixes in the FIB. Another is the quest to build a
Tb/s forwarding chip, which for packaging reasons will have
limited on-chip memory, a perfect candidate for a cache.

ISBN 978-3-901882-68-5 (© 2015 IFIP

In summary, we make the following contributions:

e We classify packets that cause cache misses according
to their type and protocol.

e We evaluate the effect of cache misses on delay and
buffer utilization.

e We evaluate the effect of caching on memory band-
width requirements.

e We examine the behavior of the system under a cache
pollution attack by someone who wants to replace
popular with unpopular prefixes.

To achieve fast cache updates we propose an architecture
that includes a cacheable FIB i.e. a FIB that does not suffer
from the cache hiding problem (explained later). The cacheable
FIB is derived from the standard FIB.

Briefly, our results are as follows: first, we confirm past
observations that FIB caching is effective: with a cache size
of 10K entries hit rates are in excess of 99.5%. Second,
our classification of cache misses shows that NTP and DNS
queries are the main culprits of cache misses. Not surprisingly,
TCP control packets (SYNs, SYNACKSs, FINs, FINACKs and
RSTs) account for 70% of the TCP misses. Third, we show
that very few packets need to be queued due to cache misses
and they suffer insignificant queuing delays. Finally, we show
that a cache recovers quickly when subjected to cache pollution
attacks aiming to replace cache entries with unpopular prefixes.
In our datasets, an attacker must send 1.2 billion packets/sec
over a 10G link to effectively disrupt the cache.

Our data comes from a regional ISP and thus our observa-
tions are mainly from the edge of the network. However, our
study can easily be repeated for the network core by someone
with access to the appropriate packet traces.

The rest of the paper is organized as follows. Section II
introduces previous work that has looked into FIB scaling
methods. In section III, we introduce our FIB caching solution.
In section IV, we introduce the cache hiding problem. Next,
we introduce our hole filling algorithm and evaluate it in
section IV-A. In section V, we describe the datasets used in
our evaluation. We evaluate LRU caches in section VI and
the effect of cache misses in section VII. In section VIII, we
evaluate the robustness of our caching system when it is being
attacked. Finally, we conclude in section IX.

II. RELATED WORK

Approaches to reduce the FIB size have been studied for
more than a decade ([3], [6], [8], [11], [14], [18], [19], [25],

[27], [31]). These approaches fall into two broad categories
- caching-based and aggregation-based approaches. Our work
is independent of FIB aggregation techniques and hence we
do not discuss these approaches in this work. There are
other approaches that achieve FIB size reduction by reducing
the RIB size [7], [21], [30]. We believe that our work is
complementary to this work and the reduction of the RIB size
will result in a more dramatic decrease in the cache size.

The idea of using route caching was first proposed by
Feldmeier in 1988 [8], which was further extended by Kim
et al. in [14]. Kim et al. introduce the cache hiding problem,
where a less specific prefix in the cache hides a more specific
entry from the FIB, causing an incorrect forwarding decision.
We discuss this further in section IV. To solve the cache hiding
problem, the approach in [14] splits the IPv4 address space
into the constituent /24 prefixes. Other approaches to handling
the cache hiding problem include treating related prefixes
as an atomic block so that all cache operations (insertion,
lookup and deletion) are carried out on the block as a whole,
using a complicated data structure with on-the-fly computation
to remove inter-dependencies between prefixes [16] or using
genetic algorithms to allow the cache policy to evolve while
tracking the heavy hitter flows [29].

In this paper, we propose a hole filling algorithm (Sec-
tion IV-A) to address the cache hiding problem, similar to the
method proposed in [17]. While the algorithm presented in [17]
generates the needed most-prefix on a per-packet basis, thus
incurring a per packet cost, our algorithm pre-computes the
prefix to add. By adding these extra prefixes, we ensure that
there are no overlapping prefixes in the FIB. Consequently, a
packet hitting a prefix not in the cache will cause the correct
route to be fetched from the full FIB, instead of an incorrect
longest prefix match with a covering prefix already in the
cache. We discuss this algorithm in section IV-A. We show
that the number of extra prefixes added to the FIB is only a
small fraction of the total number of FIB entries. Further, by
using this cacheable FIB, we show that we can forward 99%
or more packets along the fast path with a cache size of the
order of 10,000 entries.

In [26], the authors propose a traffic offloading strategy
to leverage the Zipf-like properties of Internet traffic. The
proposed system, Traffic-aware Flow Offloading (TFO) is a
heavy hitter selection strategy that leverages the Zipf-like
properties and the stability of the heavy hitters across various
time scales. TFO maintains the set of current heavy hitter flows
in fast memory and sends packets from flows not in the heavy
hitter set to a slower path. Results show that TFO sends a few
thousand packets/second to the slow path.

In [24], Rétvéri et al. introduce the concept of FIB com-
pression. They introduce two FIB compression techniques -
XBW-I and trie-folding. Results show that the XBW-1 com-
pression technique can reduce the size of the FIB to 100-
300KB, while FIBs compressed with trie-folding require 150-
500KB of memory.

Previous work [10], [20] has investigated the impact of
various cache poisoning attacks on caches and has proposed
methods of mitigating such attacks. However, the systems
investigated were software systems (web proxies) that have
a different set of constraints than the hardware-based route

caching system proposed in this work. Further, unlike previous
work, we consider the impact of cache misses on the system
performance not only in terms of hit rates achieved but also
the types of requests resulting in cache misses and their
implications for operators.

III. CACHE SYSTEM DESIGN

Packets In

Route Updates

Line Card

Cacheable

— FIB ! Cache Updates H
RIB FIB > (slow + Cache |

memory)

Cache Miss

Packets Out

Fig. 1: Proposed Caching System Architecture

Figure 1 shows our proposed FIB caching architecture. The
RIB and FIB on the left are part of the standard hardware
architecture. We add (a) a cacheable FIB, which resides in
main memory, (b) a cache, which can take the place previously
occupied by the FIB, (c) a queue to hold packets experiencing
a cache miss, and (d) the appropriate logic to handle cache
updates and misses. The router processor handles incoming
route information as usual and computes the local RIB (routing
table) and FIB as before. In a traditional architecture the router
would load the entire FIB in the line card; in our architecture,
the router derives the cacheable FIB from the standard FIB
and pushes just the cache in the line card, which is one or two
orders of magnitude smaller than the original FIB.

Our caching architecture may seem to keep two copies of
the FIB, the original and cacheable FIB, which look like a
waste of memory. However, the two FIBs are very similar
as we will show later and an implementer can easily use
appropriate data structures to avoid duplication.

Each incoming packet incurs a lookup in the cache using
the standard longest prefix match algorithm. If there is a hit,
the packet is immediately forwarded along the cached route. If
there is a miss, the packet is queued in the line card until the
cache is updated with the appropriate prefix from the cacheable
FIB.

Next, we elaborate on the need and derivation of a
cacheable FIB.

IV. THE NEED FOR A CACHEABLE FIB

Entries in the original FIB cannot be cached due to the
cache hiding problem, which occurs when a less specific prefix
in the cache hides a more specific prefix in the FIB. This
is a result of the fact that a route-caching system looks for
the longest-matching prefix only in the cache, thus missing
possible longer matches in the full FIB. This can lead to
incorrect forwarding, loops and packet losses.

To further understand the problem, consider an empty
cache and a full routing table that only has two prefixes:

10.13.0.0/16 associated with an output interface O1, and
10.13.14.0/24 associated with an output interface O2. Suppose
a packet arrives with a destination IP address of 10.13.2.3.
The router will find the longest-matching prefix (LMP) for
the destination IP address, which is 10.13.0.0/16, and will
install the route [10.13.0.0/16 — OI1] in the cache. Assume
that the next packet that arrives at the router has a destination
IP address of 10.13.14.5. The router will find the previously
installed route [10.13.0.0/16 — O1] in the cache and will
forward the packet along O1. However, this is incorrect, since
the correct LMP for 10.13.14.5 is 10.13.14.0/24 and the packet
should have been forwarded on interface O2.

Past work addressed the cache hiding problem by ei-
ther caching only /24 prefixes [14], by using a complex
data structure with on-the-fly computation to eliminate inter-
dependencies between prefixes [16], by adding on-the-fly to
the FIB the appropriate leaf node corresponding to the packet’s
destination address [17] or by treating a set of related prefixes
as an atomic block and performing cache actions (insertion,
lookup and delete) on the atomic block instead of an individual
prefix. Our approach is similar to the approach presented
in [17], except that we pre-calculate the entire cacheable FIB
table.

A. Generating a Cacheable FIB

We have previously seen that simply caching existing FIB
entries would lead to incorrect forwarding due to the cache
hiding problem. In this section we describe an algorithm to
generate a cacheable FIB, i.e. a FIB that is free from the cache
hiding problem.

We call our algorithm the hole filling algorithm because it
starts with the original FIB and fills in holes between related
entries to produce a new FIB whose entries are cacheable.
While the new FIB is larger because the algorithm adds more
entries, the increase is small, as we will show later, and caching
makes it irrelevant.

The intuition behind the algorithm is as follows - if a prefix
covers other prefixes in the table, we delete that prefix and add
its children to the FIB. We repeat this process until there are no
covering prefixes, at which point we are left with a cacheable
FIB.

To better understand the algorithm, consider the FIB shown
in Table Ia. This FIB is non-cacheable, since the 10.13.0.0/16
prefix, if present in the cache, will hide the 10.13.14.0/24
prefix. This FIB needs to be transformed into a cacheable FIB.

We first choose the prefix from the FIB with the smallest
mask length, which is 10.13.0.0/16 in this case. Then we check
if this prefix has any children. If the selected prefix has a
child, we split the prefix into its two children, otherwise we
add the prefix to the cacheable FIB. In this example, since
10.13.0.0/16 has a child, 10.13.14.0/24, we split the /16 into
its two constituent /17s and remove the original 10.13.0.0/16,
as shown in Table Ib.

The process continues, until the non-cacheable FIB is
empty, and the cacheable FIB contains the leaf nodes necessary
to forward all packets correctly. Table Ic shows the final,
cacheable FIB.

Prefix IFF Prefix IFF
10.13.0.0/17 1
10.13.0.0/16 1
1013140724 5 10.13.128.0/17 1
e 10.13.14.0/24 2

(a) Non-cacheable FIB (b) Non-cacheable FIB

after one iteration of hole
filling algorithm

Prefix
10.13.128.0/17
10.13.64.0/18
10.13.32.0/19
10.13.16.0/20
10.13.0.0/21
10.13.8.0/22
10.13.12.0/23
10.13.14.0/24
10.13.15.0/24

(c) Cacheable FIB

g
—=[of =[=| =| =| =| =| =
3]

TABLE I: Original non-cacheable FIB, after one iteration
of hole filling algorithm and final cacheable FIB

1) FIB Inflation Due To Hole Filling: The hole filling
algorithm produces a cacheable FIB that is larger than the
original. For example, the original FIB in Table Ia has only
two entries, while the cacheable FIB shown in Table Ic has nine
entries, an increase of 350%. We next investigate the effect of
the algorithm on real FIBs.

We measured inflation on a FIB from our regional ISP,
which contains next hop information, and on FIBs from
RouteViews [23] that do not contain next hop information,
which we approximate using the next hop AS. Table II shows
at worst inflation is under 9%. Since the cacheable FIB resides
in main memory the impact is very small.

Table Original | cacheable | Increase
Regional ISP 441,778 468,095 5.96%
Hurricane 444 977 470,911 8.51%
Telstra 440,156 466,416 8.43%
Level-3 436,670 462,966 8.41%
AOL 438,719 464,988 8.40%
NTT-A 439,078 465,536 8.38%
ATT 438,265 464,662 8.37%
SAVVIS 438,582 465,045 8.37%
Sprint 438,634 465,079 8.37%
VZWBIZX 436,821 463,220 8.35%
SWISS-COM 169,861 173,636 8.27%
KPNE 439,288 465,790 6.03%
Tiscali 438,993 465,343 6.00%
1 440,196 466,505 5.98%

TABLE II: FIB size increase due to hole filling algorithm.
The increase in FIB size due to hole filling is minimal.

V. DATA SETS AND TRACE STATISTICS

We used nine 12H and 24H packet traces taken at links
between our regional ISP and one of its tier-1 providers. We
captured traffic using specialized hardware [1] that ensured no
packets were dropped during capture and packet timestamps
were accurate to a nanosecond resolution. We then used a
trie-based longest prefix matching algorithm to determine the
matching prefix for each packet. The cacheable FIB was
derived from the actual FIB obtained from the router where the
packet trace was captured. Table III shows the trace statistics.

No. | Date Time | Link | No. packets
T1 3/31/09 27H 1G 7,620,972,889
T2 8/17/09 24H 1G 3,821,714,756
T3 8/3/10 24H 1G 2,084,398,007
T4 8/3/10 24H 1G 2,050,990,835
TS5 12/14/11 12H 1G 625,547,727
T6 04/13/12 | 12H 1G 3,729,282,487
T7 2/14/13 12H 10G 22,622,946,036
T8 3/20/13 12H 10G 21,998,786,996
T9 2/21/14 12H 10G 18,435,172,172

TABLE III: Trace statistics. We use trace T8 in our caching
performance analysis and trace T9 in our cache robustness
analysis.

In an interesting twist, there was a sustained NTP reflection
attack in trace T9. In this attack, several comprised machines
belonging to our ISP’s customers were used as amplifiers to
attack other hosts on the Internet using a NTPD vulnerabil-
ity [2]. Figure 2 shows the overall average bit rate per hour
as well as the average NTP bit rate per hour. NTP traffic
accounted for 1.3% of all traffic during the duration of the
trace. In comparison, trace T8 has approximately the same byte
rates as trace T9. However, NTP accounted for only 0.1% of
all traffic in trace T8.

—=— total T8
—— ntp trace T8

—e— total T9
—+— ntp T9

T

10°

Bit rate (MBps)

6
Interval number

Fig. 2: Comparison of average overall and NTP bit rates
per hour between “normal’” and attack traffic traces. Trace
T9 was captured during an NTP attack.

For brevity, we show statistics from trace T8 only. Results
from the other traces (except T9) are similar. We use trace T9
in our cache robustness analysis in section VIII-B.

VI. RESULTS

In this section, we present results using FIB caching
emulation, using real traces to drive the emulator.

A. Cache System Performance

We begin by evaluating cache performance using a standard
cache replacement policy - least recently used (LRU). Note
that we have repeated all the experiments in this paper with
the least frequently used (LFU) cache replacement strategy,
but do not show the results here due to space constraints.
In general, we observed that LFU performs worse than LRU.
Qualitatively, our results confirm previous observations, but it
is important to show them to establish a baseline. Figure 3
shows the performance of an LRU cache with varying cache

sizes for trace T8 (Table III). We plot average cache hit rates
at 5-minute intervals.

100 prgpremmmmrer

98

96

94

92

Hit rate (%)

90

—e— cache size = 1k
—— cache size = 2k
—— cache size = 5k
86|+ cache size = 10k

0 20 40 60 80 100 120 140
Interval number

88

Fig. 3: LRU Hit Rates for cache sizes varying from 1k to
10k

Figure 3 shows that LRU consistently achieves very high
hit rates. With a cache size of only 1K entries the hit rate
is 98%. The hit rate increases with the cache size, reaching
almost 99.9% with a cache of 10K entries. LRU achieves
maximum hit rates of 99.26%, 99.74%, 99.91% and 99.96%
with cache sizes of 1K, 2.5K, 5K and 10K respectively. Note
that the hit rate penalty is very small, even with a cold cache.
For the rest of the paper, unless otherwise noted, we will use
a cache size of 10K. The reason is that even with 10K entries,
this is a still a very small cache compared with the original
FIB size (currently around 500K).

B. Impact of Route Updates

Routers periodically receive route updates from their peers.
These updates may add new prefixes (announcements) to
the table or withdraw existing prefixes from the table (with-
drawals). Each such update may cause one or more entries in
the cache to be invalidated.

To evaluate the effect of route updates we took a full RIB
table from a RouteViews [23] peer and generated a cacheable
FIB. We again approximate next hop information using the
next hop AS from the ASPATH attribute. Then, we applied
updates for the same peer to the cacheable FIB and generated
a new cacheable FIB. Finally, we measured the difference
between the original cacheable FIB and the newly generated
cacheable FIB.

The size of the cacheable FIB generated from the original
FIB increased from 458,494 to 464,512, a growth of only
1.29%. 82.5% of the prefixes in the cacheable FIB were the
same as those in the original FIB. After subsequent updates
were applied, the size increase as well the number of prefixes
that changed was negligible - the average change in the size
of the cacheable FIB was only 0.0018%.

Next, we count the number of prefixes that had next hop
changes, since only these prefixes will have to be invalidated
if present in the cache. Our results show that, on average, only
144 prefixes in each 15 minute set of updates had a next hop
change. The insignificant change in the size of the cacheable
FIB after applying updates, coupled with the fact that only a

few hundred prefixes will have to be invalidated from the cache
due to change in forwarding state, suggest that routing updates
will have very little impact on the cache state and forwarding
performance.

It should be noted that while this study is limited in scope
to tables and updates from only one RouteViews peer, we
believe that a more comprehensive study will yield similar
results. Research shows that routing tables from different
RouteViews peers have very few differences [28] and hence
we believe that our results are applicable to other peers as well.

C. Trends in Cache Size

The global routing table has been growing steadily for the
past several years. Measurements show that the routing table
grew from 150,000 entries in 2003 to 517,802 entries at the
time of this writing, representing an increase of 245% in the
last decade alone [12]. Routers thus need increasing amounts
of memory and processing power [13]. The conventional
wisdom that FIB memory will scale at rates surpassing the rate
of growth in the routing information handled by core router
hardware is not true for the low-volume, customized hardware
used in core routing [22].

Given the fast rate of increase of the global routing table
over time, the natural question to ask is does a FIB cache
face a similar rate of growth? To get some insight into the
answer we measure the hit rates achieved with a cache size of
10K entries on packet traces gathered from 2009 through 2014.
These traces, except trace T9, were collected at the same point
in our ISP, so they truly capture the cache evolution over the
last four years. Trace T9 was captured at another monitoring
location in our ISP, but results show that the hit rates for trace
T9 are similar to the hit rates for the other traces.

100.0

99.8

99.6

99.4

99.2

Hit rate with 10K cache size

S @0 g P o
Year

Fig. 4: Hit rates achieved by a 10k entry cache remain
almost constant from 2009-2014. The 2014 trace contains
the NTP attack traffic.

Figure 4 shows the results. While there is some minor
variation, the hit rates achieved with a cache size of 10K
are consistently higher than 99.95%, meaning that over the
past four-year period the cache size did not need to change to
maintain the same cache hit rate. Thus, while the global routing
table has certainly changed, traffic locality has not changed
sufficiently to affect the cache size.

VII. ANALYSIS OF CACHE MISSES

In our FIB caching system when a packet arrives and the
appropriate prefix is not in the cache, the packet is queued
while a cache update takes place. This introduces some delay
before the packet is forwarded. Delay may affect packets in
different ways. For example, delaying video packets may result
in dropped frames and choppy video. On the other hand,
queuing DNS packets may result in only a slightly longer
resolution delay. In this section we characterize the type of
packets queued due to misses and the delay they experience.

First, we classify the types of packets that cause cache
misses to determine which applications are affected. Second,
we determine buffer requirements and queuing delays due
to cache misses. Finally, we analyze the impact of cache
misses on memory bandwidth requirements in routers. We
show results only for trace T8 from Table III. Results for
other traces are similar and have been omitted due to space
constraints. Since trace T9 was captured during an ongoing
NTP reflection attack, the cache misses in this trace were
heavily influenced by the attack traffic. We present the analysis
for trace T9 later in section VIII-B.

A. Classification of Cache Misses

We classify packets causing cache misses as follows. First,
we separate TCP and UDP packets. For TCP, we classified
them as SYNs, SYNACKSs, FINs, FINACKs, RSTs and DATA
packets. Any TCP packet that was not a SYN, SYNACK, FIN,
FINACK or RST is classified as a DATA packet. Preliminary
analysis of UDP packets shows that NTP and DNS packets
suffered most misses. We therefore plot NTP and DNS packets
separately, with the remaining packets classified as “UDP
Other”. Figure 5 shows the classification of packets causing
cache misses with an LRU cache.

Misses

5000

4000

w
o
o
o

N
o
o
[=]

Counts (x1000)

1000

0
TR I S (P G PR S SR\
¢ ::Q & R 6*(5{@0 T €

Fig. 5: Classification of packets causing cache misses

We also see that the largest number of cache misses is
caused by NTP packets. The reason is that while NTP requests
are regular, they are also infrequent. Thus, the prefixes required
to forward the NTP packets are regularly evicted from the
cache, only to be re-inserted when the next NTP request
occurs. In our dataset, NTP packets were destined to 69,097
unique prefixes.

DNS packets are the second largest cause of cache misses.
This occurs due to a DNS query which needs to be forwarded

to the authoritative nameserver of the zone that owns the prefix.
If the prefix is not in the cache, the DNS query will result in
a cache miss. In our dataset, DNS packets hit 58,435 unique
prefixes.

B. Effects of Cache Misses on Queuing

There are several ways of dealing with packets causing
cache misses. One possible strategy is to forward the packets
along a slower path until the appropriate route can be inserted
into the FIB/cache [4]. If this strategy is employed, then there
is no need for queues/buffers at the routers to store packets.
However, the packets causing a cache miss have to travel
a longer path, thus experiencing longer delay and possible
reordering. Another strategy is to queue the packets at the
router until the route is inserted into the cache. While the
packets do not incur any longer paths (and hence stretch), line
cards must now have enough buffer space and the appropriate
logic to queue packets. In our analysis we assume the latter
strategy for several reasons: (a) it prevents packet reordering,
which router vendors try hard to avoid, (b) to the best of
our knowledge it has not been evaluated before, and (c) as
our results show, the buffer requirements are modest and the
queues can easily fit in existing buffers.

1) Packet Queuing Emulator: We built an emulator in order
to measure queuing at the router during cache misses. Figure 6
shows the block diagram of our emulator. We assume that it
takes about 60ns to update the cache (the lookup time for
DRAM) and that a packet needs to be queued while the update
is taking place.

When a packet arrives we do a longest prefix match against
the cache. If there is a match, the packet is forwarded and does
not incur any additional delays. If there is no match, against
the cache the packet is queued. When it gets to the head of the
queue, we do a prefix fetch from the cacheable FIB, update
the cache and forward the packet.

Lookup time = 25ns
Packets In YES Output Packets Out
— face | >
Buffer

Prefix Fetch on NO l
Cache Miss

Queued packets
Cache Miss sent out after
Buffer prefix fetch

Lookup time = 60ns

Cacheable FIB

Fig. 6: Queue Utilization Simulator

We measure the maximum queue utilization during a given
5 minute interval. We also look at the maximum queuing delay
in our emulator i.e. the time elapsed between when a packet
entered the queue and when it exited the queue. Let us assume
that the time required to perform a cache lookup is T, the
time required to perform a slow-memory lookup is T's and the
current buffer size is B. If a packet arrives at the queue at time
T4 the time the packet departs the queue T'p is given by:

TDZTA+T0+(B*T5)

The queuing delay D is then
D=Tp—Ta

2) Evaluation: Figure 7a shows the maximum queue uti-
lization during 48 5-minute intervals. In the first interval we
see a startup effect due to the cold cache. Since there are no
entries in the cache, arriving packets cause many cache misses
and have to be queued, resulting in a maximum queue size
of 73 packets. After this initial startup period the queue drains
and queue utilization drops. The maximum queue utilization is
only 1 packet, which means that assuming 1500 byte packets,
we need only 1500 bytes of buffer space to buffer LRU cache
misses. Even when the queue utilization peaks during the cache
warm-up period, only 73 packets are queued. To store these
packets, we will need only 110KB of buffer space.

%
=3
o

S © o

o o o

Max. buffer usage (packets)
=N WA oo N
o
Max delay (4s)

°

=)
|

°

°

20 40 60 80 100 120 140 . 20 40 60 80 100 120 140
Interval Interval

(a) Max. Queue Utilization (b) Max. Queueing Delay

Fig. 7: Max. Queue Utilization and Queuing Delays

Figure 7b shows the maximum queuing delays for a LRU
cache during the same intervals as above. Packets queued after
a LRU cache miss suffer virtually no queuing delay. This is
due to the small average queue size (1 packet per 5 minute
interval) and the relatively fast cache updates (in the order of
ns) which keep the backlog small.

While these numbers are specific to our dataset, we believe
that they generalize well in similar environments. Moreover,
the buffer requirements are in line with what is found in routers
today, where the rule of thumb is that buffers should hold an
RTT’s worth of data.

C. Memory Bandwidth Requirements

Another important benefit of FIB caching is a reduction in
the number of lookups that need to be performed on the full
FIB, which is often kept in slow (DRAM) memory. Without
caching one lookup typically needs to be performed per packet.
Moreover, the next hop information is often only part of the
lookup information, which may also include filtering, QoS,
and other state, increasing the demand on memory bandwidth.
With increasing FIB sizes and line speeds these lookups are
nearing the bandwidth limit of router memory.

Caching has the potential to drastically reduce the number
of lookups to external memory. For example, one may envision
a system where the cache is kept on-chip and the full RIB
remains on external slow DRAM. The latter needs to be
accessed only when a cache miss occurs. The question then
is, what are the savings in terms of memory bandwidth if one
uses an on-chip cache?

‘0 LRU A LFU = No caching
10°
[9)
b
% 10°
[}
w
0w
[}
|9)
®
> 10%
5 .-
£ R W N el ¥
A Pl
E o e
2 ft““
< 1y
Av—' - sy -

2
10% 20 40 60 80 100 120 140
Interval no.

Fig. 8: Memory bandwidth requirements reduce by orders
of magnitude when caching is employed.

Figure 8 shows the average number of memory lookups
required per second in each 5 minute interval in the trace.
Without caching, the number of memory lookups is equal to
the packet rate, since each packet requires a memory lookup.
With caching, a memory lookup is required only in case of
a cache miss. We see that the number of memory accesses
required with caching is several orders of magnitude lower
than the number of accesses required when no caching is
deployed. If the cache uses a LRU replacement policy the
memory accesses are on the order of 102 accesses per second
and the rate stays almost constant. This is to be expected,
since we see that the hit rates achieved with LRU stay constant
throughout the duration of the trace.

Caching offers a order of magnitude improvement in mem-
ory bandwidth when compared to no caching. Coupled with
the fact that the required cache can easily fit on a chip and that
the cache size appears to remain constant over time, caching
virtually eliminates any memory bandwidth issues for current
and potentially future routing table sizes. This is significant
for scaling future routers.

VIII. CACHE ROBUSTNESS

The use of FIB caching, especially with LRU, exposes
routers to a cache pollution attack, where an attacker attempts
to disrupt packet caching and increase the cache miss rate. An
attacker can pollute the cache by continuously sending packets
to numerous unpopular prefixes that would not be otherwise
cached, in an attempt to evict legitimate prefixes. Depending on
the attack rate, the attacker can either cause the cache to thrash,
thus increasing the miss rate, or reduce the effectiveness of
the cache by ensuring that at least part of it is always polluted
with bogus entries. This attack will adversely affect the packet
forwarding performance as well, by substantially increasing
the number of packets that need to be queued while the new
prefix is fetched, potentially leading to packet loss.

In this section we investigate cache pollution attacks and
their feasibility. We describe a generalized threat model where
the attacker tries to replace a subset of cache entries, and then
estimate the attack rate required to adversely affect the cache.
Next, we evaluate cache performance when subjected to a real
NTP attack that happened to be present in trace T9.

A. Generalized Threat Model

In this section we describe a generalized threat model to
attack the cache, and determine the rate at which an attacker
must send packets to disrupt packet delivery. We assume that
the attacker knows or can determine in advance the set of
popular and unpopular prefixes at a given vantage point. We
also assume that the attacker has the capability to send packets
at high rate, up to the capacity of the link, either from a single
host or a botnet. We also assume that the goal of the attacker
is to replace legitimate cache entries with unpopular entries
for the sole purpose of disrupting cache performance. In other
words, we assume a deliberate attack on the cache and not
a general attack on the infrastructure (e.g., DDoS). The latter
will trigger other network defenses.

To achieve the above goal, the attacker still needs to send
packets at a high enough rate to evict legitimate prefixes
quickly from the cache. Thus, the attack cannot be stealthy
since its packet rate must compete head-to-head with legitimate
traffic. Next, we estimate the packet rate that would make such
attack viable.

1) Intensity of an Effective Attack: To determine the rate
at which the attacker must send packets to affect cache
performance we first rank prefixes according with their pop-
ularity during a low- and high-traffic interval. Recall that our
measurement interval is 5 minutes. We chose to investigate the
per-interval behavior rather than average traffic over the entire
24H period in order to determine both high and low required
attack rates.

We estimate the required attack intensity. If an attacker
wants to hit the i*" entry in the cache (and all the prefixes
below it) it must send packets to enough prefixes to evict the
it" entry and all the other entries below it. So for example, if
the attacker wants to blow the entire cache, then the attacker
must attack at P40, rate, which must be greater than the
cache size N multiplied by P, which is the packet rate of
the most popular prefix. To generalize, the attack rate to evict
the ¢ bottom prefixes from the cache must be:

Pattack >= Pz *1

In the low traffic interval, the most popular prefix received
33,049,971 packets in five minutes for an average packet rate
of 110,166 packets per second, whereas in the high traffic
interval the most popular prefix received 37,079,737 packets
for an average of 123,599 packets per second. Thus, to replace
just the most popular prefix from the cache, the attacker needs
to send packets at a rate between 1,101,660,000 packets/sec
and 1,235,990,000 packets/sec to an idle prefix. For a 10Gb/s
link and 64 byte packets the maximum packet rate possible
is 19,531,250 packets/sec, thus the required attack rate is not
feasible as it far exceeds the capacity of the link.

Note that such an attack can be easily detected by looking
for spikes in the cache miss rate. Once detected, one can
imagine several defenses against this type of attack, such as
pinning down at least part the historical prefix working set until
the attack subsides. This poses little danger of false positives,
since when prefixes suddenly become popular (as in the case
of a flash crowd), they are unlikely to do it in numbers in the
order of the cache size. Thus, we believe that practical attacks

of this kind can only affect part of the cache and are easily
weakened by reasonably over-engineering the cache.

B. Cache Performance Under a Real DDoS Attack

As described in section V, trace T9 was captured during
an ongoing NTP reflection attack. Figure 2 shows that overall,
NTP traffic accounted for approximately 1.3% of all traffic in
the trace. 5659 unique addresses from our regional ISP were
the target of this attack [5]. Even though this was not an attack
on the cache, we take advantage of this unfortunate incident
to investigate the performance of a FIB cache under attack
conditions and compare performance with a version of the
same trace that has NTP traffic removed.

Figure 9 shows the hit rates achieved by a 10k entry LRU
cache for all traffic in trace T9 as well as the hit rates for all
non-NTP traffic.

100

Ry

98

Hit rate (%)

97

96

—eo— all traffic
—a— without ntp traffic

0 20 40 60 80 100 120 140
Interval number

95

Fig. 9: Comparison of LRU hit rates for all traffic and
non-NTP traffic. The cache size was set to 10k entries.

As Figure 9 shows, the cache performs well under this
incident. The difference in the hit rates achieved by the cache
do not differ by more than 0.5% during the trace. Thus, caching
remains robust. However, comparing Figures 3 and 9, it is
clear that the hit rates for trace T9 are lower than of trace T8,
although the difference is less than 1%.

Next, we look at the breakdown of packets resulting in
cache misses as shown in Figure 10a.

50000

g 40000
S
g
X
= 30000
H

B
8
3
g

3
& 20000

[«

10000

AR CE IR NNC R\
STAT e F

o
g 0‘30\“2‘ ‘)*:@»OL %‘5@\&* o o 0“;00‘2‘
N N

(a) Breakdown of misses (b) Breakdown of non-NTP misses

Fig. 10: Comparison of cache misses for all traffic and
non-NTP traffic. The cache size was set to 10k entries.

As expected, the NTP traffic accounts for a majority of
the packet misses. Out of a total of 114 x 10° cache misses

observed during the trace, NTP packets caused 55* 10° misses
or 48%. The next highest number of misses were caused by
TCP DATA packets, with 25x10° misses (22%). NTP therefore
caused 2.2 times more misses than the TCP DATA packets.
Figure 10b shows a zoomed-in version of Figure 10a, with the
NTP traffic filtered out of the trace. We see that TCP DATA
and DNS packets account for the bulk of the misses, similar
to what we see in Figure 5.

To further quantify the performance of the cache during the
NTP incident, we measured the maximum buffer usage and
queuing delays incurred by packets during the ongoing NTP
attacks. We compare these with the buffer usage and queuing
delays with the NTP traffic filtered out. Figures 11a and 11b
show the results.

~
=]
3

6000

IS

5000{ =

IS
S
3
3
w

w
8
8
8

Max. delays (ms)

N

-

Max. buf usage (num. of packets)

=N
=1
3
3

S
S
3

20 40 0 80 100 120 14 20 40 0 80

6 6
Interval number Interval number

(b) Buffer delays

100 120 140
(a) Buffer usage

Fig. 11: Comparison of buffer usage and delays for all
traffic and all non-NTP traffic. The cache size was set to
10k entries.

As Figures 11a and 11b show, the buffer usage and queuing
delays with the attack traffic are not drastically different
to those with the attack traffic filtered out. The maximum
buffer usage with the attack traffic included is 6104 packets,
compared to 3944 packets without the attack traffic. The
corresponding maximum queuing delays are 4.8ms and 3.2ms
respectively. Thus we conclude that the NTP incident did not
put undue strain on the caching system.

The difference in hit rates observed for traces T8 and T9
also reflects in the buffer usage and buffering delays, as seen
from Figures 7 and 11. Trace T9 and T8 were captured on
different links and trace T9 had more diversity in terms of
the number of prefixes carrying packets than T8. In trace T8,
the average number of unique prefixes carrying packets in
each 5 minute interval we investigated was 15,310, compared
to 24,965 prefixes for trace T9. In future work, we plan to
investigate traces T8 and T9 further to quantify the differences
observed in the results.

IX. CONCLUSIONS

In this paper we take a look at some practical considera-
tions in the implementation of FIB caching. We extend pre-
vious work in significant ways by looking at practical issues,
such as characterization of cache misses, queuing issues (buffer
occupancy and delay), memory bandwidth requirements and
robustness against cache pollution attacks. We used traces
collected at links from our regional ISP to a Tier-1 ISP for our
analysis. Our design uses a cacheable FIB to avoid the cache

hiding problem, and we presented an algorithm to convert a
regular FIB to a cacheable FIB.

Our work has some limitations. First, we only look at
packet traces from a single regional ISP. We therefore cannot
evaluate cache performance at core routers, where traffic may
be more diverse causing hit rates to drop. While we do not
have access to data from core routers to answer this question
(we need a packet trace and a simultaneous snapshot of the
FIB at a core router), the tools and methodology we developed
are applicable to a core environment and we plan to repeat the
study once we have an appropriate dataset.

Are there trends that may invalidate the benefits of FIB
caching? On the contrary, recent trends such as traffic concen-
tration to major social networks, search engines that reside in
datacenters [15] and CDNs make caching even more likely to
provide benefits. In these environments, traffic becomes more
focused and likely to hit a smaller set of prefixes, resulting
into a more stable working set.

Other potential benefits of employing FIB caching include
manufacturing of cheaper router hardware and routers with
longer service cycles. Future terabit/sec forwarding chips may
employ FIB caching for less on-chip memory or to allow
the non-cached portion of the FIB to be more aggressively
compressed. Finally, current architectures with the entire FIB
on DRAM may also benefit by backing away from the looming
memory bandwidth wall.

REFERENCES

[1] Endace. http://www.endace.com.

[2] Ntp reflection attack - internet security—sans isc. SANS ISC. https:
/fisc.sans.edu/forums/diary/NTP+reflection+attack/17300.

[3] How to choose the best router switching path for your network. http:
/Iwww.cisco.com/warp/public/105/20.pdf, August 2005.

[4] H. Ballani, P. Francis, T. Cao, and J. Wang. Making routers last
longer with viaggre. In Proceedings of the 6th USENIX symposium on
Networked systems design and implementation, NSDI’09, pages 453—
466, Berkeley, CA, USA, 2009. USENIX Association.

[5] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and
M. Karir. Taming the 800 pound gorilla: The rise and decline of
ntp ddos attacks. In Proceedings of the 2014 Conference on Internet
Measurement Conference, IMC ’14, pages 435448, New York, NY,
USA, 2014. ACM.

[6] R. Draves, C. King, S. Venkatachary, and B. Zill. Constructing
optimal ip routing tables. In INFOCOM ’99. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 1, pages 88 —97 vol.l, mar. 1999.

[71 D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID Separation
Protocol (LISP). draft-ietf-lisp-08.txt, 2010.

[8] D. Feldmeier. Improving gateway performance with a routing-table
cache. In INFOCOM °’88. Networks: Evolution or Revolution, Pro-
ceedings. Seventh Annual Joint Conference of the IEEE Computer and
Communcations Societies, IEEE, pages 298-307, 1988.

[9]1 K. Gadkari, D. Massey, and C. Papadopoulos. Dynamics of prefix usage
at an edge router. In PAM ’11: Proceedings of the 12th International
Conference on Passive and Active Network Measurement, pages 11-20,
2011.

[10] Y. Gao, L. Deng, A. Kuzmanovic, and Y. Chen. Internet cache pollution
attacks and countermeasures. In Proceedings of the Proceedings of the
2006 IEEE International Conference on Network Protocols, ICNP ’06,
pages 54-64, Washington, DC, USA, 2006. IEEE Computer Society.

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22])

(23]

[24]

[25]
[26]

[27]

[28]

[29]

(30]

[31]

W. Herrin. Opportunistic topological aggregation in the rib-fib calcula-
tion? http://www.ops.ietf.org/lists/rrg/2008/msg01880.html, 2008.

G. Huston. Bgp analysis reports. http://bgp.potaroo.net/index-bgp.html.
G. Huston and G. Armitage. Projecting future ipv4 router requirements
from trends in dynamic bgp behaviour. In Australian Telecommunica-
tion Networks and Applications Conference (ATNAC), 2006.

C. Kim, M. Caesar, A. Gerber, and J. Rexford. Revisiting route caching:
The world should be flat. In PAM ’09: Proceedings of the 10th
International Conference on Passive and Active Network Measurement,
2009.

C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Ja-
hanian. Internet inter-domain traffic. In Proceedings of the ACM
SIGCOMM 2010 conference, 2010.

H. Liu. Routing prefix caching in network processor design. In
Computer Communications and Networks, 2001. Proceedings. Tenth
International Conference on, pages 18 —23, 2001.

Y. Liu, S. O. Amin, and L. Wang. Efficient fib caching using
minimal non-overlapping prefixes. SIGCOMM Comput. Commun. Rev.,
43(1):14-21, Jan. 2012.

Y. Liu, L. Wang, and B. Zhang. Fifa: Fast incremental fib aggregations.
In INFOCOM 2013: In Proceedings of the 32nd IEEE International
Conference on Computer Communications, April 2013.

Y. Liu, X. Zhao, K. Nam, L. Wang, and B. Zhang. Incremental
forwarding table aggregation. In GlobeCom 2010, Dec. 2010.

V. Manivel, M. Ahamad, and H. Venkateswaran. Attack resistant cache
replacement for survivable services. In Proceedings of the 2003 ACM
Workshop on Survivable and Self-regenerative Systems: In Association
with 10th ACM Conference on Computer and Communications Security,
SSRS ’03, pages 64-71, New York, NY, USA, 2003. ACM.

D. Massey, L. Wang, B. Zhang, and L. Zhang. Proposal for scalable
internet routing and addressing. draft-wang-ietf-efit-00.txt, 2007.

D. Meyer, L. Zhang, and K. Fall. Report from the IAB workshop on
routing and addressing, 2007.

U. of Oregon. The routeviews project. Advanced Network Topology
Center and University of Oregon. http://www.routeviews.org/.

G. Rétviri, J. Tapolcai, A. K6rosi, A. Majdan, and Z. Heszberger. Com-
pressing ip forwarding tables: Towards entropy bounds and beyond. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pages 111-122, New York, NY, USA, 2013. ACM.

S. Richardson. Vertical aggregation: A strategy for fib reduction, 1996.

N. Sarrar, T. U. B. T-labs, S. Uhlig, and R. Sherwood. Leveraging Zipf
s Law for Traffic Offloading. 42(1):17-22, 2012.

Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang,
and P. Francis. Smalta: practical and near-optimal fib aggregation.
In Proceedings of the Seventh COnference on emerging Networking
EXperiments and Technologies, CONEXT ’11, pages 29:1-29:12, 2011.

H. Yan, B. Say, B. Sheridan, D. Oko, C. Papadopoulos, D. Pei,
and D. Massey. Ip reachability differences: Myths and realities. In
Computer Communications Workshops (INFOCOM WKSHPS), 2011
IEEE Conference on, pages 834 —839, April 2011.

M. Zadnik and M. Canini. Evolution of cache replacement policies
to track heavy-hitter flows. In PAM ’I11: Proceedings of the 12th
International Conference on Passive and Active Network Measurement,
pages 21-30, 2011.

X. Zhang, P. Francis, J. Wang, and K. Yoshida. Scaling ip routing with
the core router-integrated overlay. In ICNP '06: Proceedings of the
Proceedings of the 2006 IEEE International Conference on Network
Protocols, pages 147-156, 2006.

X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the aggregatability of
router forwarding tables. In Proceedings of the IEEE INFOCOM 2010

