
Towards Joint Resource Allocation and Routing to

Optimize Video Distribution over Future Internet

Yichao Jin and Yonggang Wen

School of Computer Engineering

Nanyang Technological University

{yjin3, ygwen}@ntu.edu.sg

Cedric Westphal

Huawei Innovation Center &

University of California, Santa Cruz

cedric.westphal@huawei.com, cedric@soe.ucsc.edu

Abstract—Given the exploding growth of video traffic, efficient
video distribution is essential to the future Internet. Therefore,
how to optimize its networking cost is a critical research problem.
In this paper, we introduce Network Function Virtualization
(NFV) in conjunction with Software-Defined Networking (SDN)
to minimize the cost via joint orchestration of caching, transcod-
ing and routing functions. Specifically, we propose a two-step
iterative approach. First, in NFV-based resource allocation phase,
we maximize total cache hits by optimally allocating storage
and computing resources for a giving routing policy. Second,
in SDN-based routing phase, we minimize the networking cost
by optimally configuring the routing matrix for a given resource
placement. Finally, we analytically prove their iterative repeat
converges to the joint optimum. Through extensive simulations,
we verify its convergence, and performance gains compared
with the optimal solution of either phase alone. By examining
numerical results, we obtain some operational guidelines. From
the resource allocation aspect, we should allocate more resources
to the node with heavier request rate. From the routing aspect,
for each node-server pair, the node should split the traffic across
multiple paths with identical shortest hops if there are many, or
use the shortest path alone if there is only one.

I. INTRODUCTION

The exploding growth of video traffic over the Internet

[1], [2], poses significant challenges to the existing network

architecture. In particular, first, the large-scale distribution of

video content requires tremendous bandwidth resources, which

are difficult to sustain efficiently based on the current network

infrastructure [3]. Furthermore, video streaming, nowadays,

is usually consumed by a set of heterogeneous end-devices,

with different resolutions, formats, and bitrates. This requires

careful scheduling of the storage and computing resources to

transcode video contents into multiple versions and cache them

at some intermediate nodes within the network [4]. However,

such fine-grained in-network resource management scheme is

not well supported by the existing Internet framework.

Network Function Virtualization (NFV) [5], in conjunction

with Software-Defined Networking (SDN), introduces a new

dimension to efficiently orchestrate networking and comput-

ing services, including video distribution. Specifically, NFV

implements network functions (e.g., caching and transcoding)

in software, that can be run on virtual machines and migrated

among various locations in the network. This enables the

elastic management of networking and computing resources.

Combined with SDN, NFV provides an opportunity to address

those challenges of efficient video distribution. Nevertheless,

this solution space has not been well investigated thus far.

In this work, we aim to improve the cost efficiency of video

distribution over media cloud [6], [7], by jointly considering

the NFV-enabled storage and computing resource allocation,

and the SDN-enabled routing. In particular, we consider the

orchestration of routing, caching and transcoding functions.

At each node, the caching function brings the contents to a

closer place to users, saving the bandwidth cost. Its benefit for

distributing adaptive video can be further increased by keeping

only the highest bitrate, and transcoding other versions on

the fly upon request. And at each link, the routing function

schedules the traffic load, balancing the traffic network-wide.

Therefore, the media cloud operator needs to decide which

items to cache or transcode, and how to coordinate these

functions with appropriate routing policy in the network.

Our approach iteratively proceeds in two phases. First, in

the resource allocation phase, we study how to optimally

allocate a fixed amount of virtualized in-network storage and

computing resources over the whole network, with an objective

to maximize overall cache hits. However, this phase may fail

to take congestion into consideration, resulting in tremendous

networking cost. As a result, we need an additional network

routing phase, to find the optimal routing matrix that balances

the traffic flow over each link, for a given resource placement

strategy. Its objective is to minimize the total networking cost,

based on the traffic engineering model. Finally, we show that,

the iterative repeat of these two phases converges to the joint

optimal resource allocation and routing.

The contributions of this paper are multi-fold, including:

• We systematically build a set of models to describe the

adaptive video distribution system over NFV and SDN

enabled media cloud. Based on them, we formulate an

optimization problem, to jointly optimize the virtualized

resource allocation and the routing control.

• We propose a two-step iterative approach, to find the joint

optimal configuration on the virtualized resource alloca-

tion and its corresponding routing policy. In addition, we

also present the analytical proof on the convergence and

optimality of our proposed approach.

• Through extensive simulations, we show that our ap-

proach quickly converges to its optimum. It achieves sig-ISBN 978-3-901882-68-5 c© 2015 IFIP

nificant cost savings, compared with the optimal solution

over either resource allocation or routing alone.

• We obtain operational guidelines by examining the joint

optimal solution. From the resource allocation aspect,

more resource should be allocated to the node with

heavier request rate. From the routing aspect, for each

node-server pair, the node should split the traffic across

multiple paths with identical shortest hops if there are

many, or use the shortest path alone if there is only one.

Although our approach is specific to video distribution, the

two-step model would be also applicable to the orchestration

of other virtualized network functions with bandwidth, storage

and computing costs. Those obtained insights potentially ease

the adoption of NFV and SDN for the future Internet.

The rest of this paper is organized as follows. Section

II reviews those related works. Section III presents the sys-

tem overview, system models, and the problem formulation.

Section IV shows theoretical analysis for the problem, and

proposes algorithms to derive the optimal solution. Section

V numerically evaluates the performance based on extensive

simulations. Finally, Section VI summarizes this work.

II. RELATED WORKS

We had witnessed the leverage of SDN to optimize the

network routing in a diversity of networking applications over

the past few years. In particular, McKeown et al. [8] initially

proposed OpenFlow and SDN to decouple network control and

data forwarding for research innovation in campus networks.

Lately, Egilmez et al. [9] introduced OpenFlow controller

to dynamically re-route scalable video streaming with the

objective to improve the PSNR (Peak Signal-to-Noise Ratio).

Arefin et al. [10] achieved a SDN-based cross-layer multi-

stream multi-site protocol for 3D teleimmersion to improve

the application interactivity and resource utilization. Li et al.

[11] explored SDN to schedule the exclusive data flow in the

data center network in an energy-aware manner.

At the same time, a number of works focused on im-

proving the performance or efficiency of video distribution,

by carefully scheduling network functions (e.g., caching and

transcoding). Although none of them were specific to the

NFV framework, their solutions were closely related to the

NFV-based resource allocation. Specifically, Dai et al. [12]

developed a hierarchical caching framework coupling with

dynamic request routing to improve the caching and band-

width utilization. Li et al. [13] investigated the optimal in-

network caching space provision for each individual router, to

optimize the overall networking cost. Jin et al. [14] designed

a partial in-network transcoding scheme to reduce the overall

operational cost of delivering adaptive video streaming over

information centric network. Wang et al. [15] jointly studied

video transcoding and delivery for adaptive video streaming,

aiming at reducing both computing and storage costs.

This work clearly differs from above researches in fol-

lowing aspects. First, we investigate the cost-efficient video

distribution in SDN and NFV enabled media cloud, where

the application scenario is obviously different from the one

Origin

Server

SDN Controller

Access

Network

Access

Network

Media Cloud
End Users

End Users

Caching
Resource Pool

Transcoding
Resource Pool

Virtual Appliance

Virtual Appliance

Fig. 1: Architecture of NFV and SDN enabled media cloud

of those previous works. Second, we focus on the joint

optimization problem of NFV-based virtualized resource allo-

cation and SDN-based routing, whereas most existing works

addressed only one of them. Finally, we propose a two-step

iterative approach to find the optimal solution, and develop an

analytical framework to prove its convergence and optimality.

To the best of our knowledge, this work is the first attempt to

systematically introduce SDN and NFV to orchestrate adaptive

video streaming services in cloud computing environment.

III. SYSTEM OVERVIEW & PROBLEM FORMULATION

In this section, we first give an overview of the adaptive

video distribution system over media cloud, to provide neces-

sary background. Then, we introduce our system models and

formulate an optimization problem.

A. System Architecture

Figure 1 presents a systematic end-to-end view of delivering

adaptive video streaming over a NFV and SDN enabled media

cloud. The system consists of three parts,

• On the server side, the origin server publishes all video

segments with all candidate formats, which can be deliv-

ered to end-users in an on-demand manner.

• On the user side, they connect via access networks to the

media cloud from different regions. Due to the diversity

of end-devices, the requested video streaming typically

uses various bitrates and formats.

• In the middle, some switches act as backbone service

entry points, serving the aggregated user requests from

the access network. The cloud service provider can rent

virtualized caching and transcoding resources from a

resource pool, and dynamically attach them into any set

of those switch nodes as virtual appliances based on the

NFV concept. In addition, with the SDN technology, the

cloud service provider has a full view of the underlying

traffic load, and complete control over the routing matrix

in a centralized manner.

One critical design objective of such system is to minimize

the networking cost incurred by delivering adaptive video

streaming. Indeed, such cost highly depends on the joint or-

chestration of caching and transcoding functions. Specifically,

on the one hand, in-network caching keeps popular contents

TABLE I: Notation table

Symbol Definition

G(V, E) Network topology with node set V and edge set E.
de Bandwidth capacity at edge e.
ctot Total amount of caching resource in terms of the size.
otot Total amount of transcoding resource in terms of the rate.

Rlv Fraction of traffic on node v’s lth path.

Ie
lv

Indicates if node v’s lth path using link e.

m Total number of segments published by origin server.
r Total number of frequently accessed bitrate versions.

sij jth bitrate version of chunk i.

bj Segment size of the jth bitrate version.
bm Mean size of all bitrate versions.
λv Aggregated user request arrival rate at node v.
P (sij) Prob. of requesting sij .

pj Prob. of requesting the jth bitrate version.
α Zipf exponent.

xv # different segments can be served by node v.
yv # different segments are served by exact cache at node v.
cv Required cache space at node v.
ov Required transcoding rate at node v.
f(ue) Convex cost function with respect to link utilization ue.
pv
hit

Total cache hit ratio at node v.

pvtr Transcoding hit ratio at node v.
pvmiss Cache miss ratio at node v.

at the edge of network, saving the networking cost. And

the transcoding function transcodes the cached contents into

different formats with different bitrates, further improving the

cache hit ratio. On the other hand, given limited in-network

storage and computing resources, the cost saving could be

quite small, if they are not appropriately scheduled. As a result,

there is an opportunity to optimize the operational cost of de-

livering adaptive video streaming, by carefully allocating these

two resources, and operating the network routing accordingly.

B. System Models

This subsection illustrates our system models to mathemat-

ically capture key features of the system. For clarity in the

discussion, we summarize important notations in table I. Note,

we only present the meaning of some small letters in the table,

and we will use their boldface form to denote vectors or matrix

(e.g., x with xi as its i-th component). We also refer letter t
as the iteration number (e.g., R(t)) in our iterative approach.

1) Network Model: We model the media cloud network

as an undirected graph G = (V,E), where V denotes the

set of switches, and E is the set of network links among

those switches. Note, in this work, we consider there is only

one origin server, which can be accessed via a switch. But

this network model can be easily extended to multiple origin

servers by connecting them each with a direct link with infinite

capacity to a “single super-server”. Moreover, we assume this

core network is operated by a single network administrator.

This topology G(V,E) is built upon a set of resources and

constraints. Specifically, we assume the cloud service provider

rents a total amount of caching (i.e., ctot in terms of the

cache space) and transcoding (i.e., otot in terms of virtualized

CPU cycles, which are in turn in proportion to the bitrate

of transcoded contents) resources over the whole network.

Those resources can be dynamically allocated to any set of

nodes, running as virtual appliances. Besides, each link e∈E
is with limited bandwidth capacity de. Moreover, the cloud

service provider can choose one or more node-server paths

to transmit data between an intermediate node and the origin

server, and decide the traffic load at each path subject to the

link capacity, by installing the routing matrix R at the SDN

controller. For each node-server path, we use Ielv ∈ {0, 1} to

indicate if node v’s l-th path traverses link e. This information

can be calculated offline for a known network topology.

2) Content Model: To provide adaptive video streaming

services, we assume that all content objects are chunked into

m different segments with fixed length, and each segment

has r different bitrate versions in different formats, that are

frequently accessed. We denote s = {s11, ..., sij , ..., smr} as

the set of all segments with all bitrate versions, where an

element sij refers to the j-th bitrate version of chunk i, that

i = 1, ...,m and j = 1, ..., r. We also denote b = {b1, ..., br}
as the set of ordered segment bitrate, where b1 and br refer to

the lowest and the highest bitrate, respectively. As we focus

on the adaptive streaming service, r is always larger than 1.

We assume the aggregated user requests at each entry switch

towards those m different segments follow Zipf distribution

[16], [17]. In addition, we adopt the independent reference

model [18], [19], that the request arrival pattern at each

entry point is independent, following Poisson process with

the arrival rate as λv at node v. In this way, we have the

probability of requesting sij at each node as,

P (sij) =
1/iα

pj
∑m

k=1(1/k
α)

=
1/iα

pjHm,α
, i = 1, ...,m, (1)

where pj is the probability of requesting the j-th bitrate of a

segment, and Hm,α =
∑m

k=1(1/k
α) is the m-th generalized

harmonic number, and α is the exponent parameter of the Zipf

distribution, that α > 0. Typically, α is between 0.5 and 1.5
in practice [13]. A larger α indicates more requests for the

popular content and fewer request of the unpopular content.

3) Request Processing Model: We adopt the partial in-

network transcoding model from [14], that each node caches

all bitrate versions for a few top popular segments, and only

the highest version for some segments that are less popular,

constrained by the allocated caching space. As a result, there

are three possible conditions to serve requests at each node.

• An exact cache hit occurs, when the node keeps the exact

copy of the requested content in its local cache space. In

this case, the node can directly serve the user.

• A transcoding hit occurs, when the node has the highest

bitrate version that can be used to transcode into the

requested version in real-time. In this case, the node is

still able to serve the user locally, involving the usage of

the computing resource.

• A local cache miss occurs, when the node holds neither

the exact content nor a transcodable version. In this case,

we assume all cache misses will be directly forwarded to

the origin server.

Note that, because of the tremendous amount of accessible

contents over Internet, those caching resources can never keep

all of them within the network [3], [13]. As a result, it is

necessary to optimize the occurrence of these above conditions

by intelligently allocating virtualized resources.

We model these conditions by focusing on the number of

segments that can be cached or transcoded at each node.

Specifically, we denote xv as the number of segments, that

can be directly served by node v. We further assume node v
caches all the bitrate versions of the top yv popular segments

(where yv < xv), and only the highest bitrate version of the

xv − yv segments, with its popularity rank between yv+1 and

xv . Thus, we have he required caching space at node v as,

cv = yv

r
∑

i=1

bi + (xv − yv)br, (2)

and the required transcoding rate at node v is,

ov = λvp
v
tr

r−1
∑

j=1

pjbj , (3)

where
∑r−1

j=1 pjbj denotes the mean size of those transcoded

versions of one segment, (note, we assume the transcoding

resource consumption is in proportion to the output bitrate

[20]), and pvtr refers to the transcoding ratio at node v as,

pvtr =

xv
∑

i=yv+1

r−1
∑

j=1

P (sij) =
(1− pr)(Hxv ,α −Hyv,α)

Hm,α
. (4)

Similarly, we have the overall cache hit ratio, including both

exact cache hit and transcoding hit, at node v as,

pvhit =

xv
∑

i=1

r
∑

j=1

P (sij) =
Hxv ,α

Hm,α
, (5)

and the local cache miss ratio at node v as,

pvmiss = 1− pvhit. (6)

C. Problem Formulation

We formulate an optimal scheduling problem, by jointly

considering the network routing policy, and the allocation of

in-network caching and transcoding functions.

1) Network Routing: We consider the network routing

phase that closely reflects the practical operations in IP back-

bone networks [21]–[23]. In particular, we define a routing

matrix Rev to capture the fraction of flow going to node v that

traverses each link e. This routing matrix can be configured in

accordance with the known underlying network topology, the

placement of in-network caching and transcoding resources,

and observed traffic loads. The objective of such configuration

is to minimize the networking cost.

Mathematically, we capture this traffic-engineering practice,

by building the optimization problem over routing matrix R,

for the given caching and transcoding allocation,

min
R

∑

e∈E

f(
∑

v∈V

∑

l

RlvλvbmpvmissI
e
lv/de), (7)

s.t.
∑

l

Rlv = 1, Rlv ∈ [0, 1], (8)

where bm =
∑r

j=1 pjbj , denotes the mean segment size of

all candidate bitrate versions, and f(ue) is the cost function

that is strictly increasing and convex, with respect to the

link utilization ue =
∑

v∈V Revλvbmpvmiss/de, [24], [25]. In

practice, f can be an exponential function or a piecewise-

linear function that has the similar shape, to penalize the link

congestion. Besides, the product of multiplying λvbmpvmiss

can be understood as the incoming transmission rate to serve

cache misses of node v, and Ielv ∈ {0, 1} indicates if node v’s

l-th path uses link e. Finally, the constraint (8) indicates the

summation of traffic load over all possible paths must be one.

By minimizing the total networking cost, this optimization

problem implicitly achieves the load balance, by shifting flows

from heavily utilized links to those less utilized ones.

2) Virtualized Resource Allocation: The resource allocation

phase aims to maximize the overall cache hits for a given

routing matrix, so that more requests can be served at the

edges, reducing the total traffic load within the media cloud.

Specifically, we have the following cache hit maximization

problem over x and y as,

max
x,y

g0 =
∑

v∈V

λvp
v
hit, (9)

s.t. g1 =
∑

v∈V

cv ≤ ctot, (10)

g2 =
∑

v∈V

ov ≤ otot, (11)

∀e ∈ E gi =
∑

v∈V

∑

l

RlvλvbmpvmissI
e
lv ≤ de, (12)

where Eq. (10) (i.e., g1) captures the total caching space

constraint, Eq. (11) (i.e., g2) captures the total transcoding

resource constraint, and Eq. (12) (i.e., gi, i = 3, ..., |E| + 2)

captures the bandwidth constraint at each link. By solving this

optimization problem, we aim to update the allocation of in-

network caching and transcoding functions with a lower cost.

3) Joint Problem: By jointly investigating the network

routing and resource allocation problem, we propose a two-

step approach in a feed-back loop.

First, at time t + 1, the optimal network routing step

computes new routing matrix based on the previous resource

placement scheme x and y at time t as,

R(t+ 1) = argmin
R

∑

e∈E

f(
∑

v∈V

∑

l

RlvλvbmpvmissI
e
lv/de),

(13)

under the constraint (8).

Then the resource allocation step updates the allocation of

in-network caching and transcoding functions in terms of x

and y, based on the obtained routing matrix R(t + 1) at the

previous iteration, by following,

x(t+ 1),y(t+ 1) = argmax
x,y

∑

v∈V

λvp
v
hit, (14)

s.t. Constraint (10), (11), and (12). (15)

The iterations of Eq. (13) and Eq. (14) repeat over time, with

resource allocations adapting to the new routes, and the routing

matrix adapting to the updated traffic rates. This process ends

when the decision variables x and y have converged. The

convergence and the optimality of our solution will be verified

in the next section. Note, this work only focuses on an one-

shot optimization problem for a specific request pattern λv and

P (sij)
v. As the user request patterns change over time, this

approach still works by periodically repeating the iteration.

IV. ANALYSIS & ALGORITHMS

In this section, we first analytically prove our iterative

approach converges to a provably stable and optimal solution.

Then we present two algorithms to solve this joint problem.

A. Convergence and Optimality

Our proof consists of three steps. First, we show that

either the network routing configuration or the resource al-

location phase actually solves a convex optimization problem,

respectively. Second, we construct an alternative optimization

form, with its Gauss-Seidel method equivalent to the original

joint problem. Finally, we provide a sufficient condition to

guarantee the convergence to its optimality.
1) Convexity of resource allocation and network routing:

First, we check Eq. (9) to Eq. (12) with respect to x and y,

focusing on the existence of their first order derivative and the

positivity/negativity of their second derivative. By doing so,

we have the following lemma.

Lemma 1: Each one-shot optimal virtualized resource allo-

cation problem to Eq (12)) is jointly convex in y and z, where

zv = x1−α
v is an auxiliary variable.

Proof: See Appendix A for a completed proof.

Besides, by checking Eq. (7) and constraint (8), we find

that, the optimal network routing problem is also a convex

optimization problem over R, because the networking cost

function f is strictly convex in R by definition, and the

equality constraint is affine in terms of R.
2) Equivalent optimization form: Second, we modify our

joint problem, by combining two objectives (i.e., minimizing

overall networking cost, and maximizing overall local cache

hit ratio) into one function as,

h(R,y, z) =
∑

e∈E

f(
∑

v∈V

∑

l

RlvλvbmpvmissI
e
lv

de
)−

∑

v∈V

λvp
v
hit.

This modified problem is equivalent to a successive opti-

mization over R, then y and z. Its objective is to make the

network routing update to correspond exactly with the optimal

resource allocation scheme over y and z, in Gauss-Seidel

algorithm [26]. In this way, we need to prove the solution

of this modified problem converges to the optimum of,

arg min
R,y,z

h(R,y, z), (16)

s.t. Eq. (8), (10), (11), and (12). (17)

3) Convergence of the joint problem: Based on Lemma

1 and the modified optimization problem, we complete the

convergence proof by obtaining the following theorem.

Theorem 1: The joint optimal resource allocation and net-

work routing problem converges to its optimum.

Proof: See Appendix B for a completed proof.

B. Algorithms to the Joint Optimal Solution

We propose two alternative approaches to separately reach

the optimal solution of the network routing and resource

allocation policy at each iteration. Specifically, we adopt

KKT (Karush-Kuhn-Tucker) conditions to the optimal network

routing, and subgradient method to the optimal resource

allocation. These two processes iteratively repeat until the

obtained solutions converge. In this way, the results (i.e., R,

x, and y) must converge to the optimum of the joint problem,

as we have already proved its convergence and optimality.

1) Algorithm to optimal network routing: We use KKT

condition to solve this one-shot optimal network routing con-

figuration problem for a given resource allocation. Specifically,

the Lagrange function is given by,

L(R, γ) =
∑

e∈E

f(
∑

v∈V

∑

l

RlvC) + γ(
∑

l

Rlv − 1), (18)

where C = λvbmpvmissI
e
lv/de denotes the constant part in

function f , and γ is the KKT multiplier.

Thus, setting the gradient ∇L(R, γ) = 0 yields the follow-

ing equations for the optimal solution,

∂L(R, γ)

∂Rlv
=

∑

e∈E

C
∂f(RlvC)

∂Rlv
+ γ = 0, (19)

∂L(R, γ)

∂γ
=

∑

l

Rlv − 1 = 0, (20)

Rlvµlv = 0, ∀l ∈ L, ∀v ∈ V, (21)

where Eq. (21) is the complementary slackness condition with

µlv as the KKT multipliers, capturing the positive constraint of

Rlv . In this way, we have 2|L||V |+1 equations with 2|L||V |+
1 unknown variables. As a result, we use fsolver in Matlab to

solve these equations, and obtain the optimal solution.

2) Algorithm to optimal resource allocation: We adopt

subgradient method as presented by Algorithm 1, to find the

optimal virtualized resource allocation at each node for a given

routing matrix. In particular, the algorithm begins with an

initial feasible solution y(0) and z(0). At each iteration, it takes

a step βk along with its subgradient g(k) of the objective or one

of the constraint functions. The optimal criteria of this process

is that, if the current point is feasible, it uses an objective

subgradient; otherwise, the algorithm chooses a subgradient

of any violated constraint. We repeat the iteration, until it

gets converged. The proof on the convergence and optimality

of applying subgradient method to solve constrained convex

problem, can be found in [27].

The complexity of algorithm 1 is O((|V |+|E|)/ε2). Specif-

ically, at each iteration, we need to check |E|+2 constraints,

and correspondingly update y and z, which contain |V | ele-

ments respectively. And the subgradient method takes O(1/ε2)
iterations to converge [27].

Algorithm 1 Subgradient method

Input: Routing matrix R(t+ 1)
Initial resource allocation y(0) and z(0)

Output: Optimal resource allocation y(t + 1) and z(t+ 1)
1: initiate k = 0
2: do

3: if ∀i = 1, ..., |E|+ 2, gi(z) < 0, then g(k) = ∇g0(z)
4: else g(k) = ∇gj(y, z), for the j that gj(y, z) > 0
5: update y(k+1) = y(k) − βkg

(k)

6: update z(k+1) = z(k) − βkg
(k)

7: update k = k + 1

8: while |z
(k)
v − zv

(k−1)| > ε, ∃v ∈ V or gi(y, z) > 0,

∃i = 1, ..., |E|+ 2

9: return y(k) and x(k) = z(k)
1/(1−α)

as the optimal solution

1

2

3

4

5

6

7

8

9

1012

3

4

5

6 7

8

9

10

(a) 10-node ring

1

2

3

4

5

6 7

8

9

10

1

2

4

3

5

6

7

8

9

10

11

12

13

14

15

(b) Internet2 Layer3

Fig. 2: Network topologies used in the simulation

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposal

via extensive simulations, based on the settings that reflect

real application scenarios. The objective is not only to verify

the convergence and optimality of our proposal, but also to

understand the impact of various system parameters, ultimately

obtaining operational guidelines for real deployment.

A. Parameter Settings

For the network topology model, we use two examples as

shown in Figure 2, including a simple and symmetric 10-node

ring topology, and the real Internet2’s layer 3 network in the

U.S [28] which was built specifically for research and testing

purpose for the future Internet. To facilitate our discussions, all

nodes and links are indexed by the number on them. In the ring

topology, each source-destination pair has exactly two paths

(i.e., clockwise and counter-clockwise). And in Internet2, we

choose four paths that have minimum hops among all possible

paths for every source-destination pair. As such, we readily

have Ielv for both topologies. In addition, we assume the link

capacity follows a truncated Gaussian distribution bounded

below by zero [25], where de ∼ N (1, 0.15) Gbps. Besides,

we replace the networking cost function by f(ue) = nun
e , as

suggested by some traffic engineering studies [25].

For the content model, we assume there are in total m=
20, 000 different segments, where each segment has r = 5

TABLE II: Bitrate versions in real adaptive streaming system

Type 240p 360p 480p 720p 1080p

Bitrate 0.2Mbps 0.5Mbps 1.2Mbps 2.0Mbps 3.0Mbps

2 3 4 5 6 7
0

10

20

30

40

Iterations to convergence

P
e
rc

e
n
ta

g
e
 (

%
)

10−node Ring

Internet2

(a) Convergence rate

1 2 3 4 5 6
50

100

150

200

250

300

350

Iteration

X

Node 5

Node 3

Node 7

Node 1

Node 9

(b) An example of resource allocation
at each node over Internet2

Fig. 3: Convergence performance of our iterative approach

different bitrate versions for different devices, and the length

of each segment is normalized into one second. We use

real bitrate data from a real adaptive streaming system [29],

as shown in Table II. The popularity of different segments

is artificially generated based on Zipf distribution, and the

popularity of different bitrate follows a truncated Gaussian

distribution as pj ∼ N (0.2, 0.02). At each node, we assume

the Zipf distribution (i.e., α) is roughly the same, and the

request rate also follows a truncated Gaussian distribution [25]

as λv ∼ N (200, 20) requests per second. Finally, we assume

the total caching resource is 10% of all segments, and the total

transcoding resource can transcode 1% segments in real-time.

We will adopt those settings, and use f(ue) = 3u3
e, α = 0.9

in following experiments, unless otherwise stated.

B. Convergence Verification

In this subsection, we evaluate the convergence of our

iterative approach, by simulating 100 random configurations

and obtaining the mean convergence rate. In particular, In

each simulation round, we randomly pick a node as the

origin server for both topologies, and start with a uniform

caching and transcoding resource allocation over all nodes.

The convergence of each simulation round is determined by

whether the difference between the newly updated value and

the previous one is smaller than ε = 0.001.

Figure 3 verifies the convergence of our iterative approach,

where we count the completion of both allocation and routing

phase as one iteration. According to Figure 3(a), our proposal

successfully converges to the joint optimum within 7 iterations,

for all simulation rounds. For both topologies, more than 65%

cases get converged within 4 iterations. As an example, Figure

3(b) shows how optimal resource allocation at each node

changes over iterations in Internet2, where the origin server

is set at node 10. It is clear that, after only 3 iterations, our

solution quickly converges to its optimum. Besides, we notice

that, the ring topology needs less iterations than Internet2

on average. This is because when applying Gauss-Seidel

type iterative approach, the solution at each iteration follows

conjugate directions of its decision variables. Since the ring

topology has less possible paths for each node in the routing

0 2 4 6 8 10
7

8

9

10

11

12

13

14

Node Number

F
ra

c
ti
o
n
 (

%
)

Request Rate

X

(a) Optimal allocation over ring

1 2 3 4 5 6 7 8 9

6

8

10

12

14

Node number

F
ra

c
ti
o
n
 (

%
)

Request Rate

X

(b) Optimal allocation over Internet2

Fig. 4: Optimal virtualized resource allocation

phase, its system matrix is smaller than the one of Internet2.

This leads to the faster convergence for ring topology.

C. Joint Optimal Solution

This subsection demonstrates the obtained optimal resource

allocation and routing strategy, through a few examples. Here,

we set node 10 as the origin server in both topologies.

1) Optimal resource allocation scheme: Figure 4 illustrates

the optimal virtualized resource allocation at each node for

both topologies, where the y-axis denotes the fraction of

the allocated resource or request rate at each node over

the total amount from all nodes (i.e., λv/
∑

v∈V λv , and

xv/
∑

v∈V xv). We report two observations and their corre-

sponding insights from those data, as follows.

First, we find that, more resources should be allocated

to the node with heavier user request rate. For example, in

Figure 4(a), node 2 has the lowest request rate, and the

lowest resource amount. In contrast, node 7 is with the highest

request rate, and the highest resource amount. We explain

this phenomenon based on the load balance nature of our

optimization problem. In particular, on the one hand, given the

identical popularity distribution at each node, more requests

leads to more local cache misses. On the other hand, by placing

more resources, we can reduce those cache misses. As a result,

to balance the cache miss traffic at each node, we need to

coordinate the resource allocation with the request arrival rate.

Second, the total cache hits can be unchanged, if we increase

the total amount of caching resource but reduce the computing

resource, and vice versa. Indeed, the in-network transcoding

function was initially proposed to increase the local cache hit

ratio, in addition to the limited caching space at each node

[30]. In practice, this implies, the operator of media cloud can

elastically choose different combinations of total caching and

computing resource, to maintain the same cost efficiency level.

2) Optimal network routing policy: Figure 5 demonstrates

the optimal routing matrix of one source destination pair

(i.e., the node-server pair) in both topologies. This experiment

focuses on the impact of underlying topology, and uses the

deterministic uniform model by setting the standard deviation

of the request arrival rate at each node, and the link capacity

at each edge as zero.

The results reveal that, for each node-server pair, the node

should split the traffic across multiple paths with identical

shortest hops if there are many, or use the shortest path if

there is only one. For instance, in Figure 5(a), all nodes except

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

Node Number

R
o
u
ti
n
g
 M

a
tr

ix

Path1 Path2

(a) Optimal routing over ring

987654321
0

0.2

0.4

0.6

0.8

1

Node Number

R
o
u
ti
n
g
 M

a
tr

ix

Path1 Path2 Path3 Path4

(b) Optimal routing over Internet2

Fig. 5: Optimal network routing policy

4 6 8 10 12 14
0

1

2

3

4

5

Cost function parameter n
T

o
ta

l
n

e
tw

o
rk

in
g

 c
o

s
t

Optimal Allocation

Optimal Routing

Joint Optimal

(a) Total cost in Internet2

4 6 8 10 12 14
0

1

2

3

4

5

Cost function parameter n

C
o
s
t
s
a
v
in

g

Compare with Optimal Allocation

Compare with Optimal Routing

(b) Cost saving in Internet2

Fig. 6: Total networking cost vs. cost function f(ue) = nun
e

node 5 have only one shortest path, and they only use it to

forward cache misses. Whereas node 5 splits its traffic evenly

across two paths, both of which are 5 hops away from the

origin server. This also applies to Figure 5(b), where node 4,

6, and 9 only use their 1-hop path, whereas node 3 splits the

traffic over 4 different paths, which are all 3 hops away from

the origin server. The reason for this phenomenon is intuitive

that, using the shortest path to transmit data minimizes the

traversed hops, and splitting the traffic across multiple shortest

paths balances the traffic load at each link.

D. Performance Comparison

This subsection compares our joint optimal solution with

two baselines, where only the optimal resource allocation or

the optimal routing is considered. Specifically, the first base-

line optimizes the virtualized resource allocation, where every

node always retrieves cache misses by using only one path

with the shortest hop distance to the origin server. While the

second baseline optimizes the network routing, where caching

and transcoding resources are always uniformly distributed

over all nodes. We evaluate their performance with various

system parameters, to obtain some operational guidelines.

Similarly, we run 10 random configurations for each setting,

and only report the average value. Note that, since solutions

from either topology almost have the same shape, we only

present the results from Internet2, in following discussions.

1) Total cost vs. networking cost function: Figure 6 shows

the relationship between the total networking cost and the cost

function. Specifically, we change the exponent parameter of

cost function to simulate different levels of congestion penalty.

We present both absolute cost of all three strategies, and the

cost saving of our proposal compared with baselines.

The results reveal several insights. First, we find our joint

optimization solution performs better than those baselines in

0.8 1 1.2 1.4
0

1

2

3

4

5

6

Zipf exponent α

T
o

ta
l
n

e
tw

o
rk

in
g

 c
o

s
t

Optimal Allocation

Optimal Routing

Joint Optimal

(a) Total cost in Internet2

0.8 1 1.2 1.4
0

1

2

3

4

5

6

7

Zipf exponent α
C

o
s
t
s
a
v
in

g

Compare with Optimal Allocation

Compare with Optimal Routing

(b) Cost saving in Internet2

Fig. 7: Total networking cost vs. Zipf exponent α

all simulation cases, including both Figure 6 and Figure 7. This

verifies the optimality of our method. Second, the total cost in

the ring topology is higher than the one in Internet2. This is

because that, when balancing the same total amount of traffic

over more edges, the congestion penalty can be successfully

released. Third, in Figure 6(a), the cost of all the cases goes

down, as n increases. We explain this observation, by checking

the first derivative of function f(n) as f(n)′ = un
e log ue.

Since ue ∈ [0, 1], there must exists f(n)′ ≤ 0. Thus, we prove

that, f(n) is a monotonic decreasing function with respect

to n. Finally, according to Figure 6(b), as n increases, the

cost saving to the optimal routing reduces, while the saving

to the optimal allocation increases. The reason is that, when

the congestion penalty is heavy (i.e., large n), the routing

phase dominates the joint problem. Thus, in this case, the joint

optimal solution leans to the routing optimization phase.

2) Total cost vs. popularity distribution: Figure 7 plots the

total networking cost as a function of Zipf exponent α. In

particular, by changing the value α, we are able to simulate

different user request patterns (i.e., larger α indicates larger

fraction of requests on those very popular segments), and

examine its impact on the total cost.

We obtain the following observations from this experiment.

First, in Figure 7(a), as α increases (i.e., more requests on

popular segments), both the joint and the routing scheme

yield less cost, while the cost of single optimal resource

allocation method grows. This still can be understood by

examining its first derivative with respect to α as f(α)′ =
∑

v∈V Cλv(m(xα
v − xv) logm− xv(m

α −m) log xv), where

C is a positive constant. By substituting m = 20000, and xv =
220, ∀v ∈ V from the optimal routing baseline case into f(α)′,
we find f(α)′ > 0 for α > 0, α 6= 1. On the other hand, in

optimal allocation baseline and our joint method, xv is set

corresponding to λv . Therefore, for some nodes with large λv

and xv , there is (m(xα
v −xv) logm−xv(m

α−m) log xv) < 0.

This leads to their summation f(α)′ < 0. Second, from Figure

7(b), we find the cost saving to the single optimal routing

scheme decreases, as α increases. This implies that, when

the popularity distribution has small tail, the optimal resource

allocation phase dominates the joint problem.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we jointly investigated the NFV-based re-

source allocation and SDN-based routing for cost-efficient

video distribution over future Internet. Specifically, we propose

a two-step iterative approach. First, in the resource allocation

phase, we maximize total cache hits by optimally allocating

storage and computing resources for a giving routing policy.

Second, in the routing phase, we minimize the networking

cost by optimally configuring the routing matrix for a given

resource placement. Finally, we analytically prove their itera-

tive repeat converges to the joint optimum. Through extensive

simulations, we verified the convergence and optimality of our

approach. Besides, by examining those numerical results, we

got some operational guidelines. From the resource allocation

aspect, more resource should be allocated to the node with

heavier request rate. From the routing aspect, for each node-

server pair, the node should split the traffic across multiple

paths with identical shortest hops if there are many, or use the

shortest path alone if there is only one.

In our future work, first, we are in the process of im-

plementing a real test-bed, by using OpenStack [31] as the

NFV orchestrator, Open vSwitch [32] as the SDN switch, and

OpenDaylight [33] as the SDN controller, on top of a private

cloud. Second, we will try to apply this iterative approach to

orchestrate other virtualized network functions.

APPENDIX

A. Proof of Lemma 1

In order to ease the analysis and derive meaningful results,

we assume the total segment amount m is sufficiently large

(m>>1), and the Zipf parameter α can not be exactly equal

to 1 (but can be arbitrarily closed to 1). Thus, we approximate

the local cache hit ratio by using a continuous function as,

pvhit ≈

∫ xv

1 t−αdt
∫m

1 t−αdt
=

x1−α
v − 1

m1−α − 1
, α > 0, α 6= 1. (22)

Similarly, we approximate the local transcoding ratio as,

pvtr ≈
x1−α
v − y1−α

v

m1−α − 1
(1 − pr), α > 0, α 6= 1. (23)

Based on those approximations, we then check the convexity

of the objective function and each constraint.

First, by importing zv = x1−α
v as an auxiliary vari-

able, we rewrite the objective function (9) into, g0(y, z) =
∑

v∈V pvhit =
∑

v∈V
zv−1

m1−α−1 , which is clearly linear to both

zv and yv.

Second, we rewrite the constraint (10) into,

g1(y, z) =
∑

v∈V

(z
1

1−α

v br + yv(

r−1
∑

i=1

bi − br))− otot ≤ 0, (24)

where we have ∂2g1
∂y2

v

= ∂2g1
∂yv∂zv

= ∂2g1
∂zv∂yv

= 0, and ∂2g1
∂z2

v

=

αbrz
−1−2α

1−α

v

(1−α)2 , where α > 0, br > 0, and z
−1−2α

1−α

v > 0, leading

to ∂2g1
∂z2

v

> 0. Therefore, we obtain its Hessian matrix with

respect to y and z as a diagonal matrix that, entries outside

the main diagonal are all zero. Thus, the k-th determinant

minor of H(g1) is,

|H(g1)k| =

{

∏k
i=1

∂2g1
∂zi2

, k ≤ |V |

0, |V | < k ≤ 2|V |
. (25)

This readily shows that, the Hessian matrix is positive semidef-

inite, that the determinant of all principal minors are greater

or equal to 0. Thus, g1(y, z) is jointly convex in y and z.

Next, we examine constraint (11) by rewriting it into,

g2(y, z) =
∑

v∈V

λv
(zv − y1−α

v)(1− pr)

m1−α − 1

r−1
∑

j=1

pjbj ≤ 0, (26)

where we still have ∂2g2
∂z2

v

= ∂2g2
∂yv∂zv

= ∂2g2
∂zv∂yv

= 0, and,

∂2g2
∂yv2

=
λvα(α− 1)(1− pr)

1−m1−α
yv

−α−1
r−1
∑

j=1

pjbj . (27)

When 0 < α < 1, there are α− 1 < 0, and 1 − m1−α < 0,

resulting in ∂2g2
∂yv

2 > 0. When α > 1, we have α− 1 > 0,

and 1 −m1−α > 0, which still leads to
∂2g2
∂yv

2 > 0. Therefore,

we prove ∂2g2
∂yv

2 > 0, for all α> 0, α 6=1. Following this, we

have its Hessian matrix H(g2) still as a positive semidefinite

diagonal matrix. Thus, g2(y, z) is jointly convex in y and z.

Finally, since pvmiss = 1 − pvhit is linear function in z, the

constraint (12) is also linear over y and z.

In summary, since all these equations are jointly convex in

y and z, we conclude that, the virtualized resource allocation

problem is a convex optimization problem.

B. Proof of Theorem 1

In this subsection, we accomplish the proof of theorem 1,

by examining the sufficient conditions for convergence of the

Gauss-Seidel algorithm. In particular, from [26], if h and all

constraints are 1) bounded from below; 2) differentiable; 3)

marginally convex in R, x, and z; and 4) jointly convex in

R, y, and z, then it will converge to the minimizer of h.

The first three conditions are satisfied through the definitions

from our system models. Specifically, condition 1 is satisfied,

because x�0, y�0, z�0, and R�0 by definition. Condition

2 is satisfied, since h and all constraints are differentiable.

Condition 3 is satisfied, since pvhit, f and all constraints are

convex in either z or R as shown in Lemma 1.

Next, we show the last condition is also satisfied. In

particular, we introduce a new variable wlv = Rlvλvbmpvmiss

to indicate the traffic flow size at link e that is heading towards

node v. Thus, constraint (8) also changes into,
∑

l

wlv = λvbmpvmiss, (28)

which is still linear jointly to w and z. Following this, those

original constraints are still jointly convex over w and z,

because constraint (10) and (11) are independent of R and w,

and constraint (12) is clearly linear to w. Finally, we complete

the proof on the convexity of the modified objective function,

h(w, z) =
∑

e∈E

f(
∑

v∈V

∑

l

wlvI
e
lv/de)−

∑

v∈V

λvp
v
hit, (29)

where f(
∑

v∈V

∑

l wlvI
e
lv/de) is strictly convex in w by

definition, and pvhit is convex in z as shown in Lemma 1.

REFERENCES

[1] Sandvine, “The global internet phenomena report–1h2013,” 2013.
[2] Cisco, “Cisco visual networking index: Forecast and methodology, 2013-

2018,” White Paper, 2013.
[3] G. Pallis and A. Vakali, “Insight and perspectives for content delivery

networks,” Communications of the ACM, vol. 49, pp. 101–106, 2006.
[4] Y. Liu, F. Li, L. Guo, B. Shen, and S. Chen, “A server’s perspective

of Internet streaming delivery to mobile devices,” in IEEE INFOCOM,
2012, pp. 1332–1340.

[5] AT&T et al., “Network functions virtualisation - introductory white
paper,” http://portal.etsi.org/nfv/nfv white paper.pdf, 2012.

[6] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud computing,”
IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 59–69, 2011.

[7] Y. Wen, X. Zhu, J. Rodrigues, and C. Chen, “Cloud mobile media:
Reflections and outlook,” IEEE Transactions on Multimedia, 2014.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[9] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable
video streaming over openflow networks: An optimization framework
for qos routing,” in IEEE ICIP, 2011, pp. 2241–2244.

[10] A. Arefin, R. Rivas, R. Tabassum, and K. Nahrstedt, “OpenSes-
sion: SDN-based cross-layer multi-stream management protocol for 3D
teleimmersion,” in IEEE ICNP, 2013.

[11] D. Li, Y. Shang, and C. Chen, “Software defined green data center
network with exclusive routing,” in IEEE INFOCOM, 2014.

[12] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical caching
with dynamic request routing for massive content distribution,” in IEEE

INFOCOM, 2012, pp. 2444–2452.
[13] Y. Li, H. Xie, Y. Wen, and Z.-L. Zhang, “Coordinating in-network

caching in content-centric networks: model and analysis,” in IEEE
ICDCS, 2013, pp. 62–72.

[14] Y. Jin and Y. Wen, “Paint: Partial in-network transcoding for adaptive
streaming in information centric network,” in IEEE/ACM IWQOS, 2014.

[15] Z. Wang et al., “Joint online transcoding and geo-distributed delivery
for dynamic adaptive streaming,” in IEEE INFOCOM, 2014.

[16] W.-P. Yiu, X. Jin, and S.-H. Chan, “VMesh: Distributed segment storage
for peer-to-peer interactive video streaming,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 9, pp. 1717–1731, 2007.

[17] Z. Li et al., “On the geographic patterns of a large-scale mobile video-
on-demand system,” in IEEE INFOCOM, 2014.

[18] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in IEEE INFOCOM,
vol. 1, 1999, pp. 126–134.

[19] S. Guo, H. Xie, and G. Shi, “Collaborative forwarding and caching in
content centric networks,” in IFIP Networking, 2012, pp. 41–55.

[20] AmazonEC2, “Amazon elastic transcoder pricing,” http://aws.amazon.
com/elastictranscoder/pricing/, 2014.

[21] A. Chanda, C. Westphal, and D. Raychaudhuri, “Content based traffic
engineering in software defined information centric networks,” in IEEE

Infocom NOMEN workshop, 2013.
[22] S. Jain et al., “B4: Experience with a globally-deployed software defined

WAN,” in ACM SIGCOMM, 2013, pp. 3–14.
[23] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement

with opensketch,” in NSDI, vol. 13, 2013, pp. 29–42.
[24] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional

IP routing protocols,” IEEE Communications Magazine, vol. 40, no. 10,
pp. 118–124, 2002.

[25] J. Rexford, “Route optimization in IP networks,” in Handbook of
Optimization in Telecommunications, 2006, pp. 679–700.

[26] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:

numerical methods. Athena Scientific, 1997.
[27] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[28] “Internet2 layer 3 topology,” http://www.internet2.edu/media/

medialibrary/2013/10/01/I2-Network-Infrastructure-Layer-3.pdf.
[29] S. Lederer et al., “Distributed dash dataset,” in ACM Multimedia Systems

Conference, 2013, pp. 131–135.
[30] R. Grandl, K. Su, and C. Westphal, “On the interaction of adaptive video

streaming with content-centric networking,” in Packet Video, 2013.
[31] “Openstack,” https://www.openstack.org/, 2014.
[32] “Open vswitch,” http://openvswitch.org/, 2014.
[33] “Opendaylight,” http://www.opendaylight.org/, 2014.

