
Virtual Network Functions Orchestration in
Enterprise WLANs

Roberto Riggio∗, Tinku Rasheed∗, Rajesh Narayanan†
∗CREATE-NET, Italy; Email: rriggio@create-net.org
†Dell Inc., U.S.A.; Email: n rajesh@dell.com

Abstract—Network Function Virtualization (NFV) has recently
been proposed as a tool to optimize the deployment of network
functions by shifting the processing from dedicated middleboxes
to general purpose and inexpensive hardware platforms. In
this paper, we propose a novel NFV–based management and
orchestration framework for enterprise WLANs. Our framework
is compatible with the ETSI NFV architecture and leverages
on hybrid nodes combining the forwarding capabilities of a
programmable switch with the storage/computational capabilities
of a server. We propose an algorithm for Virtual Network
Function placement which optimizes the functions deployment
according to application level constraints. A proof-of-concept
implementation of the proposed framework and a preliminary
performance evaluation of selected VNFs are also presented.

I. INTRODUCTION

Network Function Virtualization (NFV) promises to reduce
the cost to both deploy and operate large infrastructures by
replacing the dedicated and typically proprietary hardware
that is currently used to run network services with general
purpose and off–the–shelf components and by allowing net-
work services such as Deep Packet Inspection, Firewalls, Load
Balancing, etc., to be hosted on virtual machines (VMs).

At the same time Software–Defined Networking is reshap-
ing the way networks are operated by providing operators
and administrators with a programmatic interface to control
the switching fabric from a logically centralized controller.
SDN solutions have also recently appeared in the wireless
networking domain. In our previous work [1] we tackled the
challenges of providing network operators with high–level and
expressive programming abstractions to control their enterprise
WLANs. The proposed solution effectively allowed to deploy
new services as Network Apps on top of a WLAN controller.

However, in [1] we focused on the primitives that are needed
to program an enterprise WLAN and we did not address
the broader challenge of providing an NFV orchestration
framework. Such a scenario requires in fact the possibility
to deploy and orchestrate the behavior of Virtual Network
Functions (VNF) whose scope goes beyond the tasks of a
WLAN controller. Similarly, Network Apps running on top
of a WLAN controller may require further intelligence to be
deployed within the network in order to achieve the desired
results, e.g. a load balancing VNF may involve both handover
and resource management logic to be implemented in the radio
access network as well as traffic shaping and prioritization
policies to be deployed in the backhaul.

The recent advances in general purpose computing plat-
forms paved the way to a new generation of software routers.
However, many of these solutions focus on improving the raw
packet processing speed [2], [3], [4] but do not tackle the
problem of deploying and orchestrating VNFs. In parallel there
are significant efforts toward the management and orchestra-
tion of VNFs. In particular the European Telecommunications
Standards Institute (ETSI) has recently tackled the NFV con-
cept [5] while the OPNFV project [6] is working toward an
open source carrier grade platform for NFV.

In this paper, we present a VNF management and orchestra-
tion framework for enterprise WLANs. The framework relies
on hybrid nodes supporting both forwarding and computa-
tional/storage capabilities. Moreover, we evaluate the perfor-
mances of a VNF placement algorithm which is in charge of
deciding where VNFs must be placed within the network in
order to satisfy application level constraints (typically latency).
Finally, we report on a preliminary proof–of–concept imple-
mentation of the proposed framework deployed over a small
scale (20–nodes) programmable enterprise WLAN testbed.

The reminder of this paper is structured as follows. Sec-
tion II presents the physical network model, the VNF request
model, and the VNF placing algorithm. The proposed algo-
rithm is evaluated in Sec. III. The proof–of–concept and its
validation are presented in Sec IV. Finally, Sec. V draws some
preliminary conclusions pointing out the future work.

II. NETWORK MODEL

In the VNF placement problem the input consists of Service
Function Chains (SFC) consisting of a variable number of
VNFs, whereas the substrate network provides the physical
constraints in terms of bandwidth and capacity. Note that in
this context the term capacity is not related only to pure
computational resources such as number of CPU cores and
memory. On the contrary it refers to packet forwarding and
processing capabilities. From an architectural standpoint the
VNF placement algorithm resides in the Orchestrator and
is the engine of the resource allocation component in the
Network Function Virtualization Infrastructure (NFVI). Before
introducing the proposed solution we need to detail specific
notations for the NFVI and the SFC requests.

A. Network Function Virtualization Infrastructure Model

Let Gnfvi = (Nnfvi, Enfvi) be an undirected graph mod-
eling the physical network, where Nnfvi is the set of n =

|Nnfvi| physical nodes that compose the substrate network
and Enfvi is the set of edges or links. An edge enmnfvi ∈ Enfvi

if and only if a point–to–point connection exists between
n ∈ Nnfvi and m ∈ Nnfvi. With respect to the physical
network, links are actual wiring media, e.g., an Ethernet cable
interconnecting the two nodes1. Two weights, wp(n), wr(n),
are assigned to each node n ∈ Nnfvi : wr,p(nnfvi) ∈ N+ rep-
resenting the packet and radio processing resources available
on that node; for the sake of simplicity we assume that all
resources can be expressed as an integer number. Nodes with
both weights equal to 0 (zero) are assumed to be pure packet
forwarding nodes. Another weight b(enfvi) assigned to each
link enfvi ∈ Enfvi : b(enfvi) ∈ N+ represents the capacity
of the link connecting two nodes. In order to avoid exceeding
the nominal capacity of the substrate links, traffic shaping is
implemented at the nodes with packet and radio processing
capabilities, i.e. nodes with wp(n) ≥ 0 or wr(n) ≥ 0. Finally,
let P be the set of all substrate paths and P (s, t) the set of
all substrate paths between nodes s and t.

A sample substrate network is sketched in Fig. 1: as shown,
the physical network is composed by 16 nodes interconnected
together. In order to improve readability link weights have
been omitted. The substrate network in this example consists
of 6 nodes supporting both radio and packet processing
capabilities (at the bottom of the picture), 4 switches, 2 of
which supporting just basic forwarding capabilities, and 6
packet processing nodes (at the top of the picture). As we
will see in Sec: IV, nodes with packet and/or radio processing
capabilities consist of general purpose embedded platforms
running multiple instances of the Click Modular Router [7].
The weights wp associated to the substrate nodes represent
the number of concurrent Click instances supported by that
node, while the weights wr is specific to WiFi–enabled nodes
and represent the number of users that can be handled by that
node. For example the weights wr = 50, wp = 10 means that
the node can handle up to 50 active wireless terminals and up
to 10 Click instances. Similarly the weight wp = 50 associated
to the pure packet processing nodes signifies that the node can
run up to 10 parallel Click instances.

The resources required to embed a request Gsfc onto a
substrate network Gnfvi are quantified using the substrate
node (NP , NR) and edge (ES) stress [8] defined as:

NP (nnfvi) =
∑

nsfc→nnfvi

wp(nsfc)

NR(nnfvi) =
∑

nsfc→nnfvi

wr(nsfc)

ES(enfvi) =
∑

esfc→enfvi

b(esfc) (1)

We define the residual node capacity as the available radio
ρR(nnfvi) and packet processing ρP (nnfvi) capacity of the
substrate node nnfvi ∈ Nnfvi:

ρP (nnfvi) = wp(nnfvi)−NP (nnfvi)

1In this work we consider undirected links for simplicity

Forwarding +
Packet Processing

Forwarding

Forwarding +
Packet Processing +
Radio Processing

50 50 50 50 50 50

50 50

50, 10 50, 1050, 10 50, 10 50, 1050, 10

Fig. 1: Substrate network model used in our NFV architecture. The
figure shows the three basic virtual resources: forwarding, packet
processing, and radio access.

ρR(nnfvi) = wr(nnfvi)−NR(nnfvi)

Likewise, we define the residual capacity of a substrate link
ρE(enfvi) as the total amount of resources available on the
substrate link enfvi ∈ Enfvi:

ρE(enfvi) = b(enfvi)− ES
nfvi(enfvi)

Finally, we can define the available bandwidth of a substrate
path p ∈ PS as the residual capacity of the bottleneck link

ρE(p) = min
enfvi∈P

ρE(enfvi)

B. Service Function Chain Requests

Users are allowed to request SFC as a undirected and
acyclic graph Gsfc = (Nsfc, Esfc). Where Nsfc denotes the
set of nodes and Esfc ⊆ Nsfc×Nsfc denotes the set of links.
Notice that as opposed to the previous NFVI model, nodes
in SFC requests represent virtual network functions through
which packets must undergo before leaving the network.
Nodes and links in the SFC request shares the same weights
as for the NFVI substrate network.

The Orchestrator is in charge of deciding whether a partic-
ular SFC can be accepted or if it must be refused. If a request
is accepted then the Orchestrator is in charge of mapping
the request onto the substrate network, i.e., network resources
must be allocated and configured on both the substrate nodes
and the substrate links and the VNFs must be instantiated on
the selected nodes. The embedding of a SFC request GV onto
the substrate network is subject to the following constraints:
• Node assignment. Each node in the SFC request is

mapped to a different substrate node with sufficient
capacity. The mapping function MN : Nsfc → Nnfvi

from virtual nodes to substrate nodes is such that
∀ nsfc,msfc ∈ Nsfc,

MN (nsfc) ∈ Nnfvi

MN (msfc) = MN (nsfc), iff msfc = nsfc (2)

subject to:

wp(nsfc) ≤ ρP (MN (nsfc)), wr(nsfc) ≤ ρR(MN (nsfc))

Load Balancer

WAN

WANWiFi Hotspot Firewall

50, 2 2 2

(a) Enterprise WLAN.

Duplicate Filter

WANWiFi Hotspot

WiFi Hotspot

50, 2

50, 2

2

(b) WiFi duplicates filtering.

Packet CounterPacket Sniffer

Packet CounterPacket Sniffer

Time
Synchonization

50, 2

50, 2

2

2

2

(c) WiFi network monitoring.

Fig. 2: Sample Service Function Chains Requests.

• Link assignment. Each virtual link is mapped to a single
substrate path between the substrate nodes on top of
which the two endpoints of the virtual link have been
mapped. Only substrate paths with sufficient capacity on
their bottleneck links are considered. Link assignment is
defined by a mapping function ME : Esfc → Pvfni

from virtual links to substrate paths such that ∀ esfc =
(msfc, nsfc) ∈ Esfc,

ME(msfc, nsfc) ⊂ P (MN (msfc),MN (nsfc))

subject to: ∑
P∈ME(esfc)

ρE(p) ≥ b(esfc)

A few sample SFC requests are sketched in Fig. 2. Notice
that wireless terminals are not represented in that they are
outside the control of the orchestration framework. The SFC
request in 2a consists of three VNFs including a WiFi hotspot,
a firewall, and a load balancer. The WiFi hotspot request will
also include parameters such as the name of the network
and the authentication parameters (e.g. type of encryption,
RADIUS server to be used, etc.) however these kind of
information are purely functional and are thus omitted in
this section. The SFC requests in Fig. 2b and 2c represents
respectively a performance enhancing VNF and a wireless
channel monitoring VNF.

C. Virtual Network Function Placement

The objective of our algorithm is to embed multiple SFC
requests consisting of VNFs and links on top of a substrate
network. We assume that, the substrate consists of tree–like

Algorithm 1 Virtual Network Function Placement Algorithm

1: procedure EmbedRequest(GV , GS)
2: nsfc ← SelectHighestDegreeVNF(Gsfc)
3: nnfvi ← SelectHighestDegreeNode(Gnfvi)
4: M(nsfc)← nnfvi . embed VNF
5: φ(nnfvi)← 1 . mark NFVI node as used
6: if not EmbedVNF(nsfc) then
7: Reject(Gsfc)
8: end if
9: end procedure

Algorithm 2 VNF Embedding Algorithm (Recursive)
1: procedure EmbedVNF(nsfc)
2: ψ(nsfc)← 1 . mark VNF as visited
3: for all {msfc ∈ neighbors(nsfc) | ψ(msfc) == 0} do
4: Θnfvi = Gnfvi \ {nnfvi ∈ Nnfvi | φ(nnfvi) == 0}
5: if Θnfvi == ∅ then . No substrate node available
6: return False
7: end if
8: mnfvi = argmin

mnfvi∈Θnfvi

[Wnfvi(esfc,mnfvi)]

9: if mnfvi == ∅ then
10: return False
11: end if
12: M(msfc)← mnfvi . embed node
13: φ(mnfvi)← 1 . mark node as used
14: Allocate path between M(msfc) and M(nsfc)
15: end for
16: for all {msfc ∈ neighbors(nsfc) | ψ(msfc) == 0} do
17: if not EmbedVNF(msfc)) then
18: return False
19: end if
20: end for
21: return True
22: end procedure

networks, e.g. fat–tree, commonly found in datacenters and in
enterprise/campus networks. SFC requests coming from users
are randomly picked among the ones depicted in Fig. 2.

The Orchestrator implements a recursive greedy algorithm
based on a Breadth–first traversal of both the substrate network
and the SFC request. At each step the algorithm tries to map a
VNF to the substrate node that minimizes a virtual edge stress
metric. The visit on both substrate network graph and on the
SFC request graph begins from the two highest degree nodes.

The algorithm (see Alg. 1) begins by picking two nodes
nsfc ∈ Nsfc and nnfvi ∈ Nnfvi. Then, it maps nsfc on
nnfvi and starts a breadth–first traversal (see Alg. 2) on the
VNF request starting at virtual node nsfc. At each step the
visited node msfc ∈ Nsfc is mapped to the substrate node
with the minimum virtual edge stress. We define the virtual
edge stress W : Esfc × Nnfvi → R between a virtual edge
esfc = (nsfc,msfc) ∈ Esfc and a substrate node mnfvi ∈

Nnfvi as follows:

W (esfc,mnfvi) = (1− α− β) min
enfvi

[
ρE(enfvi)− b(esfc)

]
+ α

[
ρP (mnfvi)− wp(msfc)

]
+ β

[
ρR(mnfvi)− wr(msfc)

]
(3)

where enfvi ∈ P (MN (nsfc),mnvfi). This distance is the con-
vex combination of the residual capacity of the substrate node
mnfvi after mapping the virtual node msfc and the residual
bandwidth on the bottleneck substrate link enfvi after mapping
the virtual link esfc. The parameters α, β : 0 ≤ (α + β) ≤ 1
can be used to give priority to the residual capacity or to the
residual bandwidth. For example, if α = 0.5 and β = 0.5 the
algorithm will embed the virtual node msfc to the substrate
node with the highest residual capacity, instead if α = β = 0
the algorithm will try to embed the virtual node msfc to the
substrate node whose path from M(mnfvi) has the smallest
residual bottleneck link capacity.

After mapping the node MN (msfc)← mnfvi the algorithm
maps the virtual edge esfc to the shortest path between
MN (nsfc) = nnfvi and MN (msfc) = mnfvi. The procedure
stops when all the virtual nodes have been visited or if the
substrate network cannot accommodate the request. The latter
case can happen if there are not enough nodes in the substrate
topology (Θnfvi == ∅) or if either the capacity or the link
bandwidth has been exhausted.

We observe that the algorithm has complexity
O((Nnfvi)

2 logNnfvi) in the number of substrate nodes,
since it visits all Nsfc nodes of the input SFC, which
are Nnfvi in the worst case, and for each node it then
builds a spanning tree rooted at visited substrate node, at
a cost O(Nnfvi logNnfvi); in the case of a bounded size
Nsfc for the input SFC, the complexity indeed becomes
O(Nnfvi logNnfvi).

III. EVALUATION

In this section we shall first describe the simulation envi-
ronment and then the performance metrics used for evaluating
the VNF placement algorithm. The goal of this evaluation is
to study the impact of SFC complexity on the NFVI substrate.
Simulations are carried out in a simulator implemented in
Matlab R©. In our simulations we assume that SFC requests are
embedded sequentially until the substrate network resources
are exhausted. The reference substrate network topology is
k–ary fat–tree with k = 4, 6, 8, where leaf nodes are WiFi
Access Points (APs) rather than hosts. This results in a total
of, respectively, 16, 54, and 128 WiFi APs. Two types of
SFCs are considered in this evaluation: linear (see 2a) and
star–shaped (see 2b). The number of nodes in each SFC
is for each request is uniformly distributed between [2, 5].
In our experimental setup we used the values α = 0.45
and β = 0.1 in order to weight equally between packet
processing capacity and bandwidth giving minor weight to
radio processing capabilities.

Substrate Size [Nodes]
36 45 54

A
c
c
e
p
te

d
 [
S

F
C

s
]

10

20

30

40

(a) Linear topologies.
Substrate Size [Nodes]

36 45 54

A
c
c
e
p
te

d
 [
S

F
C

s
]

10

20

30

40

(b) Star topologies.

Fig. 3: Number of accepted SFCs for different substrate sizes.

Substrate Size [Nodes]
36 45 54

N
o
d
e
 U

ti
liz

a
ti
o
n

0.1

0.2

0.3

(a) Linear topologies.
Substrate Size [Nodes]

36 45 54

N
o
d
e
 U

ti
liz

a
ti
o
n

0.1

0.2

0.3

(b) Star topologies.

Fig. 4: Node utilization for different substrate sizes.

Substrate Size [Nodes]
36 45 54

L
in

k
 U

ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

(a) Linear topologies.
Substrate Size [Nodes]

36 45 54

L
in

k
 U

ti
liz

a
ti
o
n

0.2

0.4

0.6

0.8

(b) Star topologies.

Fig. 5: Link utilization for different substrate sizes.

The packet processing and the bandwidth resources on the
substrate nodes are uniformly distributed between 50 and 100.
The packet processing and bandwidth requirements for SFC
requests are uniformly distributed between, respectively, 1 and
20, and 1 and 50. The evaluation metrics used in this study are
standard ones adopted in several other related work (see, e.g.,
[9], [10], [11]). Namely the number of accepted SFC requests
and the average node and link utilization of the substrate
network computed as the averages of, respectively, the node
stress and the link stress (1).

Figure 3 shows the absolute number of accepted SFC
requests for the different substrate networks. As expected the
number of accepted SFC requests increases with the substrate
size. Moreover, as it can be seen in Fig. 4 and Fig. 5 the
average node and link utilization at the end of the embedding,
i.e. when the last SFC has been placed, also increases with
the size of the NFVI substrate. This is promising in that it
signifies that the algorithm is capable of making better use of
the network resources available in larger infrastructures.

IV. IMPLEMENTATION

We prototype the NFV architecture discussed in this work
in order to show its suitability to address the requirements
of practical enterprise WLAN environments. In this section
we shall first describe the system architecture and its design

Service Function Chains Management and
Orchestration

Network Function Virtualization Infrastructure

Physical Infrastructure

Computing
Infrastructure

Networking
Infrastructure

Radio Access
Infrastructure

Virtualization Layer

Computing
Infrastructure

Virtual
Computing

Computing
Infrastructure

Virtual
Networking

Computing
Infrastructure

Virtual Radio
Access Network

VNF 1 VNF 2 VNF N

Virtual
Infrastructure
Manager (s)

VNF
Manager (s)

Orchestrator

Fig. 6: Reference network function virtualization architecture [5].

choices, then we will report on the implementation of a sample
NFV application and on its evaluation.

A. Orchestration Framework Architecture

The proposed framework is a preliminary implementation of
the ETSI reference NFV Architecture [5]. As it can be seen
in Fig. 6, the architecture is conceptually divided into three
layers. The bottom layer represents the NFV Infrastructure
(NFVI). The second layer includes the virtualized resources
exposed by a virtualization layer. Finally, in the third layer we
have the actual VNFs which are the software implementation
of a particular network function which is capable of being
executed over the NFVI. The Management and Orchestration
plane covers the orchestration and the management of physical
and/or virtual resources that support the NFV infrastructure
as well as the lifecycle management of the single VNF, i.e.
creation, configuration and destruction.

Our architecture currently accounts for three kinds of NFVI
resources, namely: basic forwarding nodes, packet processing
nodes which support advanced packet manipulation, and radio
processing nodes which, in addition to the features supported
by the generic packet processing node, also embed specialized
hardware in the form of one or more 802.11 Wireless NICs. All
packet processing nodes leverage general purpose computing
platform and operating systems.

B. Prototype Design

Packets processing. In our prototype we use Click [7] as a
single solution for advanced packet processing. Click allows to
build complex VNFs using simple and reusable components,
called elements. Click includes over 300 elements supporting
functions such as packet classification, access control, deep
packet inspection. Elements can be composed in order to real-
ize complex functionalities. Finally, Click is easily extensible
with custom processing elements making possible to support
features that are not provided by the standard elements.

Data plane. We implemented our prototype on top of
general purpose and off–the–shelf components. In particular

the switching fabric is composed of Pronto 3290 OpenFlow
switches supporting pure forwarding capabilities and Dell
Split Data Path (SDP) switches [12]. The SDP architecture
combines the features of merchant silicon switching with the
features of advanced and deep flow programmable network
processor. SDP nodes essentially consist in standard OpenFlow
switches combined with an host processor capable of running
a Linux distribution (Debian–based in our case). We exploited
this capability to dynamically deploy instances of the Click
Modular Router that are in charge of performing the desired
network functions. Finally, also the WiFi data–path has been
implemented as a VNF running on general purpose embedded
computing modules (PCEngines ALIX).

Management plane. As Virtual Infrastructure Managers
(VIM) we use a combination of frameworks. Floodlight is
used in order to configure resources in the switching fabric.
The SD–RAN controller proposed by the authors in [1] is
used in order to control the wireless VNF instances. Finally, a
proof–of–concept Orchestrator has been implemented on top
of the Tornado Framework [13]. This Orchestrator provides
a web interface trough which the users can specify their
SFC by composing the available VNFs. Additional VNFs
can also be uploaded by the users in the form of Click
scripts. The request is then mapped on the NFVI substrate
by the Orchestrator which then deploys the VNFs on the
selected nodes and configures the VIMs. Notice how, although
the current Orchestrator relies on the north–bound interfaces
exposed by the various VIMs, its architecture can be easily
extended in order to accommodate for other managers such as
OpenStack and OpenDaylight.

C. VNF: Wireless Link Monitoring

Resource allocation in wireless networks is a complex task
due to the stochastic nature of the of the wireless channel.
For example, performing handover decisions using as an input
only the RSSI strength between clients and APs can lead to
sub–optimal performances. This is due to the fact that RSSI
measurements are a poor indicators for link–layer performance
metrics such as frame loss. However, if the downlink frame
loss can be easily tracked by the APs to which a client is
currently associated, tracking the uplink frame loss rate is
much harder. This is due to the fact the amount of frames
actually sent by a client is an unknown variable at the network
side. Implementing a wireless link monitoring VNF capable of
estimating in real–time the uplink delivery probability would
allow network operators to gain a real–time knowledge about
the link conditions which in time can be leveraged to drive
resource allocation and handover decisions.

The proposed wireless link monitoring VNF, sketched in
Fig. 2c, leverages on the broadcast nature of a wireless link
and in particular on the fact that each transmission can be
recorded by multiple in–range APs. Packet Capture VNFs are
deployed at different WiFi APs where they can track the meta–
data associated to any link–layer event. In particular for each
transmission the following information are gathered:
• Transmitter Address. The MAC address of the transmitter.

• TSFT. The 802.11 MAC’s 64-bit Time Synchronization
Function Timer. Each frame received by the radio inter-
face is timestamped with a 1µsec resolution clock.

• Sequence, The 802.11 MAC’s 16-bit sequence number.
This counter is incremented by the transmitter after a
successful transmission.

• The frame RSSI (in dB), Rate (in Mb/s), Length (in
bytes), Duration (in µsec), Type and subtype,

The collected meta–frames are then forwarded to a Packet
Counter VNF where they are aggregated by source address and
transmission rate. Aggregated meta–frame are then delivered
to a Time Synchronization VNF. This VNF aims at building
a globally synchronized view of all link–layer events in the
network. The VNF implements a synchronization algorithm
that does not require the WiFi APs to share a common clock
(which would be impractical for µsec–level precision). The
algorithm looks for simultaneous receptions of the same frame
(identified using the sequence number contained in the 802.11
MAC header) at different points in order to synchronize the
timestamp of the various frames to a common reference. Once
the global clock synchronization has been achieved, the time
synchronization VNF can track in real–time the frame delivery
rates between one or more wireless terminals and the APs.

We evaluated the accuracy of this VNF with a network
setup composed of a single client and three WiFi APs. Traffic
is injected from the wireless client as a single UDP stream.
Measurements are taken for different transmission rates. Im-
pairments on the link between client and the WiFi APs are
simulated by dropping received frames with probability p.
For all measurements a total of 6000 frames were generated.
Confidence interval were very small for all the measurements
and have been omitted to improve readability. The packet
generation rate and payload are kept fixed at, respectively, 100
packets/s and 1472 bytes.

Figure 7 reports the actual and estimated frame delivery
rates at the three APs in the network for different transmission
rates. During this campaign the dropping probability of two
links has been set to p = 0.8 (poor channel conditions) while
the dropping probability of the third link has been set to
0.05 (good channel conditions). This scenario is representative
of the case where at least one of the in–range receivers is
experiencing a good channel condition. As it can be seen, also
in this case the VNF can closely track the actual link delivery
rates for all the transmission rates.

V. CONCLUSIONS

In this paper we presented a NFV–based management and
orchestration framework for enterprise WLANs. Its architec-
ture is compatible with the generic ETSI NFV model. We
also moved the first steps towards the definition of a SFC
request model for enterprise WLANs and we designed and
evaluated a VNF placement algorithm. Finally, we reported on
a preliminary implementation and evaluation of the proposed
framework over small scale indoor testbed.

As future work we want to generalize the VNF request
model in order to account for packet processing functions

6 12 18 36 54
0

50

100

L
in

k
 D

e
liv

e
ry

 R
a
te

 [
%

s
]

Frame transmission rate [Mb/s]

Estimated
Actual

(a) Packet Sniffer 1.

6 12 18 36 54
0

50

100

L
in

k
 D

e
liv

e
ry

 R
a
te

 [
%

s
]

Frame transmission rate [Mb/s]

Estimated
Actual

(b) Packet Sniffer 2.

6 12 18 36 54
0

50

100

L
in

k
 D

e
liv

e
ry

 R
a
te

 [
%

s
]

Frame transmission rate [Mb/s]

Estimated
Actual

(c) Packet Sniffer 3.

Fig. 7: Actual and estimated frame loss at the three Packet Sniffers
for different transmission rates where at least one of the in–range
receivers is experiencing a good channel condition.

with different execution complexity. Moreover, we also plan
to devise a more detailed resource request model for wireless
resources which can allow the user to describe the performance
he/she expects from the network leaving to the Orchestrator
the task of allocating/deallocating VNFs dynamically in order
to meet the input requirements.

REFERENCES

[1] R. Riggio, T. Rasheed, J. Schulz-Zander, S. Kuklinski, and M. K.
Marina, “Programming Software–Defined Wireless Networks,” in Proc.
of IEEE CNSM, 2014.

[2] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: Exploiting
parallelism to scale software routers,” in Proc. of ACM SOSP, 2009.

[3] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: A gpu-
accelerated software router,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, pp. 195–206, Aug. 2010.

[4] K. K. Ram, A. L. Cox, M. Chadha, and S. Rixner, “Hyper-switch: A
scalable software virtual switching architecture,” in Proc. of USENIX
ATC, 2013.

[5] E. T. S. I. (ETSI), ETSI GS NFV 002 Network Functions Virtualisation
(NFV); Architectural Framework, December 2014.

[6] “OPNFV: Open Platform for Network Function Virtualization.”
[Online]. Available: https://www.opnfv.org/

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug. 2000.

[8] R. Riggio and D. Pellegrini, “Progressive virtual topology embedding
in openflow networks,” in Proc. of IEEE IM, 2013.

[9] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link map-
ping,” Networking, IEEE/ACM Transactions on, vol. 20, no. 1, pp. 206
–219, February 2012.

[10] Y. Minlan, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual
network embedding: substrate support for path splitting and migration,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Mar.
2008.

[11] Y. Zhu. and M. Ammar, “Algorithms for Assigning Substrate Network
Resources to Virtual Network Components,” in Proc. of IEEE INFO-
COM, Barcelona, Spain, April 23-29 2006.

[12] R. Narayanan, S. Kotha, G. Lin, A. Khan, S. Rizvi, W. Javed, H. Khan,
and S. A. Khayam, “Macroflows and microflows: Enabling rapid net-
work innovation through a split sdn data plane.” in Proc. of EWSDN.

[13] “Tornado Web Server.” [Online]. Available: http://www.tornadoweb.org/

