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Abstract—It is important to use cache efficiently for the content
deployment in the aspect of reducing load of server and latency,
especially in content-oriented networks such as ICN (Information
Centric Networking). Since the capacity of cache on each network
node is limited, numbers of cache replacement algorithm have
been proposed. However, because of previous methods do not
consider the rapid fluctuation of content demand, ineffectual
cache of content remains which cause a waste usage of cache
capacity. In this paper, we propose the method of using the
prediction result of content demand. We first demonstrate that
by applying prediction can improve the efficiency of cache uti-
lization. However, predicting the demand of whole contents is not
realistic in the aspect of computational cost. We therefore propose
the method of reducing computational cost greatly without lack
of cache efficiency. We demonstrate that by simulating with real
monitored data, cache hit rate can be increased about 1.6 times.
Furthermore, we show that our method has advantage in many
aspects, such as efficient usage of cache and content deployment
based on its popularity in the whole network by comparing with
other existing methods.

I. INTRODUCTION

It is important to use cache efficiently for the content
deployment in the aspect of reducing load of server and
latency. Since cache capacity is limited, it is necessary to
choose the contents which will be cached based on the caching
algorithm. Least Recently Used (LRU) and Least Frequently
Used (LFU) are the famous caching algorithm and are used
in many situations. However, since these algorithms do not
consider the content demand, it does not work effectively and
cause a waste usage of cache capacity.

Cache replacement algorithm has been studied extensively
in many domains, such as Web caching, Content Delivery
Network (CDN) and Information Centric Network (ICN).
Especially in ICN, since popularity of content is key factor
to increase the performance of cache as [1] demonstrated,
number of caching algorithm, which takes content demand
into consideration, have been proposed [2]–[4]. Wang et
al. [3] proposed the method of placing contents by solving
optimization problem, which maximizes the benefit of cache.
In this method, they considered the popularity of content by
including it into objective function of their optimization prob-
lem. On the other hand, Cho et al. [2] proposed the method
which the caching decisions are made at individual routers

independently. This method adjusts the number of chunks to
be cached by considering the content popularity. Although
both method make decision of which chunk of content should
be cached based on content popularity, the fluctuations of
popularity which depends on time progress is not considered
in many articles. For example, when news comes in, people
try to find related topics so that the number of requests for
related contents significantly increases. After a couple of days,
however, when people are no longer interested in old news, the
frequency of references suddenly decreases. Such fluctuation
of content popularity must be taken into consideration to
accurately analyze individual trends. Moreover, although the
access frequency of content follows Zipf’s law, this has not
been taken into consideration for fluctuations in time series
data in many articles.

We aimed to increase the performance of cache by predict-
ing content popularity for this reason. Especially, in this paper,
we focus on improving cache performance of ICN. We first
evaluate the effect of predicting content demand and show
that there is a big advantage on using prediction as Famaey et
al. [4] showed.

However, predicting the popularity for individual content
is not realistic in the aspect of computational costs. For
example, even if the prediction of popularity of individual
content will complete in millisecond order, it takes more
than 10 minutes order to predict millions of contents. In
fact, the number of contents in the network exceeds 2 billion
and it continues increasing day by day [5]. Furthermore, the
prediction methods including Auto Regressive (AR) model and
neural network needs the time series data of content demand
to make prediction. This means that not only CPU power
but also large volume of RAM is also required to predict
popularity for whole content. Although this point is important
for implementing the algorithm, it is ignored completely in
[4]. For this reason, we aim to reduce the computational
cost by reducing the number of target content for prediction
without lacking the performance of caching algorithm which
uses content demand prediction.

As the possible method for reducing computational costs,
we can consider a method of selecting the popular content
in a certain time window for prediction target. However, we



have to note that the popularity of content fluctuates with
the time progress, which means that we have to keep on
changing the prediction target according to the fluctuation
of content demand. Therefore, we propose the method of
removing the prediction target rapidly accordance with the
decrease of content demand. Although we consider of using
this algorithm for cache of ICN, our algorithm can be operated
in any other system such as CDN.

The remainder of this paper is organized as follows. We
first introduce the caching algorithm based demand prediction
and demonstrate its efficiency in Section II. We then propose
a method of reducing computational costs of prediction by
selecting the prediction target in Section III. The results of
caching algorithm compared with other existing methods are
shown in Section IV. We finally conclude the paper with future
topics of research.

II. CACHING ALGORITHM USING CONTENT DEMAND
PREDICTION

We first introduce caching algorithm using content demand
prediction in this section. We use AR model, the method used
for predicting time series, to predict content popularity. AR
model can be written as

xt =
p∑

i=1

αixt−i + ϵt (1)

where xt is the time series data of content popularity, αi is
the AR coefficient, ϵt is the residual, and p (where p ∈ R)
is the order of parameter. According to our previous work,
we use Burg [6] method to estimate αi, and use p = 5 for
every evaluation in this paper [7]. Fig. 1 indicates the usage
of prediction value. As figure shows, prediction of popularity
of individual content will be conducted for each prediction
interval ∆τ using the observed data. Predicted value will be
used to compare the popularity of individual content on each
cache node to cache the content with higher popularity. In this
paper, we call this caching algorithm prediction cache.

Here we simply evaluate the efficiency of prediction cache
with the simulation environment which will be introduced
in Subsection IV-A. The results are plotted in Fig. 2(a).
The horizontal axis corresponds to time and the vertical axis
corresponds to cache hit rate. The evaluation was conducted
for 1 week. These results indicate that the prediction cache
has a clear advantage on cache hit rate comparing with LRU.
Using prediction allows us to increase the performance of
cache for this reason. However, predicting the popularity of
whole content requires tremendous computational cost. This
means that in the worst case, the ∆t exceeds ∆τ depending
on the number of content to predict in Fig. 1. Even if we could
compute whole popularity of content, there is no sufficient
advantage when we take computational cost of prediction
cache into consideration which is not considered in [4] at all.
For this reason, we propose the method of reducing prediction
target without lack of performance of prediction cache.

time
observation interval
required time for prediction

prediction adaptation interval

Fig. 1. Usage of prediction value
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Fig. 2. Performance of prediction cache

III. PREDICTION TARGET SELECTION ALGORITHM

We propose the method of reducing computational cost of
prediction cache by limiting the target of prediction without
lack of performance of prediction cache in this section. Since
this algorithm selects the target to predict, we call this method
selection algorithm in this paper.

A. Limiting the Prediction Target

We first evaluate the necessary targets to maintain the per-
formance of prediction cache. Since the number of necessary
targets corresponds to the number of content type which have
been cached at least once in its timeslot ∆τ , we here evaluate
it first for each cache node in the network. The results are
plotted in Fig. 2(b), where the horizontal axis corresponds to
time and the vertical axis corresponds to the number of content
type which have been cached at least once in its timeslot.
We evaluated the average and maximum types of content for
each cache node. The additional line plotted with dashed line
shows the number of average content cache capacity which
is calculated with average cache capacity divided by average
content size. It can be considered that limiting prediction target
to 1.3 times of cacheable number of contents does not lack
performance of prediction cache. However by considering the
rapid fluctuations of content popularity, we simply limit the
prediction target to twice of average content cache capacity.

We then propose the method of selecting the prediction
target using 2 observation states for individual content. First
we define 2 observation states as follows.

• Prediction Target (PT) : Contents included in this
observation state will be subject to be predicted and
cached. The access frequency of individual content will
be contained with time series data to conduct prediction.

• Selection Target (ST) : The rest of all contents which
is not included in PT belongs to this observation state.
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Fig. 3. Prediction target limitation with 2 observation states
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Fig. 4. Effect of prediction error

We will use LFU to select the content which will become
popular. LFU will be refreshed when the state transition
occurs.

Fig. 3 summarizes observation states and transitions of each
state. State transition will be conducted when the new predic-
tion value have been calculated. The content, which belongs
to PT, will be transit to ST when its content has not been
cached for specific time (Transition a). We call this value, time
out value in this paper and use 10 prediction time windows
as its value in every case. On the other hand, frequently
accessed contents based on LFU included in ST will be transit
to PT (Transit b). The number of contents which transits at
Transit b depends on the room of PT. Generally, determination
of the content which will be cached will conducted in two
phases, (1) determine to cache the arriving content or not
and (2) determine the content which will be removed from
cache. In our proposed method, Phase 1 will be conducted
with selection algorithm and Phase 2 will be conducted with
prediction cache. Computational cost for prediction cache will
be reduced greatly by using this selection algorithm since
the computational cost depends on the number of contents
to predict.

B. Consideration for the Effect of Prediction Error

The computational cost will be reduced greatly by limiting
the contents to predict. However, since the popularity of the
content which is transited from ST to PT does not have enough
length of time series, it is difficult to predict accurate. This is
because of the insufficient length of time series data which
have been used for estimating parameter for prediction model.
Fig. 4(a) indicates this feature for the prediction method use
in the previous evaluation. The horizontal axis corresponds to
the length of time series data used for estimating parameter of
prediction method and the vertical axis corresponds to Nor-
malized Mean Squared Error (NMSE), the metric to evaluate
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Fig. 5. Prediction target limitation with 3 observation state

prediction accuracy, respectively. NMSE is defined bellow.

NMSE =

∑T
i=1 (xi − x̂i)

2

∑T
i=1 x

2
i

(2)

This result indicates that actually the insufficient length of
time series data used for parameter estimation causes a lack
of prediction accuracy.

We also evaluated how such lacks of prediction accuracy
affect the performance of prediction cache. Based on Fig. 4(a),
we found that the prediction error of contents popularity
follows a normal distribution with mean 0 and standard
deviation σ. Therefore we demonstrated the performance of
prediction cache where the popularity of individual contents
are calculated with the sum of its actual popularity and
artificially generated prediction error which follows a normal
distribution. Results are shown in Fig. 4(b). The horizontal
axis corresponds to time and the vertical axis corresponds to
cache hit rate. This result indicates that the performance of
cache will decrease depending on the accuracy of prediction.
Especially, in the case of NMSE bigger than 0.5 shows the bad
cache hit rate. To reduce the prediction target without lack of
performance of prediction, it is important to prepare sufficient
length of time series of content demand for this reason. Simply
we can consider of preparing sufficient length of time series
of popularity against whole contents, it is not realistic to hold
such a data in individual cache node. Therefore we propose
the method of limiting prediction target with 3 observation
states by adding another observation state to previous one
described on Fig. 3. Fig. 5 summarizes observation states and
transitions of each state. Unlike ST, the added observation
state, Candidate Target (CT), observes the access frequency
of content included in its target and keeps as time series data.
The number of targets in CT is same to that of ST. The content
belonging to PT transits to ST when it’s content have not been
cached for specific time (Transit A). To fill the vacancy in PT
which occurred with Transit A, content belonging to CT will
be transit to PT (Transit B). The content that is transited will
be decided based on the average and length of time series of
its popularity. Similarly to Transit A, the content which did
not transit to PT in CT will be removed from CT (Transit C).
We use time out value for Transit C same as that of Transit
A. At last, the room made by Transits B and C in CT will
be filled with content in ST which is selected based on LFU
(Transit D). By using this algorithm it will be able to handle
the problem of using insufficient length of time series data for
prediction.

IV. PERFORMANCE EVALUATION

We evaluate the performance of our proposed method using
our measurement data based ICN simulator in this section. We



TABLE I
SIMULATION ENVIRONMENT

Parameter Value Unit
Requirement frequency Avg 1 Hz
Amount of content 1,000,000
Size of contents Avg 10 MB
Size of chunk 0.1 MB
Cache capacity 10,000 MB
Number of cache node 46
Prediction time unit (Δτ) 10 Min

conduct several comparison evaluations to observe the merits
of prediction cache and selection algorithm.

A. Simulation Environment
In this paper, we prepared chunk based ICN simulator

based on ccnSim [8] to evaluate the performance of our
proposed method. The parameter of our simulation is listed
in Table I which is introduced as YouTube-like environment
in [8], where the distribution of content size follows geometry
distribution. Each client requires content averaged once per
second where its distribution follows real measured data which
we introduce in Subsection IV-B. We also use real network
topology including 46 cache nodes which is publicly available
through Rocketfuel [9]. The simulation is conducted using the
traced data of one month with an computer consist of Intel i7
3.40 GHz processor and 8GB RAM.

B. Dataset
We used the real measured data to evaluate the performance

of our proposed method in this paper. We collected keywords
included in query messages in Gnutella, one of the most
well-known P2P file-sharing systems. We developed a crawler
program by modifying an open source Gnutella client called
Phex [10] to collect Gnutella queries. The measurements
were conducted from 26 April 2012 to 12 September 2012.
During the 20 weeks of the measurements, we collected more
than 30 millions of keywords. Especially we focus on one
million keywords which point unique content as the request of
one’s content in our evaluation. Fig. 6(a) indicates the access
frequency of our dataset, where the horizontal axis corresponds
to rank of access frequency and the vertical axis corresponds
to access frequency. Since the requirement of the content fluc-
tuates with progress, Fig. 6(a) shows the distribution averaged
with time and its 90th and 10th percentile. The popularity of
content closely follows Zipf’s law with parameter α = 0.7 and
N = 106, where the access frequency of kth popular content
is defined by

f (k) =
1

kα
∑N

n=1

(
1
nα

) . (3)

The popularity of contents of YouTube are reported to follow
the Zipf’s law of α = [0.6, 0.8] [11], [12] which proves
that our measured data is useful to consider the real content
demand.

We also investigated how the requirements of content fluc-
tuate by focusing on the top 500 content at specific time. The
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Fig. 6. Distribution and fluctuation of contents popularity
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Fig. 7. Performance of prediction cache and selection algorithm

results are presented on Fig. 6(b). The horizontal axis shows
the time and the vertical axes show the content remaining
in the top 500 and ratio of content remaining in the top
500 comparing with previous time slot. The result indicate
that the popularity of content decreases with the progress of
time. Especially, almost 65% of content will be relegated
from the top 500 content after a month has been passed.
Moreover, although the ratio of comparison with previous time
slot maintains about 0.6, the contents remaining in the top 500
does not decrease geometrically. This means that the contents
which are promoted top 500 tend to be relegated easily.

C. Advantage of Using Prediction and Selection Algorithm

We first compare the performance of prediction cache and
that of LRU. We here use cache hit rate and the number
of content type cached in the network for metric. Since
the performance of cache algorithm strongly depends on the
cache capacity of each cache nodes, we will conduct our
evaluation with its parameter of 1GB, 5GB, 10GB, 50GB, and
100GB respectively. The results are presented with histogram
in Fig. 7. Fig. 7(a) indicates that cache hit rate will increase by
predicting popularity of content. Especially it becomes more
advantageous under the situation of small cache capacity. To
be more specific, when the cache capacity is 1GB, the cache
hit rate of prediction cache achieves almost three times than
that of LRU. Moreover, as Fig. 7(b) indicates, the number of
content type cached in the network of prediction cache is also
higher than LRU. Predicting content demand is beneficial for
this reason.

Next, we compare how the performance of cache prediction
will be change by using two kinds of selection algorithms.
By using 2-state selection algorithm, the lack of cache per-
formance can be observed from Fig. 7. On the other hand,
it seems that the performance of prediction cache does not
decrease by using 3-state selection algorithm which indi-
cates the usability of CS in the 3-state selection algorithm.
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Fig. 9. The influence of prediction window size

Moreover, there is a slight increment on cache hit rate. This
advantage is because of ignoring unpopular content as the
prediction target which is difficult to predict accurate. We
evaluated how the prediction accuracy changes due by the
popularity of content to explain our opinion more detail as
shown in Fig. 8 with histogram. The result indicates that the
more unpopular content is the more inaccurate prediction is.
Especially, NMSE of the contents with the rank lower than
10,000 exceeds 0.6. This is because of the time series of
unpopular contents tends to include many unexpected features
which occurs inaccurate prediction. Inaccurate prediction will
cause an inefficient decision in prediction cache as Fig. 4(b)
indicates. Although the impact of inaccurate prediction against
the unpopular content is not so big, cache hit rate will increase
by using 3-state selection algorithm for this reason.

Also selection algorithm has an advantage on feasibility
compared against prediction cache which is not discussed well
in [4]. Although as we discussed about prediction cache in
Sec. II it is not realistic to predict popularity for each content,
selection algorithm only predicts against 2,000 contents where
whole computations can be concluded in the target time. To be
more specific, 2MB of RAM and 500 msec of computational
time are enough to handle whole information and conduct
computation in the single router. From these results, we can
conclude that using prediction can increase the performance
of cache, and the performance of prediction cache does not
decrease by using selection algorithm to reduce computational
costs.

D. The Influence of Prediction Time Window Size

We here discuss how the performance of selection algorithm
will changes due to the unit of prediction, which is introduced
as ∆τ . Although we have demonstrated that prediction is use-
ful to increase the performance of cache, it can be considered
that its advantage is due to using the content demand for the
cache replacement. Therefore we also compared our proposed
method with the algorithm with LFU. The results are presented
with histogram in Fig. 9. The results indicate that the bigger
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Fig. 10. Comparison with existing methods

the unit of prediction the worse cache performance becomes.
However, the there is not a big difference between the perfor-
mance of 10 minutes and that of 30 minutes. This means that
AR model can predict the fluctuations for 30 minutes accurate.
The results also indicate that using prediction is important
to gain performance of cache. This is because of LFU does
not consider the rapid fluctuation of content demand which
selection algorithm does. Not just considering the popularity
but also predicting it is important to gain performance for this
reason.

E. Comparison Evaluation with Existing Algorithms
Since the efficient usage of cache is a key factor of perfor-

mance of ICN, several kinds of methods have been proposed.
Therefore, we made a comparative evaluation between our
proposed method and existing methods. As a comparison
target, we prepared ProbCache [13] and WAVE [2]. We used
cache hit rate, hop counts to reach the requested content, rate
of replaced contents which have not been used at least once,
and kinds of contents cached in the network as the metric of
performance. The results are presented in Fig. 10.

Figs. 10(a) and 10(b) indicate that using prediction for
cache replacement allows providing content faster. Although
WAVE also considers the popularity of cache, it cannot achieve
big advantage on performance comparing with LRU, since
it does not consider the rapid fluctuations of popularity. The
algorithm which uses selection algorithm and prediction cache
can achieve 1.3 times of cache hit rate and can reduce hop
count to 0.7 times comparing with ProbCache and WAVE.
Our proposed method can provide contents faster than other
existing methods for this reason.

Figs. 10(c) and 10(d) indicates that there is advantage on
efficiency of cache usage too. Especially, Fig. 10(c) indicates
that the selection algorithm also has an advantage on using
cache more efficiently, since prediction cache with selection
algorithm has better performance than WAVE but prediction
cache without selection algorithm does not have. Although the
results of Fig. 10(d) indicate that the number of cached content
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types will decrease by using selection algorithm, it can cache
several kinds of contents comparing with existing methods.

Previous evaluations have only focused on how effectively
the cache capacity can be used. However, since cache takes
an important role on availability of its contents, which is
a great merit of ICN, we will evaluate it by focusing on
contents popularity. The results are shown as histogram in
Fig. 11. The results indicate the rate of cache node which
caches the target content. We first calculated the rate of cached
nodes for individual content and after that averaged it for each
range of popularity to plot this result. Since cache capacity is
finite, we also plotted the rate of nodes which have provided
target content to evaluate its efficiency. Therefore there are
two goals for this evaluation. One is to distribute cache to
multiple node depending on its popularity. We have to note
that excessive distribution of popular contents may lose a
chance of caching unpopular contents. And another one is
to make the rate of cached node to used node (the node
which provided target content from its cache) near 1. Based
on these ideas, the methods except WAVE achieve the first
goal for this evaluation. It seems that there is no problem
on caching only popular contents at a glance. However, this
means that it will lose a chance of caching unpopular content
which lacks the availability of content. Fig. 11 also indicates
that the methods which use prediction achieve the second goal
more than the methods without prediction, especially in the top
2,000 contents. On the other hand, selection algorithm allows
making cache usage more effective against the unpopular
contents. This is because of ignoring the contents which may
occur inaccurate prediction of its popularity. Since the results
for contents below the rank of 10,000 are not plotted, there
was hardly any difference in each method.

V. CONCLUSION

We introduced prediction cache, the caching algorithm
based on prediction of content popularity in this paper. Al-
though we demonstrated that using prediction has a great ad-
vantage on increasing performance of cache, the computational
cost for predicting the popularity of whole content is not real-
istic to handle. Therefore we proposed the method of reducing

the computational cost for prediction by limiting the prediction
target without lack of advantage of prediction. Limiting the
target has advantage on not only reducing the computational
cost but also increasing performance. We demonstrated that
by simulating with real monitored data, cache hit rate can be
increased about 1.6 times than that of LRU. Moreover our
method has a merit on scalability of delivering content.

We intend to evaluate more detail of our method since there
are many aspects which is considered insufficiently, such as
timeout parameter, number of limited target, computational
costs, and prediction method.
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