A Data Model for Management of Network Device
Configuration Heterogeneity

Eric Lunaud Ngoupé, Sylvain Stoesel, Clément Parisot, Sylvain Hallé
Université du Québec a Chicoutimi, Canada
Petko Valtchev, Omar Cherkaoui
Université du Québec a Montréal, Canada
Pierre Boucher
Ericsson Canada

Abstract—The management of the configuration of network
devices is a complex process, due to both the number of devices
and parameters to take into consideration, and most importantly
to the widely varying ways in which such parameters can be
queried and modified on each device. Each equipment vendor
provides its own command-line interface or management protocol
where parameters are structured in a different way, and even
multiple equipments from the same vendor may need to be
interacted with differently. In this paper, we present a generic
data model for configuration information of network devices that
takes into account vendor and version heterogeneity. Ultimately,
a configuration query engine will allow a user to pinpoint
a specific, abstract configuration parameter, and be given the
proper sequence of commands to query that parameter on a
device of given vendor and operating system version.

I. INTRODUCTION

Manufacturers of network devices did not facilitate the
automation of network infrastructures configuration manage-
ment. Each equipment vendor provides its own command
line interface or management protocol where parameters are
structured in a different way from other manufacturers [2],
leaving users with a wider range of incompatible products.
Furthermore, software developers for automatic configuration
management rushed towards the development of applications
oriented for the biggest and the most known manufacturers,
which unfortunately led to a proliferation of software that
does not support or take into account the equipment of all
manufacturers.

Network devices heterogeneity can be divided into hardware
and software heterogeneity. Hardware heterogeneity refers to the
presence of devices with different capabilities, while software
heterogeneity refers to the presence of different operating
systems and applications that run on a network. The issue of
heterogeneity usually results in interoperability issues, making
the use of standards vital.

Interoperability between different areas of network man-
agement, heterogeneous systems and various management
systems is one of the major requirements of today’s complex
business services. Another difficulty is the necessity of making
configuration changes from time to time, causing a large number
of dependencies between systems. We know that the systems
do not operate in isolation in a network, so any changes to
the configuration of a network service can cause complex and
cascades changes at the dependencies of network services. The
Sage Research institute found out that 40% of system downtime

are due to operational errors and 44% of those errors are due
to configuration errors [5].

In recent years, research in configuration management has
experienced a rapid evolution. However, this growth has resulted
in the emergence of different network management models,
with each model conforming to a different set of standards.
The aim now is to make these models interoperate in order to
overcome the artificial barriers to the heterogeneity of network
management devices. Organizations like IETF are trying to
standardize the sector by creating models of description which
are independent from manufacturers and equipment to be
applied in a consistent and standardized way across multiple
management domains and multiples type of devices: it is the
case of PCIM [4]. Yet, although substantial progress has been
made through the establishment of formats and specifications
such as SNMP and SMI [6], the heterogeneity problem remains
unsolved.

In this paper, we present a generic data model for configu-
ration information of network devices that takes into account
vendor and version heterogeneity. A configuration query engine
allows a user to pinpoint a specific, abstract configuration
parameter, and be given the proper sequence of commands to
query that parameter on a device of given vendor and operating
system version. The remainder of this article is structured
as follows. Section II introduces the concept of configuration
heterogeneity, discusses a formal model of device configurations
by presenting a new model that can be used by more than
one manufacturer to solve the problem of heterogeneity, and
presents an implementation under development. Finally, Section
III concludes our work.

II. MANAGING NETWORK DEVICES

A device can be a hardware component such as a router,
a switch, a wireless access point or gateway, i.e. physical or
virtual hardware used for routing packets in a computer network.
Devices have their own internal features and communication
interfaces and usually vary depending on the manufacturer for
physical devices, or on their version for virtual devices.

A. Configurations and Heterogeneity

The main characteristic of a device is that its default
behaviour can be modified dynamically through configuration.

The configuration of a device corresponds to a set of
parameters and associated values, recorded by the device. These

settings allow network administrators to customize the device,
for example by setting the physical interfaces, by applying the
rules of data redirection, by adapting the generic behaviour of
the device to the network, or by modifying the behaviour of
the device so that it fits with previous events.In configuration,
editable elements are called parameters. Usually, networks
devices are configured from the command line. On each device,
getting information about their parameters or modifying them
is possible by using precise commands.

In some occasions, the problem of interoperability is
partially settled because of the existence of vendors that have
been enticed to add an extra layer to enable interoperability of
network equipment, as has been the case for Cisco and Nortel
in the past. Similarly, the problem of using different protocols
like SNMP and CMIP has already been resolved; then remains
to find interoperability solutions that can occur within a single
domain between the use of communication protocols and the
development of models. Indeed, it is very possible that two
different domains represent the same concept differently. We
identify two main types of heterogeneity in the representation
of configuration data.

1) Cross-vendor: In the absence of established standards,
these controls differ from one vendor to another. The syntax
of a command used to display information about a switch or
router interface on a Cisco device will not be the same as a
Juniper device. Documentations from the two vendors give
network administrators the syntax to respect. Thus, configuring
a particular device requires knowledge of the manufacturer (in
this case, Cisco or Juniper) and the use of the correct syntax
in order to properly execute the command.

Vendor Syntax
Cisco show interface [intfc]
Juniper | show interfaces [intfc] detail

2) Cross-version: The difference of syntaxes is not only
due to vendors’ competition. Sometimes, they can take place
within the same vendor products, when the latest developed
devices contain an updated version of the firmware. Therefore,
syntax can vary from one version to another. A good example
is provided by Cisco products where commands change as
versions of its devices change. The syntax of the command
ip domain list evolved between version 10 and version 12 of
Cisco Operating System (IOS).

e In version 10.0, the syntax is: ip domain-list name

e In version 12.2, the syntax is: ip domain name list
(without dashes)

Unfortunately, a purely syntactic translation model (i.e. a
simple string pattern matching) cannot provide a solution; rather,
a semantic translation is needed to make the concepts of these
two areas directly correspond [3].

B. A Formal Model

A common problem to all the approaches mentioned
previously is that they are all specific to a particular vendor
or version of the device’s operating system. As a matter of
fact, even approaches aimed at furthering interoperability, such
as SNMP and Netconf, actually provide very little in the

way of abstracting such differences. In the case of SNMP,
each equipment vendor is given its own numerical prefix: for
example, all parameters for 3Com devices start with prefix
1.3.6.1.4.1.43, while all parameters for Cisco devices start with
1.3.6.1.4.1.9. Each vendor is then free to organize configuration
information in whatever structure it wishes. Hence, even if the
SNMP protocol provides a standardized way to query MIB
data, the structure of this MIB and the actual queries to write
depend on the device’s manufacturer. The same can be said of
Netconf; despite its RPC-style and the use of XML to send and
receive data, again, each vendor is free to structure configuration
information in whatever structure is deemed suitable. Therefore,
such protocols can be summed up as vendor- (or version-
) independent ways of manipulating vendor-dependent data
structures. Even the tool closest to our goal, ValidMaker, can
only level heterogeneity through a purely syntactical approach,
and is hence appropriate to a relatively narrow spectrum of
devices.

1) Ontologies: An ontology is an explicit specification of
a conceptualization which is an abstract or simplified view of
the world one wants to represent for a purpose [1]. Ontology
constitutes in itself a representative model of data of a set
of concepts in a domain, as well as relations between these
concepts. The first objective of an ontology is to model
knowledge in a given domain, which can be real or imaginary. It
defines a set of primitive representatives that allow modelling
a knowledge domain. Primitive representative are generally
classes, attributes (or properties), and relations (between the
members of the class). The ontology uses the specification
language, which is considered as the central element on
which it is based. Most of the languages of specifications
are base or close to the first-order logic, and thus represent the
knowledge in the form of assertion (subject, predicate, objet).
These languages() are typically conceived to abstract from data
structures and focus on semantics.

Ontologies can be seen as a level of abstraction of models
of data, similar in the hierarchical and relational models, but
intended to model the knowledge of individuals, their attributes
and their relations to other individuals.

The proposed data model is a restricted form of ontology
we call generic model. 1t is restricted, since our goal is to
rebuild or convert the sequences of commands from a model
contrary to ontology that is applied at first to model semantic
terms specific to the supplier, and on the other hand, to assist
in the automation of the correspondence between the terms in
order to create a unified database of the application information
such as the management of the various marks of equipment
of network can be realized by single gateway. Full-fledged
ontologies allow one to perform reasoning on the elements of
the ontology, and not merely perform translation of concepts
from a domain to another.

2) A Generic Data Model: Generally, a network device
such as a switch or router has a set of configurable parameters,
stored as a pair name, values. These parameters are organized
hierarchically, according to the part of the device where they
apply. We call these pairs name, values concrete parameters.
They are valuated according to the configuration of a device.
They represent a particular feature or a component of the device
behavior. Note that the values of each parameter have a specific
defined type that can be known in advance.

Device

wersion : String
name : String
description : String

WendorOSReference

lastUpdate : Date
vendor: String

0.+

GenericComrmand

uid :int

generichame : String

VendarCommangsyersian

wersionMin : String

0
AbstractOeviceCommanc!

wersionMax : String
deviceType : String

name : String

g *
children

0

¥.-
VendorSyntax

0.r negatable | boolean

AuxliarComrmand

wersionMin : String

1| DeviceCommand DeviceParameter

parent

GenericParameter

wersionhtax : String

negated : boolean walues ArrayList=String=

name : String
uid int

1+

SyntaxTerm

cardinalitybin © int
cardinalityMax : int

0=
AtomicTerm

I

WendorkKeyword TermQrTerm

VendarParameter

name : String word : String

ListOptionltern

cardinalityMin © int

value ; Strin
4 a.

_—

cardinalitiax int
il 1: String

type | String

Figure 1: The UML data model for our abstract configuration structure.

From a switch to another, parameters have similar names
and a similar hierarchy. Indeed, the internal structure of a switch
can vary but its set of parameters remains close. Although the
names of specific parameters may vary from one version to
another, it is possible to combine two different settings versions
with the same functionality. We could do the same grouping
parameters devices from different vendors under the same
parameter name. We then get a generic parameter that would
have the same meaning for all devices. This generic parameter
consists of a generic name that uniquely identifies all devices.
It is associated with a set of concrete parameters that have
their own specific name and value set. This data model is
used to separate the syntactic and hierarchical aspects of the
manufacturers of functional aspects of settings. Whatever the
format of the input configuration, it is possible to identify with
certainty a specific parameter and values with reference to the
generic parameter.

To reflect the hierarchy of parameters of a device, we
introduce the concept of commands. A command includes one
or more parameters, a name and a set of underlying commands.
The data model includes the same way the specific orders of
devices in a generic command. This allows to manage changes
that may affect hierarchical organization of a device to another.

C. Work in Progress

In this section, we describe an implementation in progress,
which shall allow network administrators to store devices with
their specific parameters, bind them with the generic parameters
and find the corresponding syntax for every device.

1) Architecture: A device is described by a set of commands
associated therewith. These commands have other underlying
commands or parameters. These objects form a hierarchy of
parameters and commands that give the device configuration.
In fact, each DeviceCommand and DeviceParameter contains
a link to a unique GenericCommand and GenericParameter.
This link allows each device to be described generically. One
can thus store an entire device in the form of a tree with
nodes for DeviceParameter and their associated values and
DeviceCommand. Each of these nodes will contain a reference
to a generic external parameter.

Along with this structure, we have implemented a second
solution we named VendorOSReference. It can store all the
syntaxes used and the parameters required by a vendor for
different versions of its OS. We thus find the VendorParameter
which is the concrete setting device. This parameter is included
in a set of other words and form syntax: VendorSyntax. Among
these terms are found keywords and strings necessary for
the proper understanding of the syntax. Optional terms are
taken into account in the solution via TermOrTerm. We can
define several versions of commands by declaring several
VendorCommandsVersion nodes which regroup the different
syntaxes needed to run this command, for each version
provided by the vendor. Each node has a reference to the
same GenericCommand that uniquely identifies it.

The relationship between concrete and generic parameters
is done by the chosen data structure. To perform processing
on these data, we developed a Python data structure based
on the Meta-CLI format. The implemented program loads
the devices data and OS reference from the XML files. It is

then possible to perform processing on the device by browsing
nodes as Python objects.

2) Example Usage: To better understand our solution, we’ll
show an example as a whole. For this example we chose to
work with Cisco switches (see Figure 2). We can extract the
configuration file via CLI. We assume that the verification
form is NFD (Normal Form disjunctive) format. Originally,
this Cisco router was configured by CLI commands of Cisco
IOS. We present the abstract version of these commands, which
characterize the configuration of the device (a).

The abstract device previously written in Meta-CLI (XML)
follows a documentation: the reference of the vendor. This
reference (see figure 2b) declares all commands and parameters
used by an abstract device, these abstract commands and
parameters are related to physical commands and parameters
of the real device (those provided by the vendor).

3) Construction of the Reference: In order to associate one
generic parameter to each concrete parameter, it is necessary to
first construct a reference for each operating system command.
This will include a uid for each parameter. An excerpt of the
reference file containing some of the parameters for Cisco’s
IOS can be found in Figure 2b. We can see there that they have
built a node by Cisco command and one node by parameter.

The syntax of the commands is stored in the form of an
ordered list of keywords and parameters. Some commands
can be negated, as is the case of the IP address. This means
that it is possible in the Cisco syntax to write no ip address
corresponding to the lack or absence of IP address on the
interface. We see that only one single syntax was defined by
command but that it is possible to define several if this one
comes to change. There is normally a unique reference that
groups the syntax of all the manufacturers and all their versions.

III. CONCLUSION

In this paper, we have shown how a generic data model can
accommodate configuration information for network devices in
a vendor-independent fashion. By mapping concrete instances
of parameters to generic nodes in a tree structure, querying
configuration values for various devices merely amounts to
pointing the appropriate parameter in that structure. The
mapping between generic and concrete parameters then makes it
possible to recreate the command or the sequence of commands
required to retrieve the parameter value for a given device. In
time, such a generic approach may alleviate interoperability
issues in the management of heterogeneous networks by
easing out discrepancies between the command line syntax
and structure of various devices.

REFERENCES

[1] T. R. Gruber. A translation approach to portable ontology specifications.
Knowl. Acquisition, 5(2):199-220, 1993.

[2] P. Kalyanasundaram and A. S. Sethi. Interoperabifity issues in hetero-
geneous network. Journal of Network and Systems Management, pages
169-193, 1994.

[3] J. E. Lépez De Vergara, V. A. Villagrd, and J. Berrocal. Semantic man-
agement: advantages of using an ontology-based management information
meta-model. In Proceedings of the HP Openview University Association
Ninth Plenary Workshop (HP-OVUA’2002), distributed videoconference,
pages 11-13, 2002.

<Device version="12" name="Pomerol">
<DeviceCommand negated="false" name="version" ref_cmd
—nqns
<DeviceParameter name="num_version" ref_param="11">
<Value>12</Value>
</DeviceParameter>
</DeviceCommand>

<DeviceCommand negated="false" name="hostname"
ref_cmd="2">
<DeviceParameter name="name" ref_param="12">
<Value>Pomerol</Value>
</DeviceParameter>
</DeviceCommand>

<DeviceCommand negated="false" name="interface"
ref_cmd="3">
<DeviceParameter name="name" ref_param="13">
<Value>Loopback0</Value>
</DeviceParameter>
<DeviceParameter name="option" ref_param="14" />
<DeviceCommand negated="false" name="ip address"
ref_cmd="4">
<DeviceParameter name="ip" ref_param="15">
<Value>10.10.10.3</Value>
</DeviceParameter>
<DeviceParameter name="mask" ref_param="16">
<Value>255.255.255.0</Value>
</DeviceParameter>
<DeviceParameter name="scndry" ref_param="17"/>
</DeviceCommand>
</DeviceCommand>
</Device>

(a) Meta-CLI file

<VendorOSReference lastUpdate="09/12/2013" vendor="CISC0">
<GenericCommand genericName="ip address" uid="4">
<GenericParameter name="ip" uid="15"/>
<GenericParameter name="mask" uid="16"/>
<GenericParameter name="secondary" uid="17"/>
<VendorCommandsVersion versionMin="all" versionMax="all"
deviceType="all">
<VendorSyntax negatable="true">
<SyntaxTerm cardinalityMin="1" cardinalityMax="1">
<VendorKeyword word="ip address"/>
<VendorParameter name="ip" guid="15"/>
<VendorParameter name="mask" guid="16"/>
<VendorParameter name="secondary" guid="17"/>
</SyntaxTerm>
</VendorSyntax>
</VendorCommandsVersion>
<AuxiliarCommand versionMin="all" versionMax="all" guid="3"/>
</GenericCommand>
</VendorOSReference>

(b) Cisco Vendor Reference

Figure 2: Device example: Cisco router

[4] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy core
information model (RFC 3060), 2001.

[5S] D. Thomas and J. Wouter. High-level system configuration. 2D2 edition:1
location:Cambridge, UK date:12-13 May 2008, 2008.

[6] A.K.Y. Wong, P. Ray, N. Parameswaran, and J. Strassner. Ontology
mapping for the interoperability problem in network management. /EEE
Journal on Selected Areas in Communications, 23(10):2058-2068, 2005.

