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Abstract—Cloud computing is a technology that enables elastic,
on-demand resource provisioning. Migrating applications to the
cloud can increase their elasticity, allowing them to adapt
to workload changes by dynamically allocating resources. In
a multi-tenant application multiple client organizations, each
referred to as tenants, make use of one or more shared application
instances. These shared instances must however behave like
a private instance by guaranteeing both data separation and
performance isolation for every tenant. In order to achieve high
scalability, a multi-tenant application running on the elastic
cloud requires a flexible and scalable architecture for both the
computational resources and the storage resources.

In this paper we present and evaluate the design of a
data management framework which can be used to extend
existing multi-tenant cloud applications in order to achieve
high scalability of the storage resources. We describe the most
important components, and discuss important design choices. The
framework invokes data allocation algorithms in order to find a
feasible allocation of tenant data resulting in a minimal operating
cost and a maximal performance, while taking no more than
10 ms to execute.

I. INTRODUCTION

Multi-tenancy enables the serving of multiple client organi-
zations, referred to as tenants, by a single, shared, application
instance. Adding multi-tenancy to an application increases
the utilization of available hardware resources and scaling
becomes easier, resulting in lower overall application costs.
Although a single instance is shared between multiple tenants,
the instance needs to behave like a private instance towards
every tenant by guaranteeing both data separation and per-
formance isolation and providing support for tenant-specific
customization.

Cloud computing is a technology that enables short-term
elastic usage, the elimination of up-front costs, and near
infinite capacity on-demand. As public cloud infrastructure
providers charge for the amount of resources used, an optimal
usage of available resources is desired to reduce operating
costs. An elastic cloud enables applications running on the
cloud to adapt to workload changes by provisioning resources
automatically. Adding multi-tenancy to an application reduces
the operating cost. However, as the number of tenants grows,
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Fig. 1. A multi-tenant application running on the public cloud requires a
scalable architecture for both the computational resources (application servers)
and the storage resources (database servers).

a scalable architecture for both the application and tenant data
is required.

Figure 1 illustrates this concept. The multi-tenant applica-
tion is running on one or more application server instances,
depending on the current load. If the current load on the
application server instances becomes too high, additional in-
stances must be added on the fly by a management component
responsible for the elasticity of the computational resources.
Similarly, the tenant data could be allocated over multiple
database instances. If the current load on the database servers
becomes too high, additional database instances should be
added, and the existing tenant data must be reallocated.
This is the task of a management component responsible for
the storage elasticity. When a tenant user connects to the
application, a load balancer will select one of the available
application instances. The application itself however needs to
connect to the proper database instance where the tenants’
data is stored. Therefore, the application architecture should
support the dynamic allocation of tenant data to different
database servers.

In this paper, we present a hierarchical multi-tenant data
management framework. This framework can be used to



extend the architecture of typical cloud applications in order to
achieve high scalability of the storage resources. We illustrate
this for an example typical cloud application, and describe
the most important components of the framework. We discuss
important design choices and evaluation results.

The remainder of this paper is structured as follows. In the
next section we discuss related work. Afterward, in Section III
we present an extended architecture and in Section IV we
describe the most important design decisions. In Section V,
we present a discussion and evaluation and in Section VI we
state our conclusions and discuss avenues for future research.

II. RELATED WORK

The work presented in this paper extends previous work
as described in [1], [2]. In [1] we introduced a hierarchical
method for organizing tenants and storage of tenant data, and
characterized the impact on the performance in a theoretical
way. In [2], we presented multiple data allocation algorithms
for finding an acceptable allocation of tenant data to different
database instances. In this paper we focus on the design of
a data management framework which is built on top of an
optimized version of one of the previously presented data
allocation algorithms.

Since a majority of applications are data driven, database
management systems powering these applications form a crit-
ical component in the cloud software stack. In [3], a research
overview is given for designing a scalable data management
layer in the cloud. The authors introduce concepts as data fu-
sion and data fission or partitioning for combining and splitting
large databases. In this paper, we also present the design of a
scalable data management system, but the framework focuses
on multi-tenant applications with support for tenant-specific
data policies.

For the storage of persisting application data either a rela-
tional database system providing a traditional SQL interface
or a NoSQL database system could be used. NoSQL databases
such as Apache Cassandra [4] are gaining popularity, as they
perform better than relational SQL databases in some scenarios
where only a limited subset of the SQL functionality is used.
Wang et al. [5] illustrate this by describing the principles of
NoSQL databases and comparing a traditional relational model
with a Cassandra-based model. The performance of SQL and
NoSQL databases is compared in [6]. The authors however
note that NoSQL databases don’t always perform better than
SQL databases, as within NoSQL databases there is a wide
variation in performance based on the type of operation. Ap-
plying database partitioning techniques to NoSQL databases
also is still an ongoing research topic, as illustrated in [7].
The framework presented in this paper is independent of the
underlying database system, and can be implemented using
either SQL or NoSQL databases (or even a combination of
both). As a result, it can also be used for applications which
require a SQL interface or legacy applications built on top of
relational databases.

Data assurance policies can be used to meet legal and
business data archival requirements for both persistent data
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Fig. 2. Example three-tier architecture with the HMTDM framework added
as an additional layer.

and records management. Compliance with regulatory policies
on data remains a key hurdle to cloud computing [8]. Jun
Li et al. [9] [10] propose a policy management service that
offers scalable management of data assurance policies attached
to data objects stored in a cloud environment. With GEO-
DAC [11], the authors provide a policy framework that enables
the expression of both the service providers’ capabilities and
customers’ requirements, and enforcement of the agreed-upon
policies in service providers’ environments. The data assurance
policies described in their work can add additional constraints
on the allocation of tenant data and therefore the framework
needs to be flexible enough to support such and other data
policies.

III. ARCHITECTURE OVERVIEW

The Hierarchical Multi-Tenant Data Management
(HMTDM) framework is designed to extend the architecture
of typical cloud applications in order to achieve high
scalability of the storage resources.

A three-tier architecture is often used for building web
applications, and consists of 3 layers: the client layer, the
business logic layer and the data access layer. The data
access layer offers an interface to the persistent data of the
application, and most web applications are using database
instances for the storage of data. These database instances
can be logically grouped together as a fourth layer, which
we will refer to as the database layer in the application
architecture. The database layer could consist of relational
database instances, NoSQL database instances or a mix of
both, depending on the requirements of the application.

To achieve high scalability of the database layer, the
HMTDM framework can be introduced as an additional ab-
straction layer between the data access layer and the underly-
ing database layer. By doing so, the physical distribution of the
persistent data over the physical databases is hidden towards
the data access layer. The data access layer provides a generic
interface towards the rest of the architecture, independent



from the selected database systems, the number of database
instances and the distribution of tenant data among these
instances.

Figure 2 illustrates an example three-tier architecture with
the framework introduced as an additional layer and the
database instances grouped inside the database layer. Other
architectures are possible, but most architectures will have a
clear interface between the business logic and the persistent
storage, making it possible to introduce the framework in
between. As can be seen in Figure 2, we have defined three
main components inside the framework:

• The Datastore Selection component is responsible for
selecting the correct database and locating the data in
one of the possible databases when data from a single
tenant can be divided over multiple database instances.

• The Data Access Control component verifies if the
current tenant user has the required permissions to read
and/or modify the selected data. This component can
be implemented using Attribute-Based Access Control
(ABAC) as illustrated in [12], [13].

• The Data Elasticity component is responsible for achiev-
ing high scalability of the storage resources, by increasing
and/or decreasing the number of database instances and
reallocating the tenant data, based on the current usage,
taking into account the different constraints such as data
retention policies.

The data access control component and the datastore selec-
tion component define the interface towards the data access
layer. The data elasticity component on the other hand only
communicates with the database layer, and is inaccessible from
within the multi-tenant application. The component however
provides a management interface which can be used for
monitoring and configuration. As the data elasticity is the most
complex and most important component of the framework, we
will describe the design of this component in more detail in
the remainder of this paper.

A. Data Elasticity Component

One of the best-known opportunities of migrating applica-
tions to the cloud is its elasticity, allowing applications running
on the cloud to adapt to workload changes by provisioning
and deprovisioning resources in an autonomic manner. This
elasticity can be offered as a service by the cloud provider
or a third party. For applications running on Amazon AWS,
Amazon offers CloudWatch [14], whereas for applications
running on Microsoft Azure, there exist some third party
products such as AzureWatch [15]. Cloud providers also
often provide an Application Programming Interface (API),
allowing application developers to implement a custom elas-
ticity component. These solutions however mainly handle the
elasticity of computational resources (the application servers
in Figure 1), and focus less on the elasticity of the storage
resources (the database servers).

As a result, we introduced the data elasticity component
inside the framework, responsible for achieving high scalabil-
ity of the storage resources by allocating the required amount
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Fig. 3. The functionality of the data elasticity component, responsible for
horizontal scaling of the storage resources.

of resources, in this case the number of database instances
(horizontal scaling). It evaluates the current load on the
different instances, adds or removes additional instances and
reallocates tenant data, taking into account different constraints
such as data retention policies. The data elasticity component
should be implemented as a process running on a separate
instance as it should have no impact on the performance of
the main application.

Figure 3 illustrates the functionality of the data elasticity
component. The system starts by allocating the tenant data
over an initial number of database instances, and progresses
into the control loop. During this control loop, the current
load on the different instances is periodically evaluated. If the
current load is too high, the system will add one or more
additional database instances and reallocate the existing data
after which the control loop continues. Similarly, if the current
load is too low, the system will reallocate the existing data and
remove the empty instances. The data elasticity component
makes use of data allocation algorithms to find a feasible
allocation of tenant data over the database instances. Re-
evaluation of the current allocation of tenant data can also be
triggered by a certain event, such as an overfull or underfull
database instance, or when a tenant or subtenant is added or
removed.

B. Database Layer

The database layer consists of multiple database instances
and (sub)tenants can either have a dedicated instance or share
an instance with other (sub)tenants. Tenants with a large
amount of data can also have multiple database instances, for
example using existing technologies such as database sharding,
or in some scenarios the tenant could be logically divided
into multiple subtenants, and the existing tenant data can be
reallocated over multiple subtenant database instances.

One database instance is shared between all tenants, and
we will refer to this instance as the tenant configuration
database. This instance holds all general tenant information
such as tenant specific configuration parameters, feature con-
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figuration (if the multi-tenant variability approach from [16]
is used), billing information and data assurance policies. For
every tenant, a representation of the current allocation of data
is also stored. The datastore selection component accesses this
shared database in order to select the correct tenant database
instance.

The shared tenant configuration database shouldn’t become
the bottleneck of the application as the amount information
in it is limited, because only general information about the
tenants is stored, and the most important information can be
cached by the application. However, if this database becomes
a bottleneck, it can be replicated or partitioned. The data
elasticity component should not be used for this, as this
component only handles the scalability of the other tenant
database instances.

IV. DESIGN DECISIONS

A. Tenant Tree

In a multi-tenant application, the tenants and subtenants
can be logically represented using a tree structure, the tenant
tree [1]. In this tree, every node represents a tenant or
subtenant, and the root represents the application provider.
Figure 4 illustrates an example tenant tree consisting of three
levels, but more levels are possible.

B. Data Allocation Algorithms

As illustrated in Figure 3, the data elasticity component
invokes a data allocation algorithm in order to achieve high
scalability of the database layer. The goal of the data allocation
algorithms is to find a possible allocation of tenant data with
minimal cost. In previous work we described several data
allocation algorithms that can be used for the implementation.
These algorithms are either based on linear programming
or permutation based and are summarized in table I. All
algorithms are designed to work for a single tenant and its
k subtenants (two levels of the tenant tree), but they can be
applied on the full tenant tree in a recursive way as illustrated
in [2].

The data allocation algorithms are using a cost function
in order to evaluate a possible allocation of tenant data given
certain metrics. Different metrics are possible for the design of

TABLE I
OVERVIEW OF THE SELECTED DATA ALLOCATION ALGORITHMS

Linear programming based

LPDAA Linear Programming Data Allocation Algorithm
ILPDAA Integer Linear Programming Data Allocation Algorithm

Permutation based

BDAA-n Basic Data Allocation Algorithm (n bits)
FDAA-n Fast Data Allocation Algorithm (n bits)

this cost function, depending on the application’s requirements
and additional constraints for the storage of tenant data. A
first possible metric is the number of database instances as
more instances will result in a higher cost. A second possible
metric is the average response time for each tenant and for
the whole system, which can be calculated using the equations
introduced in [1]. The cost function can also take into account
the current load on the different database instances. In some
scenarios, especially in heterogeneous environments where
different public database providers are used, the provider may
charge for moving data between 2 databases as this will use
bandwidth. In this case, the total amount of data that needs
to be migrated to another database instance can be counted in
order to calculate the data migration cost. If the application is
running on multiple instances on different physical locations,
the network latency between the application server and the
database server is also a useful metric. Different scenarios
could use different metrics and therefore a different cost
function.

The linear programming based algorithms solve the data
allocation problem by applying existing linear programming
techniques on a mathematical model. Although they result in
low execution times, the possibilities for customization of the
algorithm for specific use cases are limited due to the need
for linear functions for both the problem constraints and the
objective function (the cost function).

The permutation based algorithms iterate over different
feasible allocations of the tenant data (permutations), and for
every valid permutation the corresponding cost is calculated.
For a single permutation, every subtenant is represented by n
bits. If n = 1, every subtenant can either store all of its data in
a dedicated datastore, or move all data to the datastore of the
parent tenant. When n > 1, subtenants can divide data over
a dedicated datastore and the datastore of the parent tenant.
Larger values for n will result in a larger search space, but at
the cost of higher execution times.

The Basic Data Allocation Algorithm (BDAA) iterates over
all possible permutations within the defined search space, but
large values for k (the number of subtenants) and n (the
number of bits used to represent a single subtenant) can
rapidly make the algorithm unusable as it would take too
much time to evaluate all permutations. As a result, the Fast
Data Allocation Algorithm (FDAA) was designed to reduce
the complexity of the algorithm. This algorithm prunes the
search space in different ways, for example by removing small
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tenants from the input data and adding their data to the parent
node, reducing the number of permutations, and by cutting
search paths that have a little influence on the calculated cost.

For the implementation of the data elasticity component,
we selected the FDAA. To minimize the overhead due to the
reallocation of tenant data, the cost function of the algorithm
was configured to include the number of records that needs
to be migrated to a different database instance as a metric.
In our initial design, we used the FDAA-2 (n = 2), but
later we decided to use the FDAA-1 instead, in order to keep
data belonging to a single (sub)tenant together. By doing so,
not only the number of permutations is reduced (reducing
the execution time of the data allocation algorithms), but
existing database partitioning techniques can also be applied,
for example by partitioning based on the (sub)tenant ID, and
the complexity of the system is strongly reduced as described
in more detail in Section V.

C. Support for Parallelization

Although the FDAA already reduces the complexity of
the BDAA, we added optional support for parallelization to
further reduce the execution time of the permutation based
algorithms. As the permutation based algorithms enumerate
over a set of different feasible permutations, the evaluation of
the permutations can be divided over different server instances.
This however introduces the need for an extra instance, the
management node, whose task is to divide the permutations
over different worker nodes and combine the results in order to
select the best permutation. The management node implements
the functionality illustrated in Figure 3, whereas worker nodes
only implement the selected data allocation algorithm. Figure 5
illustrates this concept for the parallel execution of BDAA-1
for a single tenant with 10 subtenants, using 4 worker nodes.
The management node and the dynamic provisioning of the
worker nodes can be implemented on top of an elastic cloud
by invoking the provisioning functions through the cloud API.
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V. DISCUSSION AND EVALUATION

Multi-tenant applications should provide a clear isolation
of tenant data. As a result, queries for tenant data should
not return data belonging to multiple tenants. However, when
data belonging to a single tenant is distributed among different
database instances, some complex queries could become unus-
able as they would have to access different database instances,
therefore only simple select, update and delete queries could
be used, and the business logic needs to implement the
merging of results from different instances, for example by
implementing the bottom-up search method as described in [1].
Keeping data belonging to a single tenant together, for example
by using n = 1 in the permutation based algorithms, elimi-
nates this problem, and when database partitioning techniques
are applied, the system even supports queries over multiple
tenants as the separate database instances appear towards the
application as a single virtual database instance.

For the evaluation, the framework was implemented in Java
and all simulations were executed on a Linux server with
an Intel Core i5 CPU (2.80 GHz) and 4 GiB of memory.
Figure 6 illustrates the average execution times for the different
data allocation algorithms for an example scenario with an
increasing number of subtenants. As can be seen from this
figure, using n = 1 instead of n = 2 reduces the execution of
the algorithms, and the FDAA has lower execution times than
the BDAA.

Using the FDAA-1 instead of the FDAA-2 reduces the
search space of the data allocation algorithms, but the cal-
culated cost of the selected optimal solution differs only a
little bit as illustrated in Figure 7. In this simulation, the
cost function of the algorithms was configured to return a
valid allocation of tenant data resulting in a minimum average
response time with a minimum number of database instances.
The tenant and its subtenants were assigned an initial amount
of data and each iteration the amount of data for each tenant
was slightly increased. Similar experiments were executed
with different iterations and different cost functions, but these
experiments provided similar results. Using the FDAA instead
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of the BDAA has no influence on the calculated cost, as
both algorithms are returning the same permutation. The extra
cost of using the FDAA-1 instead of the FDAA-2 is strongly
compensated by the advantages of keeping data belonging to
a single tenant together as discussed above.

Although searching for the optimal allocation can happen
offline, scenarios with a very high number of subtenants could
still make the algorithm unusable as it would take too much
time to find the optimal allocation of tenant data. However,
by adding parallelization and using multiple worker nodes,
the execution time can be heavily reduced. An elastic cloud
provider offers a good base for the implementation of the data
elasticity component and the creation and deletion of worker
nodes, and when there is no hard time constraint on the re-
evaluation of the current data allocation, the cloud bidding
pricing model based could even be used to minimize the cost
of running the worker nodes.

VI. CONCLUSIONS

Scalable multi-tenant applications on the public cloud re-
quire a scalable architecture for both the application and data.
In this paper, we presented the design of a hierarchical multi-
tenant data management framework, which can be used to
extend existing cloud applications in order to achieve high
scalability of the storage resources. We introduced three main
components inside the framework. The data elasticity compo-
nent is the most important component as it is responsible for
achieving high scalability of the database layer by allocating
tenant data to multiple database instances. During the control
loop of this component, a data allocation algorithm is invoked
in order to find a feasible allocation of tenant data with
minimal cost. When a new allocation is found and reallocation
is recommended, the system reallocates the tenant data and
adds or removes additional database instances if required.

We described and evaluated the design of the data elasticity
component and discussed important design choices. For the
implementation of the data elasticity component, we selected
the FDAA-1 in order to keep data belonging to a single tenant

together. Doing so not only reduces execution times, but also
introduces other advantages and enables the usage of existing
database partitioning techniques. We also introduced optional
support for parallelization to further reduce the execution time
of the algorithms, and described a strategy for implementing
the data elasticity component and the dynamic provisioning of
the worker nodes on top of an elastic public cloud.

The presented framework can be extended to build a generic
middleware layer for hosting multi-tenant applications on the
public cloud. The design, implementation and evaluation of
this generic middleware will be the focus of our future work.
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