
A Distributed Render Farm System for Animation
Production

Jiali Yao, Zhigeng Pan*, Hongxin Zhang

State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, China

{yaojiali, zgpan, zhx}@cad.zju.edu.cn

Abstract. Render farm is widely used in movie industry to solve the long
rendering time problem. By parallel computing rendering jobs, render farm can
speedup the rendering process in a scalable way. In this paper, we present an
efficient design of render farm system name DRFarm in distributed
environment. The most important feature of the system is the capacity aware
task scheduling strategy. We first introduce the hierarchy tasks subdivision
method which ensures flexible merging and dividing tasks. By carefully
grouping tasks and dynamically assign them in different modes, the overall
parallel rendering time can be reduced by exploiting coherence comparing to
conventional methods. Furthermore, to adopt various rendering jobs from
different locations, we design a general rendering service interface with unified
job definition.

Keywords: parallel rendering, distributed rendering, render farm

1. Introduction

In movie industry, rendering a full-length animation film cost numerous CPU time.
Render farm is built to reduce the rendering time by parallel computing individual
frame in distributed environment.

Typical render farm is constructed for animation film rendering. The first
full-length animation film, Toy Story, used 117 Sun workstations and the Pixar
RenderMan system. The film, Shrek 3, is rendered by more than 4000 HP
workstations, where every second requires 3000 hours CPU time. Render farm is also
widely used in architecture design, advertising, and the visual effects industry.

Different from other massive parallel systems, render farm emphasizes on
cost-effective ratio, and usually adopts contemporary commodity workstations.
Although multiprocessor platform performs excellent for parallel rendering,
especially interactive ray tracing applications [1], render farm focus on high quality
off-line batch rendering.

Our render farm system which named DRFarm is built on commodity multi-core
PCs connected by commodity Ethernet infrastructure. In our implementation, we
focus on scalability and rendering client utilization by adopting hybrid task schedule
method and flexible task grouping strategy.

* Corresponding author

2. Related Works

The “render farm” concept has long been applied in movie industry to achieve high
quality images by parallel computing. The “Kilauea” renderer parallel computes
global illumination algorithms on cost-efficient PCs running Linux, but not
considered for real-time purpose. Recently, interactive ray tracing system has been
implemented from SGI workstations to even commodity PC clusters [2]. These
systems use highly custom optimized renderers. Specially optimized renderers help
exploit hardware feature, such as SIMD units [3], but loose certain flexibility.

Commercial render farm management systems include Qube from PipelineFX,
Enfuzion from Axceleon, Muster from Virtual Vertex, and Deadline from Frantic Film.
There are also open source render farm systems such as drqueue. These systems
generally support as much renderers as possible for different users, and focus on
service quality. However, such system usually split tasks into single frame, further
optimization have to be manually configured if possible.

Online render services are provided by remote render farms, such as RenderRocket,
which helps make global utilize of computing resource. Grid [4] or volunteer
computing [5] are also suitable for remote rendering. Implementing such remote
parallel systems usually requires design network interface and handle data access in
complex environment [6].

In our work, we offered novel strategy to handle task schedule. Hierarchy task
subdivision definition is introduced to ensure both fine and coarse granularity. With
flexible task merging and subdividing method, tasks can be grouped together aware of
client’s computing capacity to exploit temporal coherence between frames.

3. System Design

3.1 System Overview

Fig. 1. The architecture of the render farm system

Figure 1 is the architecture of the render farm system (DRFarm). In the system, the
server manages all the storage and rendering resources, and provides services to

remote or local users by general render service (GRS) interface. In the render farm,
hardware is connected by local network infrastructures.

We implement network architecture in C/S mode, and TCP/IP is employed to
handle communication. Most other render farm systems use local network file sharing
strategy for scene data access, which is based on SMB in windows operation system
or Samba in Linux OS. We implement both to avoid network bottleneck.

3.2 Hierarchy Task Subdivision

Renderers used in render farm system are generally based on ray-tracing algorithms
which are famous for embarrassing parallelism. When each client has necessary data
resources, pixels can be computed independently. For the average user, some popular
commercial animation packages employ coarse-grain parallelism to allow rendering
of individual frames of an animation across a network of machines. Other renderers
such as POV-Ray [8], parallelization scheme works on single images only.

Fig. 2. Temporal and spatial parallelism in animation

Among all the parallel methods, we focus on temporal parallelism between frame
sequences and spatial parallelism inside single frame. Since animation frame has
inherent corresponding to each other, we employ a hybrid method to dynamically
subdivide single frame into finer granular tasks.

Modern hardware architecture benefits from hierarchical arrangement of different
levels parallelism. For example, the Cell cluster has three levels hardware parallelisms
to exploit [7]. Furthermore, tasks can be expanded and merged in a flexible manner,
which is a requirement of capacity aware tasks assign algorithm.

3.3 Dynamic Load Balance

Granularity of tasks greatly affects load balance performance. Conventional method
in commercial render farm management system is setting up a task pool and dividing
the tasks into a modest but fixed granularity such as one frame or two. With dynamic
task subdivision method, we employ capacity aware strategy which will be introduced
in experiment section.

We design load balance algorithms for both job completion oriented and client
utilization ratio oriented requirements, named active mode and passive mode
separately.

Fig. 3. Dynamic task schedule in active mode

In active mode, the server groups and distributes tasks to rendering clients by their
rendering capacity. If certain client finished all the tasks assigned, it will search the
queue to find unfinished tasks assigned to other clients. In passive mode, all tasks will
be pushed into the task queue. Rendering client fetches tasks each time when its
current state is idle. The passive mode doesn’t guarantee job completion in coarse
granularity.

3.4 Unified Job Submission

Supporting various kinds of renderers is the key requirement in the render farm
system. We define an abstract level between actual renderer and user, which named
general rendering service interface (GRS). After analyzing, we define jobs in
quintuple form: Job = {Type, Job decomposition, Renderer, Data access, Result
composition}. The five elements are the minimal elements of submitted job script.

Figure 1 illustrates the functionality of GRS. Users located in different area can
submit various types of Jobs via GRS interface. A script of the current job will be
generated including all necessary items for data access and task subdivision. The
script is coded in XML format, thus can be easily decode and transferred into other
render farm platform script

 4. Experiment

In practice, the computing capacity of rendering clients might be different. Based on
the fact that frequent memory operation and communication between rendering
clients will cause the system inefficient, we present a capacity aware grouping
strategy. Instead of using third party tools to measure performance, we firstly run fine
grain tasks to collect overall rendering information of each rendering client. With the
heuristic statistics, new tasks are grouped together as coarse grain ones to exploit
coherence and reduce loading time.

Fig. 4. Rendering time of a 48 frame simple Maya animation.

To illustrate how the flexible tasks subdivision and grouping algorithm work, we
task a 48 frames animation (plane fly animation as shown above) for example, which
is rendered by Maya renderer. The experiment is running on 6 different workstations.

In this example, compared with scene loading time, rendering time of one frame is
very short. The naïve strategy split tasks into single frames thus caused great loading
time consumption. The green line is the fixed task group in size of 2. As shown above,
capacity aware grouping strategy has flexible task size according to rendering clients’
capacity and outperforms other two conventional strategies.

After repeating the naïve while the finest subdivision algorithm several times, we
can find that client with more computing power tends to compute more frames. Figure
5 is the average frames rendered at each client.

Fig. 5.Client capacity represented by frames computed.

Client capacity can be evaluated by clients’ rendering history statistics. With client
rendering capacity in mind, the system therefore subdivides frames into finest
granularity and then merges them by capacity value. As shown in Figure 4, capacity
aware strategy can achieve very excellent speed-up.

5. Conclusion and future work

In this paper we present the fundamental concept for building a render farm system.
We have shown that commodity PC cluster also performances well as a distributed
parallel rendering environment. Although increasing the client number in straight
forward way will not effectively promote speedup limited by network I/O bandwidth,
acceptable scalability can still be achieved using methods like grouping and
coherence exploiting.

Currently, render farm is still limited in local area network. However grid and
volunteer computing systems can help utilizing remote resources. Future work
can focus on idle PCs based remote rendering.

References

1. Bigler, J., Stephens, A., Parker, S.G.: Design for parallel interactive ray tracing systems.
In: Proceedings of the IEEE Symposium on Interactive Ray Tracing, pp. 187--195 (2006)

2. Wald, I., Benthin, C., Dietrich, A., Slusallek, P.: Interactive Distributed Ray Tracing on
Commodity PC Clusters - State of the Art and Practical Applications. Lecture Notes on
Computer Science 2790, pp. 499--508 (2003)

3. Benthin, C., Wald, I., Scherbaum, M., Friedrich, H.: Ray tracing on the CELL processor.
In: Proceedings of the IEEE Symposium on Interactive Ray Tracing, pp. 15--23 (2006)

4. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a new computing infrastructure.
Morgan Kaufmann, San Fransisco (2004)

5. Anderson, D.: BOINC: A System for Public-Resource Computing and Storage grid. In:
Fifth IEEE/ACM International Workshop on Grid Computing, pp. 4--10. IEEE Computer
Society, Washington, DC (2004)

6. Pan, Z., Shi, J., Zhang, M.: Distributed graphics support for virtual environments. In:
Computers & Graphics vol. 20, no. 2, pp.191--197 (1996)

7. Komatsu, K., Takizawa, H., Kobayashi, H.: Hierarchical Parallel Processing of Ray
Tracing on a Cell Cluster. In: 1st International Workshop on Super Visualization,
CD-ROM, (2008)

8. POV-Ray documentation, http://www.povray.org/documentation/view/3.6.0/7/

