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Abstract. In computer graphics, methods for mesh simplification are common. 
However, most of them focus on static meshes, only few works have been 
proposed for simplifying deforming surfaces. In this paper, we propose a new 
method for the multiresolution representation of time-varying meshes based on 
deformation area and feature preservation. Our method uses the famous QEM 
(quadric error metric) as our basic metric. The idea is to modify the edge 
collapse cost by adding the deformation and sharp feature weight to the 
aggregated quadrics errors when computing the unified edge contraction 
sequence, then adjust this sequence slightly for each frame to get a minimum 
geometry distortion. Our approach is fast, easy to implement, and as a result 
good quality dynamic approximations with well-preserved fine details can be 
generated at any given frame.  
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1   Introduction 

Nowadays more and more deforming meshes, also called time-varying surfaces or 
dynamic meshes, are widely used in many applications such as movies, games, 
simulations and so on. These surfaces are often represented by dense triangular 
meshes with high resolution, so sometimes we have to decimate the redundant details 
of the models for more efficient visualization processing, transmission and storage. 
Many mesh simplification methods have been proposed to simplify original models 
by repeatedly removing vertices, edges, or faces. However most of them are to deal 
with static meshes, and very little work has been made to address the problem on how 
to maintain accurate approximations of time-varying surfaces. In this paper, we 
propose an efficient method for generating progressive deforming meshes with high 
quality. 

To simplify deforming meshes, one naive way is to simplify the models for each 
frame independently. This solution has the minimum error from the original model. 
However, since it does not exploit the temporal coherence of the data, it can involve 
the unpleasant visual artifact, causing the surface to vibrate and twitch. Moreover, this 
will waste a great deal of space. 



Some previous methods focus on preserving the static connectivity, i.e. the 
connectivity of the deforming surfaces remains unchanged for all frames. Such 
adaptations are inadequate and would cause arbitrarily bad approximations when 
deformation is highly non-rigid, since it does not take time-varying deformation into 
consideration. 

We therefore propose a new method for simplifying deforming meshes based on 
feature preservation. Our method is a better tradeoff between the temporal coherence 
and mesh distortion, i.e. we try to maximize the temporal coherence while minimizing 
the visual distortion during the simplification process. Our idea is to first calculate the 
aggregated QEM error for each edge as DSD [26] method. We use the collapsing cost 
variation to measure the deformation degree of the deforming mesh. We calculate the 
sharp features the first and last frame according to the classification of the edges. By 
adding the deformation and sharp feature weight to the collapsing cost, we finally get 
the unified edge collapse sequence. For each of the frame we first do a majority of 
edge collapse operations based on this sequence to maintain the temporal coherence, 
and do the remainder operations based on the independent QEM sequence to 
minimize mesh distortion. We demonstrate that this provides an efficient means of 
multiresolution representation of deforming meshes over all frame of an animation. 

The rest of this paper is organized as follows: Section 2 will review the previous 
works related in deforming mesh simplification. Section 3 will mainly introduce the 
procedure of our algorithm in detail and discuss its advantage. Section 4 will show the 
experimental results and compare our method with previous methods. Finally, 
conclusion will be made and some future work will be given in Section 5. 

2   Related Work 

Simplification and LOD. There are now extensive papers on the approximation of 
dense polygonal meshes by coarser meshes that preserve surface detail. These 
methods can be roughly divided into five categories: vertex decimation [1, 4, 33], 
vertex clustering [24, 29], region merging [8, 19, 27], subdivision meshes [6, 13, 23, 
21], and iterative edge contraction [2, 3, 9, 10, 11, 12, 15, 16, 17, 18, 28, 32]. A 
complete review of the methods has been given in [7, 25]. Among these methods, the 
process of iteratively edge contraction is predominantly utilized. Representative 
algorithms include those from Hoppe [15] and Garland [9]. In such methods, a simple 
multiresolution structure is generated on the surface that can be used for adaptive 
refinement of the mesh [34, 16, 22]. Traditional mesh simplification algorithm works 
fine on a single static model, but it is unable to be directly applied to deforming 
meshes since no temporal coherence has been considered. 

Simplification of time-varying surfaces. Shamir et al. [30, 31] are the pioneers to 
address the problem of simplifying efficiently deforming surfaces. They designed a 
global multiresolution structure named Time-dependant Directed Acyclic Graph 
(TDAG) which merges each individual simplified model of each frame into a unified 
graph. TDAG is a data structure that stores the life time of a vertex, which is queried 
for the connectivity updating. Unfortunately this scheme is very complex, and can not 
be easily handled. 



Mohr and Gleicher [26] proposed a deformation sensitive decimation (DSD) 
method, which directly adapt the Qslim algorithm [9] by summing the quadrics errors 
over each frame of the animation. The result is a single mesh that attempts to provide 
a good average approximation over all frames. Consequently this technique provides 
a pleasant result only when the original surfaces do not present strong deformation. 

DeCoro and Rusinkiewicz [5] introduced a method of weighing possible 
configuration of poses with probabilities. With articulated meshes, skeleton 
transformation is incorporated into standard QEM algorithm, and users must specify 
the probability distribution for each joint. This method works quite well, but is limited 
to a very specific class of deformations. 

Kircher and Garland [20] proposed a multiresolution representation with a 
dynamic connectivity for deforming surfaces. By their method, the simplified model 
for the next frame is obtained by a sequence of edge-swap operations from the 
simplified model at the current frame. They treat a sequence of vertex contraction and 
their resulting hierarchies as a reclustering process [7]. This method seems to be 
particularly efficient because of its connectivity transformation. 

Huang et al. [14] proposed a method based on the deformation oriented 
decimation error metric and dynamic connectivity update. They use vertex tree to 
further reduce geometric distortion by allowing the connectivity to change. Their 
method can provide a good approximation of deforming surfaces, but requires a 
complex structure. 

3   Our Algorithm 

Our algorithm consists of three parts: (1) Add the deformation information to the 
collapsing cost to preserve areas with large deformation. (2) Add the sharp feature 
weight to the cost to preserve the fine sharp features of the model. (3) Adjust the edge 
collapse sequence for each frame to reduce the approximation distortion. Next we will 
introduce the algorithm in detail. 

3.1   Deformation Area Preservation 

Our algorithm is based on the QSlim [9] which is now considered as one of the most 
efficient methods for static mesh simplification, so we should first have a quick 
review of it. Qslim iteratively selects an edge (vi, vj) with the minimum contraction 
cost to collapse and replace this edge with a new vertex u which minimizes the 
contraction cost. For measuring the contraction cost of an edge, it utilizes the 
quadratic error metric (QEM) to measure the total squared distance of a vertex to the 
two sets of planes P(vi) and P(vj) adjacent to vi and vj respectively. A plane can be 
represented with a 4D vector p, consisting of the plane normal and the distance to the 
origin. Hence, the squared distance of a vertex v to a plane p equals vT(ppT)v. The 
QEM error function ecij for a vertex v to replace the edge (vi, vj) is 
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Garland also suggests using an area-weighted quadric error metric for better 

results [7] and defines the QEM error function as: 
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where wi is the total area of triangles adjacent to vi and wj is defined similarly. 
Hence, the QEM cost QEMij for contracting an edge (vi, vj) is defined as ecij (uij), in 
which uij is the vertex minimizing ecij(v). QSlim simplifies a mesh by iteratively 
finding the edge (vi, vj) with the minimum QEMij, performing an edge-collapse 
operation to replace (vi, vj) with a new vertex uij and updating the edge contraction 
costs related to uij until the desired vertex count m is reached. 

To extend QEM to handle deforming meshes, a naive way is to use QEM to 
obtain an edge-collapse sequence for the first frame, and then apply this sequence to 
all frames. Since all frames use the same edge-collapse sequence, they have the same 
connectivity. The disadvantage of this approach is obvious. Features of other frames 
might be removed if they are not features in the first frame. The deformation sensitive 
decimation (DSD) algorithm addresses this problem by summing QEM costs across 
all frames [26]. The DSD contraction cost for an edge (vi, vj) is defined as 
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where t
iju  minimizes the QEM cost t

ijQEM  for the edge (vi, vj) at frame t. 
Hence, DSD tends to preserve edges that are geometric features more often in the 
animation. 

We use the change of edge-collapse cost to measure the surface deformation 
degree. For areas with large deformation, the change of the collapsing cost must be 
prominent. On the other hand, collapsing cost may change slightly in areas with small 
deformation. We append additional deformation weight to the DSD cost, which can 
postpone the edge contraction in areas with large deformation. We define the 
deformation weight to be: 
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where ijec  is the average collapse cost of edge (vi, vj) over all of the frames. We 
add this cost to the DSD contraction cost: 
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where k1 is a user-specified coefficient to adjust the influence the deformation 
degree. In our experiment, we simply set k1 to 1. 



3.2   Sharp Feature Preservation 

In order to preserve the sharp features of the original model, we should first define the 
sharp features. And this involves the classification of edges as Fig. 1 shows. The 
calculation of sharp features in each frame is obviously a time-consuming process, 
also wastes a lot of space. Our idea is to only compute the sharp features in the first 
and last frame, which can represent most of the characteristics of the animation. If the 
model is not much deformed during the animation, that is the first and last frame may 
have the identical sharp features, and these features are enhanced. On the other hand, 
if the deformation is totally non-rigid, that is the first and last frame may have totally 
different features, our method may possibly preserve most of the respective features 
during the animation. We implement the above by adding the feature weight into the 
collapse cost, as the follow equation shows: 
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where k2  is between 0 and 1 to adjust the influence of the feature weight. If the 
user knows whether the deformation is rigid in advance, we can set more proper k2 to 
get better result. Next we will discuss how to assign the value of Feature_Weight, and 
this involves the classification of edges [2]. We classify the edges into the following 
five types as Fig. 2 shows: 

 
Fig. 3. Classification of edges.  

① Complex Edge 
Since shape changes of the 3D model due to contraction of complex edges could 

be severe, we give a large penalty on contracting the complex edges so that the 
contraction operation of complex edges can be conducted later relative to other types 
of edges. We can easily expect that the more incident triangles from the edge exist, 
the severer shape variation occurs. Hence, we define the Complex_Weight to be 
proportional to the number of incident triangles from the edge in the 3D model. 
         Complex_Weight = (# of incident triangles – 3) 

② Boundary Edge 



The shape variation of the 3D model becomes severe after contracting the 
boundary edges as well. Therefore, we must place a large penalty on contracting the 
boundary edges. In addition, it would be more effective if we weigh differently 
according to the features in the 3D model. 

We define θ as the angle between the incident boundary edge and itself, so a 
boundary edge may have two values of θ (θ1 and θ2) as Fig. 2 shows. 

 
Fig. 2. Contraction of boundary edge.  

We have the following conclusion by investigating the variation after collapsing. 
   (1) If the value of |θ-180| is small, the shape variation of the model is limited. 
  (2) If the value of |θ-180| is large, the shape variation of the model is considerable. 

Thus, we define the Boundary_Weight to be proportional to the maximum value 
of cosθ. 
               Boundary_Weight = max{cosθ1, cosθ2} 

③ Boundary Incident Edge 
Contraction of boundary incident edges can yield substantial changes on the shape 

of the 3D model. Since the shape change depends on the number of incident boundary 
edges, we define the Boundary_Incident_Weight to be proportional to the number of 
incident boundary edges. 

Boundary_Incident_Weight = (# of incident boundary edges) / 4 

④ Sharp Edge 
Sharp edges connect two faces in the original mesh, and we define it as the angle 

(α) between the two neighboring faces should be smaller than a user-specified 
threshold (we set it to be 60°). Collapsing this kind of edges may cause large 
distortion of the model, so we define the Shape_Weight of it as sin α. 
                    Sharp_Weight = sin α 

⑤ Interior Edge 
The rest of the edges are considered as interior edges. Since shape changes of the 

3D model after contracting the interior edges is milder relative to any other types of 
edges, no penalty on contracting the interior edges would be reasonable. 

Finally we define the Feature_Weight as follows: 



Feature_Weight = IsComplex * Complex_Weight  
+ IsBoundary * Boundary_Weight 
+ IsBoundaryIncident * Boundary_Incident_Weight 
+ IsSharp * Sharp_Weight 

where IsComplex, IsBoundary, IsBoundarylncident and IsSharp are Boolean 
variables. In other words, they can take 1 for TRUE or 0 for FALSE. 

3.3   Distortion Adjustment 

Based on the final collapse cost described above, we can finally get the overall edge-
collapse sequence. This unified collapse sequence can maintain the connectivity of 
the whole mesh sequence unchanged. And also it has the optimal temporal coherence. 
However, since the unified order is applied, approximation can’t be very satisfying on 
every frame. So our idea is to adjust this sequence slightly to get better approximation 
and preserve more fine details.  

Considering the model in a certain frame, the independent QEM method can 
generate the optimal edge-collapse sequence. We can first do most of the collapse 
operation (we assume the proportion to be P, P is very near to 1) based on the 
previous calculated cost, then do the rest collapse based on the QEM cost. Since most 
of the operation is based on static connectivity, the temporal coherence is still 
maintained. We have tested different P during the animation, and we found that set P 
to around 96% can generate elegant result. 

3.4   Algorithm Outline 

Our algorithm can be summarized into the following steps: 
1. Calculate the QEM collapsing cost of edges for each of the frame, to obtain the 

aggregate errors as the DSD method. 
2. Based on the deforming sequence, measure the deformation degree to obtain 

the metric costij’ 
3. Calculate the Feature_Weight of the first and last frame. Combined with 

previous cost, we get the destination cost costij. Thus the final unified collapsing 
sequence is obtained. 

4. For each of the frame, first do a majority of the edge collapse operations 
according to this sequence, and then do the rest of the operation following the QEM 
collapsing sequence to obtain the desired resolution. 

4   Experimental Result 

We test the result of our algorithm on a computer with Pentium4 3.2G CPU and 2G 
memory. We use OpenGL to render the models. The simplification of the horse gallop 
animation is shown in the Fig. 3. Compared to the upper full resolution models, the 
bottom shows our simplified results when 90% of its components are reduced. We 
could see that most of its features are preserved. 



 
Fig. 3. Horse-gallops animation simplification with 48 frames. Original sequence: 8431v 
(upper), simplified models: 800v (bottom). 

 
Fig. 4. Comparison of [20]’s method(left) and our method(right) of human’s hand in horse-to-
human morphing, the approximated versions contains 3200 vertices and 6396 triangles.  

     
Fig. 5. Comparison of [20]’s method(left) and our method(right) of human’s feet in horse-to-
man morphing when 80% of its component is reduced.  

The next figures show the comparison of our method with the method in [20]. 
From Fig. 4 we could see that our method obviously preserves more details in the 



human’s hand, also the distribution of triangle shape is more reasonable than [20]’s 
method. Since the features of the human’s hands are not the features of the horse in 
the previous frames, and its deformation is totally non-rigid, our method can preserve 
such features much better than [20]. Another example shows the human feet 
approximation in Fig. 5. Our method also shows a much better simplification result 
than [20] with the toe details much better preserved. Since the deformation degree is 
so much in this area, the number of triangles in this area is much greater than [20]’s 
results. 

An example of simplifying the whole sequence of horse-to-human morphing by 
using our method is shown in Fig. 6. Even the original model was reduced by 95%, 
our method can generate very faithful approximations. 

 

 
Fig. 6. A horse-to-human morphing animation with 200 frames. Top: The original sequence 
(17489 vertices). Middle: 3200-vertices approximation. Bottom: 800-vertices approximation.  

5   Conclusion and Future Work 

In this paper, we propose a simplification method for deforming surfaces based on 
deformation area and feature preservation. Given a sequence of meshes representing 
time-varying 3D data, our method produces a sequence of simplified meshes that are 
good approximation of the original deformed surface for a given frame. Our method 
extends the DSD formulation by adding deformation cost to preserve areas with large 
deformation. Feature weight is added to the collapse cost to preserve the sharp 
features of the original model. Finally, edge collapse sequence is adjusted for each 
frame to reduce the geometry distortion. Our method is easy to implement and 
produces better approximations than previous methods. 



There are certainly further improvements that could be made to our algorithm. For 
example, we believe that there must be a way to extend our algorithm to be view-
dependent. 
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