
Deforming Surface Simplification Based on
Feature Preservation

Shixue Zhang1, Enhua Wu1, 2

1 Dept. of Computer and Information Science, University of Macau, Macao, China
2 State Key Lab. of Computer Science, Institute of Software,

Chinese Academy of Sciences, China
{ya57406, EHWu}@umac.mo

Abstract. In computer graphics, methods for mesh simplification are common.
However, most of them focus on static meshes, only few works have been
proposed for simplifying deforming surfaces. In this paper, we propose a new
method for the multiresolution representation of time-varying meshes based on
deformation area and feature preservation. Our method uses the famous QEM
(quadric error metric) as our basic metric. The idea is to modify the edge
collapse cost by adding the deformation and sharp feature weight to the
aggregated quadrics errors when computing the unified edge contraction
sequence, then adjust this sequence slightly for each frame to get a minimum
geometry distortion. Our approach is fast, easy to implement, and as a result
good quality dynamic approximations with well-preserved fine details can be
generated at any given frame.

Keywords: Deforming mesh, LOD, Sharp feature, Mesh simplification

1 Introduction

Nowadays more and more deforming meshes, also called time-varying surfaces or
dynamic meshes, are widely used in many applications such as movies, games,
simulations and so on. These surfaces are often represented by dense triangular
meshes with high resolution, so sometimes we have to decimate the redundant details
of the models for more efficient visualization processing, transmission and storage.
Many mesh simplification methods have been proposed to simplify original models
by repeatedly removing vertices, edges, or faces. However most of them are to deal
with static meshes, and very little work has been made to address the problem on how
to maintain accurate approximations of time-varying surfaces. In this paper, we
propose an efficient method for generating progressive deforming meshes with high
quality.

To simplify deforming meshes, one naive way is to simplify the models for each
frame independently. This solution has the minimum error from the original model.
However, since it does not exploit the temporal coherence of the data, it can involve
the unpleasant visual artifact, causing the surface to vibrate and twitch. Moreover, this
will waste a great deal of space.

Some previous methods focus on preserving the static connectivity, i.e. the
connectivity of the deforming surfaces remains unchanged for all frames. Such
adaptations are inadequate and would cause arbitrarily bad approximations when
deformation is highly non-rigid, since it does not take time-varying deformation into
consideration.

We therefore propose a new method for simplifying deforming meshes based on
feature preservation. Our method is a better tradeoff between the temporal coherence
and mesh distortion, i.e. we try to maximize the temporal coherence while minimizing
the visual distortion during the simplification process. Our idea is to first calculate the
aggregated QEM error for each edge as DSD [26] method. We use the collapsing cost
variation to measure the deformation degree of the deforming mesh. We calculate the
sharp features the first and last frame according to the classification of the edges. By
adding the deformation and sharp feature weight to the collapsing cost, we finally get
the unified edge collapse sequence. For each of the frame we first do a majority of
edge collapse operations based on this sequence to maintain the temporal coherence,
and do the remainder operations based on the independent QEM sequence to
minimize mesh distortion. We demonstrate that this provides an efficient means of
multiresolution representation of deforming meshes over all frame of an animation.

The rest of this paper is organized as follows: Section 2 will review the previous
works related in deforming mesh simplification. Section 3 will mainly introduce the
procedure of our algorithm in detail and discuss its advantage. Section 4 will show the
experimental results and compare our method with previous methods. Finally,
conclusion will be made and some future work will be given in Section 5.

2 Related Work

Simplification and LOD. There are now extensive papers on the approximation of
dense polygonal meshes by coarser meshes that preserve surface detail. These
methods can be roughly divided into five categories: vertex decimation [1, 4, 33],
vertex clustering [24, 29], region merging [8, 19, 27], subdivision meshes [6, 13, 23,
21], and iterative edge contraction [2, 3, 9, 10, 11, 12, 15, 16, 17, 18, 28, 32]. A
complete review of the methods has been given in [7, 25]. Among these methods, the
process of iteratively edge contraction is predominantly utilized. Representative
algorithms include those from Hoppe [15] and Garland [9]. In such methods, a simple
multiresolution structure is generated on the surface that can be used for adaptive
refinement of the mesh [34, 16, 22]. Traditional mesh simplification algorithm works
fine on a single static model, but it is unable to be directly applied to deforming
meshes since no temporal coherence has been considered.

Simplification of time-varying surfaces. Shamir et al. [30, 31] are the pioneers to
address the problem of simplifying efficiently deforming surfaces. They designed a
global multiresolution structure named Time-dependant Directed Acyclic Graph
(TDAG) which merges each individual simplified model of each frame into a unified
graph. TDAG is a data structure that stores the life time of a vertex, which is queried
for the connectivity updating. Unfortunately this scheme is very complex, and can not
be easily handled.

Mohr and Gleicher [26] proposed a deformation sensitive decimation (DSD)
method, which directly adapt the Qslim algorithm [9] by summing the quadrics errors
over each frame of the animation. The result is a single mesh that attempts to provide
a good average approximation over all frames. Consequently this technique provides
a pleasant result only when the original surfaces do not present strong deformation.

DeCoro and Rusinkiewicz [5] introduced a method of weighing possible
configuration of poses with probabilities. With articulated meshes, skeleton
transformation is incorporated into standard QEM algorithm, and users must specify
the probability distribution for each joint. This method works quite well, but is limited
to a very specific class of deformations.

Kircher and Garland [20] proposed a multiresolution representation with a
dynamic connectivity for deforming surfaces. By their method, the simplified model
for the next frame is obtained by a sequence of edge-swap operations from the
simplified model at the current frame. They treat a sequence of vertex contraction and
their resulting hierarchies as a reclustering process [7]. This method seems to be
particularly efficient because of its connectivity transformation.

Huang et al. [14] proposed a method based on the deformation oriented
decimation error metric and dynamic connectivity update. They use vertex tree to
further reduce geometric distortion by allowing the connectivity to change. Their
method can provide a good approximation of deforming surfaces, but requires a
complex structure.

3 Our Algorithm

Our algorithm consists of three parts: (1) Add the deformation information to the
collapsing cost to preserve areas with large deformation. (2) Add the sharp feature
weight to the cost to preserve the fine sharp features of the model. (3) Adjust the edge
collapse sequence for each frame to reduce the approximation distortion. Next we will
introduce the algorithm in detail.

3.1 Deformation Area Preservation

Our algorithm is based on the QSlim [9] which is now considered as one of the most
efficient methods for static mesh simplification, so we should first have a quick
review of it. Qslim iteratively selects an edge (vi, vj) with the minimum contraction
cost to collapse and replace this edge with a new vertex u which minimizes the
contraction cost. For measuring the contraction cost of an edge, it utilizes the
quadratic error metric (QEM) to measure the total squared distance of a vertex to the
two sets of planes P(vi) and P(vj) adjacent to vi and vj respectively. A plane can be
represented with a 4D vector p, consisting of the plane normal and the distance to the
origin. Hence, the squared distance of a vertex v to a plane p equals vT(ppT)v. The
QEM error function ecij for a vertex v to replace the edge (vi, vj) is

() ()
() () ()

i j

T T T T
ij

p P v p P v

T T
i j

ec v v pp v v pp v

v Q v v Q v
∈ ∈

= +

= +

∑ ∑

Garland also suggests using an area-weighted quadric error metric for better

results [7] and defines the QEM error function as:
() ()T T

ij i i j j ijec v v wQ w Q v v Q v= + =

where wi is the total area of triangles adjacent to vi and wj is defined similarly.
Hence, the QEM cost QEMij for contracting an edge (vi, vj) is defined as ecij (uij), in
which uij is the vertex minimizing ecij(v). QSlim simplifies a mesh by iteratively
finding the edge (vi, vj) with the minimum QEMij, performing an edge-collapse
operation to replace (vi, vj) with a new vertex uij and updating the edge contraction
costs related to uij until the desired vertex count m is reached.

To extend QEM to handle deforming meshes, a naive way is to use QEM to
obtain an edge-collapse sequence for the first frame, and then apply this sequence to
all frames. Since all frames use the same edge-collapse sequence, they have the same
connectivity. The disadvantage of this approach is obvious. Features of other frames
might be removed if they are not features in the first frame. The deformation sensitive
decimation (DSD) algorithm addresses this problem by summing QEM costs across
all frames [26]. The DSD contraction cost for an edge (vi, vj) is defined as

1 1

f f
t t T t t

ij ij ij ij ij
t t

DSD QEM u Q u
= =

= =∑ ∑

where t
iju minimizes the QEM cost t

ijQEM for the edge (vi, vj) at frame t.
Hence, DSD tends to preserve edges that are geometric features more often in the
animation.

We use the change of edge-collapse cost to measure the surface deformation
degree. For areas with large deformation, the change of the collapsing cost must be
prominent. On the other hand, collapsing cost may change slightly in areas with small
deformation. We append additional deformation weight to the DSD cost, which can
postpone the edge contraction in areas with large deformation. We define the
deformation weight to be:

1

f
t

ijij
t

e c ec
=

−∑

where ijec is the average collapse cost of edge (vi, vj) over all of the frames. We
add this cost to the DSD contraction cost:

'
1 1

1 1 1
* *

f f f
t t t

ij ijij ij ij ij ij
t t t

cost D SD k ec ec ec k ec ec
= = =

= + − = + −∑ ∑ ∑

where k1 is a user-specified coefficient to adjust the influence the deformation
degree. In our experiment, we simply set k1 to 1.

3.2 Sharp Feature Preservation

In order to preserve the sharp features of the original model, we should first define the
sharp features. And this involves the classification of edges as Fig. 1 shows. The
calculation of sharp features in each frame is obviously a time-consuming process,
also wastes a lot of space. Our idea is to only compute the sharp features in the first
and last frame, which can represent most of the characteristics of the animation. If the
model is not much deformed during the animation, that is the first and last frame may
have the identical sharp features, and these features are enhanced. On the other hand,
if the deformation is totally non-rigid, that is the first and last frame may have totally
different features, our method may possibly preserve most of the respective features
during the animation. We implement the above by adding the feature weight into the
collapse cost, as the follow equation shows:

2 1
1 1

(1 * _) *
f f

t t
ijij ij ij

t t
cost k Feature Weight ec k ec ec

= =

= + + −∑ ∑

where k2 is between 0 and 1 to adjust the influence of the feature weight. If the
user knows whether the deformation is rigid in advance, we can set more proper k2 to
get better result. Next we will discuss how to assign the value of Feature_Weight, and
this involves the classification of edges [2]. We classify the edges into the following
five types as Fig. 2 shows:

Fig. 3. Classification of edges.

① Complex Edge
Since shape changes of the 3D model due to contraction of complex edges could

be severe, we give a large penalty on contracting the complex edges so that the
contraction operation of complex edges can be conducted later relative to other types
of edges. We can easily expect that the more incident triangles from the edge exist,
the severer shape variation occurs. Hence, we define the Complex_Weight to be
proportional to the number of incident triangles from the edge in the 3D model.
 Complex_Weight = (# of incident triangles – 3)

② Boundary Edge

The shape variation of the 3D model becomes severe after contracting the
boundary edges as well. Therefore, we must place a large penalty on contracting the
boundary edges. In addition, it would be more effective if we weigh differently
according to the features in the 3D model.

We define θ as the angle between the incident boundary edge and itself, so a
boundary edge may have two values of θ (θ1 and θ2) as Fig. 2 shows.

Fig. 2. Contraction of boundary edge.

We have the following conclusion by investigating the variation after collapsing.
 (1) If the value of |θ-180| is small, the shape variation of the model is limited.
 (2) If the value of |θ-180| is large, the shape variation of the model is considerable.

Thus, we define the Boundary_Weight to be proportional to the maximum value
of cosθ.
 Boundary_Weight = max{cosθ1, cosθ2}

③ Boundary Incident Edge
Contraction of boundary incident edges can yield substantial changes on the shape

of the 3D model. Since the shape change depends on the number of incident boundary
edges, we define the Boundary_Incident_Weight to be proportional to the number of
incident boundary edges.

Boundary_Incident_Weight = (# of incident boundary edges) / 4

④ Sharp Edge
Sharp edges connect two faces in the original mesh, and we define it as the angle

(α) between the two neighboring faces should be smaller than a user-specified
threshold (we set it to be 60°). Collapsing this kind of edges may cause large
distortion of the model, so we define the Shape_Weight of it as sin α.
 Sharp_Weight = sin α

⑤ Interior Edge
The rest of the edges are considered as interior edges. Since shape changes of the

3D model after contracting the interior edges is milder relative to any other types of
edges, no penalty on contracting the interior edges would be reasonable.

Finally we define the Feature_Weight as follows:

Feature_Weight = IsComplex * Complex_Weight
+ IsBoundary * Boundary_Weight
+ IsBoundaryIncident * Boundary_Incident_Weight
+ IsSharp * Sharp_Weight

where IsComplex, IsBoundary, IsBoundarylncident and IsSharp are Boolean
variables. In other words, they can take 1 for TRUE or 0 for FALSE.

3.3 Distortion Adjustment

Based on the final collapse cost described above, we can finally get the overall edge-
collapse sequence. This unified collapse sequence can maintain the connectivity of
the whole mesh sequence unchanged. And also it has the optimal temporal coherence.
However, since the unified order is applied, approximation can’t be very satisfying on
every frame. So our idea is to adjust this sequence slightly to get better approximation
and preserve more fine details.

Considering the model in a certain frame, the independent QEM method can
generate the optimal edge-collapse sequence. We can first do most of the collapse
operation (we assume the proportion to be P, P is very near to 1) based on the
previous calculated cost, then do the rest collapse based on the QEM cost. Since most
of the operation is based on static connectivity, the temporal coherence is still
maintained. We have tested different P during the animation, and we found that set P
to around 96% can generate elegant result.

3.4 Algorithm Outline

Our algorithm can be summarized into the following steps:
1. Calculate the QEM collapsing cost of edges for each of the frame, to obtain the

aggregate errors as the DSD method.
2. Based on the deforming sequence, measure the deformation degree to obtain

the metric costij’
3. Calculate the Feature_Weight of the first and last frame. Combined with

previous cost, we get the destination cost costij. Thus the final unified collapsing
sequence is obtained.

4. For each of the frame, first do a majority of the edge collapse operations
according to this sequence, and then do the rest of the operation following the QEM
collapsing sequence to obtain the desired resolution.

4 Experimental Result

We test the result of our algorithm on a computer with Pentium4 3.2G CPU and 2G
memory. We use OpenGL to render the models. The simplification of the horse gallop
animation is shown in the Fig. 3. Compared to the upper full resolution models, the
bottom shows our simplified results when 90% of its components are reduced. We
could see that most of its features are preserved.

Fig. 3. Horse-gallops animation simplification with 48 frames. Original sequence: 8431v
(upper), simplified models: 800v (bottom).

Fig. 4. Comparison of [20]’s method(left) and our method(right) of human’s hand in horse-to-
human morphing, the approximated versions contains 3200 vertices and 6396 triangles.

Fig. 5. Comparison of [20]’s method(left) and our method(right) of human’s feet in horse-to-
man morphing when 80% of its component is reduced.

The next figures show the comparison of our method with the method in [20].
From Fig. 4 we could see that our method obviously preserves more details in the

human’s hand, also the distribution of triangle shape is more reasonable than [20]’s
method. Since the features of the human’s hands are not the features of the horse in
the previous frames, and its deformation is totally non-rigid, our method can preserve
such features much better than [20]. Another example shows the human feet
approximation in Fig. 5. Our method also shows a much better simplification result
than [20] with the toe details much better preserved. Since the deformation degree is
so much in this area, the number of triangles in this area is much greater than [20]’s
results.

An example of simplifying the whole sequence of horse-to-human morphing by
using our method is shown in Fig. 6. Even the original model was reduced by 95%,
our method can generate very faithful approximations.

Fig. 6. A horse-to-human morphing animation with 200 frames. Top: The original sequence
(17489 vertices). Middle: 3200-vertices approximation. Bottom: 800-vertices approximation.

5 Conclusion and Future Work

In this paper, we propose a simplification method for deforming surfaces based on
deformation area and feature preservation. Given a sequence of meshes representing
time-varying 3D data, our method produces a sequence of simplified meshes that are
good approximation of the original deformed surface for a given frame. Our method
extends the DSD formulation by adding deformation cost to preserve areas with large
deformation. Feature weight is added to the collapse cost to preserve the sharp
features of the original model. Finally, edge collapse sequence is adjusted for each
frame to reduce the geometry distortion. Our method is easy to implement and
produces better approximations than previous methods.

There are certainly further improvements that could be made to our algorithm. For
example, we believe that there must be a way to extend our algorithm to be view-
dependent.

Acknowledgments. We wish to thank Scott Kicher for providing the horse-to-man
morphing sequence, Robert W. Sumner and Jovan Popovic for providing the horse-
gallop data. The work has been supported by the Studentship & Research Grant of
University of Macau.

References

1. Ciampalini A, Cignoni P., Montani C., and Scopigno R.: Multiresolution Decimation Based
on Global Error. The Visual Computer, 1997, vol. 13, no. 5, 228-246

2. Chang E. Y., Ho Y. S.: Three-dimensional Mesh Simplification by Subdivided Edge
Classification. In IEEE Region 10 International Conference on Electrical and Electronic
Technology (2001), 39-42

3. Cohen J., Olano M., and Manocha D.: Simplifying Polygonal Models Using Successive
Mappings. In Proc. Visualization ’97, Oct. 1997, 395-402

4. Cohen J., Varshney A., Manocha D., Turk G., Weber H., AGARWAL P., Brooks F., Wright
W.: Simplification Envelopes. In ACM SIGGRAPH 1996 Conference Proceedings (1996),
119-128

5. Decoro C., Rusinkiewicz S.: Pose-independent Simplification of Articulated Meshes. In
Proceedings of Symposium on Interactive 3D Graphics and Games (2005), 17-24

6. Eck M., Derose T., Duchamp T., Hoppe H., Lounsbery M., Stuetzle W.: Multiresolution
Analysis of Arbitrary Meshes. In ACM SIGGRAPH 1995 Conference Proceedings (1995),
173-182

7. Garland M.: Multiresolution Modeling: Survey & future opportunities. In Proceedings of
Eurographic(1999), Milano, 49-65

8. Garland M., Willmott A., and Heckbert P.S.: Hierarchical Face Clustering on Polygonal
Surfaces. In Proc. ACM Symp. Interactive 3D Graphics, Mar. 2001, 49-58

9. Garland M., Heckbert P. S.: Surface Simplification using Quadric Error Metrics. In ACM
SIGGRAPH 1997 Conference Proceedings (1997), 209-216

10. Gieng T. S., Hamann B., Joy K. I., Schussman G.. L., and Trotts I. J.: Constructing
Hierarchies for Triangle Meshes. In IEEE Trans. Visualization and Computer Graphics
(1998), vol. 4, no. 2, 145-161

11. Guéziec A.: Surface Simplification with Variable Tolerance. In Proc. Second Ann. Int’l
Symp. Medical Robotics and Computer Assisted Surgery, Nov. 1995, 132-139

12. Guéziec A.: Locally Toleranced Surface Simplification. In IEEE Trans. Visualization and
Computer Graphics, vol. 5, no. 2, Apr.-June 1999, 168-189

13. [GVS00] Guskov I., Vidimce K., Sweldens W. and Schroder P.: Normal Meshes. In
SIGGRAPH ’00 Conf. Proc., 2000, 95-102

14. Huang F. C., Chen B. Y. and Chuang Y. Y.: Progressive Deforming Meshes Based on
Deformation Oriented Decimation and Dynamic Connectivity Updating. In Proceedings of
ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2006), 53-62

15. Hoppe H.: Progressive meshes. In ACM SIGGRAPH 1996 Conference Proceedings (1996),
99-108

16. Hoppe H.: View-dependent Refinement of Progressive Meshes. In ACM SIGGRAPH 1997
Conference Proceedings (1997), 189-198

17. Hoppe H.: New Quadric Metric for Simplifying Meshes with Appearance Attributes, Proc.
IEEE Visualization ’99, 1999, 59-66

18. Hoppe H., DeRose T., Dunchamp T., McDonald J. and Stuetzle W.: Mesh Optimization. In
SIGGRAPH ’93 Conf. Proc., 1993, 19-25

19. Kalvin A. and Taylor R.: Superfaces: Polygonal Mesh Simplification with Bounded Error.
In IEEE Computer Graphics and Applications, vol. 16, May 1996, 64-77

20. Kircher S., Garland M.: Progressive Multiresolution Meshes for Deforming Surfaces. In
Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(2005), 191-200

21. Lounsbery M., DeRose T., and Warren J.: Multiresolution Analysis for Surfaces of
Arbitrary Topological Type. ACM Trans. on Graphics, vol. 16, no. 1, 1997, 34-73

22. Luebke D., Erikson C.: View-dependent Simplification of Arbitrary Polygonal
Environments. In ACM SIGGRAPH 1997 Conference Proceedings (1997), 199-208

23. Lee A., Moreton H., and Hoppe H.: Displaced Subdivision Surfaces. In SIGGRAPH ’00
Conf. Proc., 2000, 85-94

24. Low K. L. and Tan T. S.: Model Simplification Using Vertex-Clustering. In Proc. ACM
Symp. Interactive 3D Graphics, 1997, 75-82

25. Luebke D., Reddy M. and Cohen J.: Level of Detail for 3-D Graphics. Morgan Kaufmann,
2002

26. Mohr A., Gleicher M.: Deformation Sensitive Decimation. Tech. rep., University of
Wisconsin, 2003

27. Mangan A. P. and Whitaker R. T.: Partitioning 3D Surface Meshes Using Watershed
Segmentation. In IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 4, Oct.-Dec.
1999, 308-221

28. Popovic J. and Hoppe H., Progressive: Simplicial Complexes. In SIGGRAPH ’97 Conf.
Proc., Aug. 1997, 217-224

29. Rossignac J. and Borrel P.: Multi-Resolution 3D Approximations for Rendering Complex
Scenes. Modeling in Computer Graphics, B. Falcidieno and T. Kunii (eds.), Springer-Verlag,
1993, 455-465

30. Shamir A., Bajaj C., Pascucci V.: Multi-resolution Dynamic Meshes with Arbitrary
Deformations. In IEEE Visualization 2000 Conference Proceedings (2000), 423-430

31. Shamir A., Pascucci V.: Temporal and Spatial Level of Details for Dynamic Meshes. In
Proceedings of ACM Symposium on Virtual Reality Software and Technology (2001), 77-
84

32. Sander P. V., Snyder J., Gortler S. J., and Hoppe H.: Texture Mapping Progressive Meshes.
In SIGGRAPH ’01 Conf. Proc., 2001, 409-416

33. Schroeder W. J., Zarge J. A., Lorensen W. E.: Decimation of Triangle Meshes. In ACM
Computer Graphics (SIGGRAPH 1992 Conference Proceedings) 26, 2(1992), 65-70

34. Xia J. C., Varshney A.: Dynamic View-dependent Simplification for Polygonal Models. In
IEEE Visualization 1996 Conference Proceedings (1996), 327-334

