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Abstract. Dynamic textures are representations of such textured sur-
faces that exhibit certain stationarity properties in time. These include
sea-waves, smoke, foliage, whirlwind, dense crowds, and traffic scenes. We
address the problem of dynamic color texture synthesis which is a natural
extending of the state-of-art Linear Dynamic System to the YUV color
space by analyzing the intrinsic relationship between the color channels
and intensity channel. Our experimental results have shown good per-
formance for the testing examples, which remodel short dynamic texture
videos into infinite time domain with similar dynamic behaviors.

1 Introduction

With the fast developing of computer hardware, especially on graphics cards,
realistic rendering of dynamic textures are more commonly used in computer
games, special effects in TV/film producing, and rich-media digital entertain-
ment to create virtual environments which photo-realistically simulate the nat-
ural phenomenon.

1.1 Related work

Dynamic Textures can be defined as repetitive patterns exhibiting both spa-
tial and temporal coherence intrinsic in the process. The methods for dynamic
texture synthesis in vision can be mainly categorized into two classes: nonpara-
metric and parametric. The nonparametric methods directly sample the original
information from the input image or sequence of images. Wexler’s method [1]
copies the patches from the input sequence and solves the synthesis process as
a global optimization process. In [2], the author also copies the appropriate 2D
patches or 3D voxels to synthesize by finding the optimal seam for blending us-
ing the state-of-art Graph Cut technique. Unlike the prior two methods, Video
Textures [3] chooses a whole image from the sampling sequence and copy it
to the suitable location to preserve temporal continuity. These nonparametric
methods usually provide high quality visual effect but yield a limited amount of
information for the intrinsic property of textures.

On the other hand, parametric models provide better generalization and
understanding of the perceptual process, thus these models are natural choices



for analysis and controlling of textures. In [4], images and videos are treated
as a superposition of image or video basis which are called texton and movton.
Szummer and Picard’s work [5] models the interaction of pixels within a local
neighborhood over both space and time using the spatio-temporal auto-regressive
(STAR) model. Dorrto’s model [6] provides an auto-regressive random process
(specifically, a linear dynamic system, LDS, also known as Kalman filter model)
which forms the basic model for the following papers in this area.

The most related work to ours is Filip’s [7] which addresses the problem of
synthesizing dynamic color textures by analyzing the eigen-system of dynamic
texture images and subsequent preprocessing and modelling of temporal inter-
polation eigen-coefficients using a causal auto-regressive model in RGB color
space. But the results turn out to be not so satisfying for some of the dynamic
textures. Blurring effects can be easily observed. Doretto [6] suggests a way to
synthesize color videos by applying LDS model in the combined three unfolded
RGB channels ordered one after the other. The synthesized result is satisfying,
but when the size of the input image sequence is large, the method will become
time consuming and even cannot solve the problem because of complex matrix
operations on a very large matrix.

1.2 Overview

The main goal of this paper is to provide a novel approach for dynamic color
texture synthesis in the YUV color space using the LDS model by analyzing the
intrinsic connection between color channels and intensity channel. In Section 2,
the LDS model is briefly outlined, and based on it our proposed approach in the
YUV space for dynamic color texture synthesis (or DCTS for short) is described
in details in Section 3. The experimented results are presented in Section 4, and
conclusion goes to Section 5.

2 Dynamic Texture Model

The basic model we are working with is a second-order stationary process rep-
resented by a discrete time LDS with white, zero-mean gaussian noise [8] [10].
The observation or input of the system is a sequence of τ images represented
by matrix Y = [y(1) . . . y(τ)] ∈ Rm×τ with each image represented by column
vector y(t) ∈ Rm; X = [x(1) . . . x(τ)] ∈ Rn×τ with x(t) ∈ Rn stands for the
hidden state vector at time t encoding the evolution of the image sequence and
the initial condition x(0) known. Typically, m À n and with values of n in the
range of 10 to 50. Both the observation and state variables are corrupted by
additive gaussian noise, which is also hidden. The basic generative model can be
written as: {

x(t + 1) = Ax(t) + v(t) v(t) ∼ N (0, Q)
y(t) = Cx(t) + w(t) w(t) ∼ N (0, R) (1)

where A ∈ Rn×n is the state transition matrix and C ∈ Rm×n is the ob-
servation matrix which encodes the appearance information. v(t) and w(t) are



random variables representing the state evolution noise and observation noise,
respectively, which are independent of each other and the values of x and y.

Learning of the LDS model is to learn the model parameters Θ = {A,C, Q,R, x(0)}
given the sequence of images in matrix form Y . Assumptions are adopted to solve
the degeneracy in the model: m À n; rank(C) = n and choose a realization that
makes C orthonormal: CT C = In to maximum likelihood arg maxΘ log p(y(1) · · · y(τ)).
A suboptimal closed-form solution for the model parameters can be learned by
using principal component analysis (PCA).

Once the model parameters Θ are learned from the original sequence of
images, we can synthesize new dynamic textures with infinite length by starting
from a given initial state x(0) and the driven noise covariance Q to calculate
x(t) step by step, and finally obtain the synthesized sequence y(t).

3 Dynamic Color Texture Synthesis

Fig. 1. The framework of our DCTS model

We work in the Y UV color space, commonly used in image and video pro-
cessing. Y ∈ Rm×τ (Here we use the same Y as in LDS model in most cases,
it stands for intensity) is the monochromatic luminance channel, which we refer
to simply as intensity, while U ∈ Rm×τ and V ∈ Rm×τ are the chrominance
channels, encoding the color [11]. The framework of our DCTS model in Figure
1 outlines the processes of LDS model and the linear-evolution model between
intensity channel (the intrinsic factor) and color channels (the extrinsic appear-
ance).

In human perception, the most important clue is the intensity which gives
most informative signals, and color signals can be regarded as evolving with
intensity value. Because Y, U, V values are all gaussian distributed [6], we can



assume that there is an linear-evolution process with gaussian noise driven be-
tween intensity and color: color changes according to the underlying change of
intensity. (We only concern U channel from now on, as V channel behaves the
same as U).

u(t) = Sy(t) + k(t) (2)

where u(t) ∈ Rm is the column vector of U channel, y(t) ∈ Rm the column
vector of Y channel. S ∈ Rm×m. The m-vector k(t) ∼ N (µ,Σ) is random
variables representing the driven noise. We call this model the linear-evolution
model between intensity and color channels. The parameters of the model are
Θu = {S, k(t)} for U channel.

There are two problems in the solution of equation 2: First, the size of matrix
S is too large to be computed and stored even for a small sized video; Second,
the equation is under-constrained, so there are many solutions which satisfy the
requirements. Thus, we need to make reasonable assumption to uniquely define
the solution which has S small in size.

3.1 Learning of Dynamic Color Texture

In order to solve the problems shown in above, we employ the theory in [13]
which justifies that there is a linear relation between color and intensity. For-
mally, it assumes that color ur and vr at a pixel r is a linear function of intensity
yr: ur = sryr + kr. The assumption intuitively tells that when the intensity is
constant the color should be constant, and when the intensity is an edge the
color should also be an edge (although the values on the two sides of the edge
can be any two numbers). Rewritten the linear relation in matrix form we get:

u(t) = S(t)y(t) + k(t) (3)

where S(t) ∈ Rm×m is the diagonal matrix of corresponding sr for each pixel,
and k(t) ∈ Rm is the column vector for parameter kr. We observe that if we
suppose for all t, the matrix S is the same, S(1) = · · · = S(τ). Then Equation 3
will become a special case of Equation 2 where S is diagonal matrix which is
small in storage and easy for matrix computation. Then model 2 becomes:

u(t) = Sy(t) + k(t) k(t) ∼ N (µ,Σ) (4)

with S the diagonal matrix, and others the same as Equation 2.

Closed-form solution for Linear-evolution model The first observation
in Equation 4 is that the choice of S,Σ.We want to find a unique closed-form
solution which is easy for computation.

In order to make sure that the resulted k(t) is gaussian distributed, in our
tests, we generate a random m-vector distributed as N (0, 1) to be the diagonal
elements in S which is distributed independently with U and Y . This ensures
that k(t) is also gaussian distributed. Then µ,Σ can be easily calculated given
U, Y , and S.



3.2 Synthesizing of Dynamic Color Texture

Given the LDS model parameters Θ and linear-evolution model parameter Θu

and Θv, we can easily generate new image sequences in the infinite time domain,
by first applying LDS model to generate the new intensity images, and then given
the new intensity value and Θu and Θv, linear-evolution model can calculate the
new corresponding U, V channels.

4 Experimental results

Using the model we developed, we have tested a set of dynamic color textures
from [9] which provides sample dynamic textures, for learning and synthesizing
DC textures in the infinite time domain.

In Figure 3, some blurring effects can be seen in the generated video frames
from Filip’s method, while ours has shown the better visual quality in comparison
with Filip’s results and similar dynamic behavior as the original input video. Our
synthesized result is comparatively the same with the LDS model in [6] applied
to color video sequence. But the size of the processed matrix size is much smaller
than that: for a commonly 200 × 150 × 100 input color video, the largest size
of matrix to be dealt with is 3 times larger than the video size. If video size
grows bigger, there will be not enough memory to store all the data which will
make the task impossible or really time consuming to be finished. For our DCTS
model, the largest matrix size to be dealt with is only the size of the video which
takes a much smaller memory. Figure 2 compares the synthesized result of our
DCTS model with the ones by Filip’s method ( [7]) and the input short video. It
is clear that there is blurring effects in the image sequence generated by Filip’s
method, while ours is fine with better visual quality also comparable dynamic
behavior as to the input video.

Fig. 2. The grass video sequence. The original video size is m = 200 × 150, τ =
100.Feom top down, row 1 shows the selected frames of input video; row 2 shows the
synthesized result of Filip’s method; row 3 shows the synthesized result of our DCTS
model in corresponding frames as row 2.



5 Summary

In this paper, we have proposed and developed the novel approach to synthe-
sis dynamic color textures by taking the advantage of Linear Dynamic Systems
and its sub-optimal solution. We analyzed the intrinsic connection between color
channels and intensity channel, and establish the relation between color informa-
tion and state transition vector for the intensity channel. Our proposed DCTS
approach is fast and can compress the data significantly.

Further efforts can be directed in the shifting of the control probabilities [14]
of gray-level LDS model into our DCTS model to manipulate the speed, size
and other characters of the dynamics. Also, feedback controls on pole distribu-
tions, presented in [15] can be employed into our model to further optimize the
synthesized DCTS video results.
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