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Abstract. We present a new dense depth acquisition method using 2-D
De Bruijn structured light, which is robust to various textures and is
able to reconstruct dense depth maps of moving and deforming objects.
A 2-D binary De Bruijn pattern is emitted to the target object by an
off-the-shelf projector. Fast dynamic programming based stereo match-
ing is performed on images taken from two different views. The depth
is obtained by robust least square triangulation. The advantages include
that we do not need to take image sequences with different illumination
patterns and do not assume that the surface for reconstruction has uni-
form texture. Experimental results show that shapes can be efficiently
obtained in good quality by the proposed approach. We believe that our
approach is a good choice in applications of acquiring depth maps for
moving scenes with inexpensive equipments.

Key words: Depth acquisition, range sensing, 3-D model reconstruc-
tion, De Bruijn sequence

1 Introduction

1.1 Related Work

Scene depth acquisition is a rapidly expanding field, with applications in robotics,
modeling and virtual reality. Among them, binocular stereo [1], [2] is a convenient
and inexpensive approach. It is also a hot field of recent researches.

Traditional passive stereo suffers from ambiguities in large textureless areas.
To solve this problem, structured light is projected onto the object to endow it
with a coded pattern, which is referred to as active stereo [3]. To obtain dense
depth maps, time multiplex schemes are commonly used, such as Rusinkiewicz et
al. [4] and Scharstein and Szeliski [5]. In their works, since a series of patterns are
projected sequentially, the objects to be reconstructed is either still or restricted
to only slow motion, compared to the patterns cycled in 60Hz.

Generally, in active stereo, it is assumed that the surfaces to be reconstructed
have uniform texture. Otherwise, the pattern received by the camera is hard to
decode. To deal with the texture problem in active stereo scheme, Scharstein and
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Szeliski [5] project a series of black and white stripes as well as their inverses,
which requires about 20 patterns to be projected sequentially to obtain the dense
depth map with 1024× 768 resolution.

Other related works include Lavoie et al. [6] and Pagès et al. [7]. Their meth-
ods are similar to ours in that they use only one light pattern and take a single
image of the illuminated object. However, Lavoie et al. [6] encode the struc-
tured light on the intersections of a grid pattern, and match the code only where
reliable decoding is available. Thus a sparse reconstruction is obtained as the
result. Pagès et al. [7] use 1-D color De Bruijn sequences so that the length of
the pattern can cover the whole image and more information can be retrieved,
and thus give a dense reconstruction. But color patterns are very sensitive to
the textures on the surface.

1.2 Overview of Our Approach

Fig. 1. Equipment setup of the dense depth acquisition system. The projector emits a
2-D binary De Bruijn pattern to the target object (a sphere). Camera #1 (optional)
is placed closely above the projector. Camera #2 is located at an angle (about 20◦) of
the projector.

In this paper, we propose a dense depth acquisition method which needs only
a single image pair taken simultaneously, and avoids the difficulty in decoding
the structured light pattern. As a result, our method is able to acquire depth
maps of moving and deforming objects.

For hardware, we only require one off-the-shelf projector and at least one off-
the-shelf camera. Another camera is needed optionally if the user is unwilling to
calibrate the projector. The experiment setup is shown in Fig. 1. The projector
emits a 2-D De Bruijn pattern onto the target object. One camera (the optional
one) is located above the projector, as close as possible. Another camera is
placed at an angle (typically 20◦) with respect of the first camera. From now
on, we assume that two cameras are used. The alternative system using only
one camera is only a simple modification, which will be discussed in section
3.2. In our experiments, these two cameras are synchronized. Stereo matching
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Fig. 2. The flow chart of our system. Two images are needed for stereo matching. The
dotted line means that the projected pattern can be substituted by the image taken
by Camera #1.

and triangulation is then performed on the two images taken simultaneously to
acquire the depth of the object.

The flow chart of our system is shown in Fig. 2. We first generate a binary 2-
D De Bruijn pattern and emit it onto the target object. In the image acquisition
step, two images of the target object are taken. These images are then rectified so
that camera’s radial distortion effect is removed and epipolar lines correspond
to horizontal scanlines of images. Stereo matching based on normalized cross
correlation (NCC) and dynamic programming (DP) is then performed on the
stereo image pair. Finally, according to the disparities between the image pair
and the recovered geometric parameters of the cameras and the projector, we
use least square triangulation to reconstruct the metric depth values for every
pixel of the object.

In the following, we will first introduce our 2-D binary De Bruijn pattern in
section 2. Geometry calibration of cameras and projector is discussed in section
3. We will introduce our NCC and DP based dense stereo matching algorithm
in section 4, and least square triangulation in section 5. In section 6, some
experimental results are given to show the effectiveness of our approach. Finally,
the paper is ended with a conclusion and discussion in section 7.

Notations. In this paper, we refer to the image taken by the first camera, which
is placed just above the projector as I1, the image taken by another camera as
I2, and the image emitted by the projector Ip. The projection matrices of the
cameras are denoted as M1 and M2 respectively.

2 2-D De Bruijn Sequences

To reduce the ambiguities in stereo correspondence to the greatest extent, we
need an illumination pattern with the property that every small local window
appears only once in the whole pattern. Moreover, the pattern should be binary-
colored so that it is robust to various surface textures. Traditional structured
light patterns based on 1-D binary De Bruijn sequences are not enough, since
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they are limited on the length. In theory, the length of a 1-D De Bruijn sequence
with unique sub-window size of 5 is only 32 (= 25), which is too short to cover
the whole image. However, if we use 2-D De Bruijn sequence with 5× 5 (5 rows
by 5 columns) unique windows, the size becomes 25×5 (≈ 5792× 5792), which is
adequately large for our application.

Although theoretically there exist 2-D De Bruijn sequences of 5 × 5 unique
sub-windows with a large size, it is rather difficult to search for a valid one
in practice. Here, we use a new algorithm for searching valid 2-D De Bruijn
sequences, which is a modification of Morano et al. [8]. Suppose that the size of
unique sub-windows is 5 × 5, as illustrated in Fig. 3, the algorithm starts with
randomly assigning the first 5 bits of the first column. We choose to fill 5 bits
each time to avoid early termination and save the memory for back-tracking.
For filling a new 5-bit group, we randomly generate a 5-bit code (we call it test
bits, in contrast to those currently determined bits), and check whether 5 × 5
windows containing the test bits collide with all currently determined bits. If
not, the 5 test bits are reserved and become determined bits, and then we go on
to fill another 5-bit group. Otherwise, we generate another random 5-bit code,
and test for collision again. If all the 32 possible 5-bit codes have been tested, the
algorithm comes to a failure. Then another trial should be aroused from scratch.
After the first 5 rows are filled, each following rows are filled 5-bit by 5-bit in the
same manner. Generally, about 5 to 8 trials are needed before obtaining such a
part of valid 2-D De Bruijn sequence of size 512× 384. A valid sequence can be
obtained in about 5 minutes, which is satisfactory. A typical part of the pattern
is shown in Fig. 4.

Fig. 3. Our algorithm for generating 2-D De Bruijn sequences.

3 Geometric Calibration

In order to obtain the metric reconstruction of the object’s depth, both intrin-
sic and extrinsic parameters of cameras and projector (optionally) are needed.
Intrinsic parameters include focal length f , principal point p0 = (u0, v0), skew
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Fig. 4. A part of 2-D binary De Bruijn sequence with 64× 48 resolution. The pattern
is enlarged to make every code bit distinguishable to the reader. Note that there is no
repeated 5× 5 sub-window in this pattern.

coefficient α and distortions k. In practice, we only consider the first order dis-
tortion k1. Extrinsic parameters include the rotation matrix

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 , (1)

and translation vector T = (Tx, Ty, Tz)′ of camera with respect to the world
coordinate, which is defined by a reference object, such as a checkerboard.

3.1 Camera calibration

Camera geometric calibration has been well studied by Tsai [9], Zhang et al. [10],
and Heikkilä and Silvén [11], etc. In this paper, we employ the four-step approach
of Heikkilä and Silvén [11], which is more convenient. Actually, other calibration
methods and even self-calibration [12] can also be adopted. The only additional
equipment needed for camera calibration is a checkerboard. Omitting the skew
effect, the relationship between world coordinate Pw = (Xw, Yw, Zw, 1)′ and the
pixel coordinate of its projection on the image p = (u, v, 1)′ can be represented
by

(1 + k1r
2)u = f

r11Xw + r12Yw + r13Zw + Tx

r31Xw + r32Yw + r33Zw + Tz
, (2)

(1 + k1r
2)v = f

r21Xw + r22Yw + r23Zw + Ty

r31Xw + r32Yw + r33Zw + Tz
. (3)

where r2 = u2 + v2. After we have estimated all the 14 unknowns using the
method of [11], we rectify the radial distortion of the camera according to k1,
after which the camera model becomes a linear projection one, which can be
written in matrix form as

Zc




u
v
1


 =




f 0 u0 0
0 f v0 0
0 0 1 0




[
R T
0 1

]



Xw

Yw

Zw

1


 = M




Xw

Yw

Zw

1


 , (4)
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where
Zc = r31Xw + r32Yw + r33Zw + Tz, (5)

and

M ∆=




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34


 =




f 0 u0 0
0 f v0 0
0 0 1 0




[
R T
0 1

]
. (6)

This rectification is crucial, since the computational cost in stereo matching and
triangulation can be dramatically reduced if we use linear projection models for
camera and projector.

3.2 Projector Calibration

If only one camera is used in the system, as in many active stereo systems, stereo
matching is performed between the image taken by camera and the pattern image
emitted by the projector. That is, the role of image I1 is replaced by Ip. In such
a case, the projector has to be geometrically calibrated. Projector calibration is
a tough task since the projector cannot take images of the scene. We solve this
problem taking the advantage of our calibrated camera.

The projector is considered as the “reversed” camera, which projects the
image on “CCD plane” back to the scene. We can use the same projection model
for projector calibration. But unlike the camera, the world coordinates of the
points projected into the scene have to be obtained with the help of the calibrated
camera. We make the projector emit a checkerboard pattern onto the Zw = 0
plane. The other two coordinate components (Xw and Yw) of the projected points
on the plane are computed according to the pixel coordinates in the image taken
by the calibrated camera. Formally, we solve for Xw and Yw in the following
linear equation set:

Zc




u
v
1


 = M2




Xw

Yw

0
1


 , (7)

where u and v are the homogeneous pixel coordinates of the point’s projection
on the image taken by camera, and M2 is the projection matrix of the calibrated
camera. u, v and M2 are already known to us by corner extraction and camera
calibration. Now that we have the world coordinates of the points corresponding
to the projected pattern, projector calibration can be continued in the same
manner as camera calibration. Here we assume that the projector has no radial
distortion and skew effect.

The advantages of using one calibrated camera and one calibrated projector
in stereo matching include saving one camera, and avoiding the efforts to syn-
chronize two cameras. But the disadvantages are that the projector calibration
is more complicated, and there exists no self-calibration technique for recovering
the geometry parameters of the projector. Additionally, we need to ensure that
the scaled images I2 and Ip have similar pattern sizes. Otherwise, the stereo
matching algorithm will be confused.
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4 Stereo Matching

Although the original structured light pattern has the unique sub-window prop-
erty, new ambiguities are aroused after camera’s re-sampling and distortion
caused by different view angles. So we cannot directly decode the images. On
the contrary, NCC based robust stereo matching is used instead.

For sake of efficiency, the two stereo images I1 and I2 are further rectified
using the method of Loop and Zhang [10], so that each epipolar line correspond-
ing to horizontal scanlines of the images, and the disparities between two views
only resides in the horizontal direction.

We use NCC as the basic match metric, thus the cost for matching pixel p
in I1 with pixel p + d in I2 is

CNCC(p, d) =

∑
q∈Wp

(I1(q)− Ī1(p)) · (I2(q + d)− Ī2(p + d))

√ ∑
q∈Wp

(I1(q)− Ī1(p))2 · ∑
q∈Wp

(I2(q + d)− Ī2(p + d))2
, (8)

where d = (dx, 0)′ is the disparity, Wp is the local aggregation window centered
at pixel p, Īk(p) is the average intensity value of the pixels within the aggregation
window centered at p. The effect of aggregation window size is twofold. The larger
the aggregation window, the more robust the matching. But on the other hand,
the aggregation window has to be small enough to avoid covering pixels from
different depth levels. So we choose 5 × 5, which is moderate, to be the size of
aggregation window throughout the paper. Equation (8) requires to compute the
intensity differences between all the pixels in the local window and the average
intensity for each (pixel, disparity) pair, which is too computationally expensive.
So we use the fast NCC algorithm proposed by Lewis [14] in our system.

The NCC cost is then reversed and normalized into the range of [0, 1], with
lower costs for more likely matches:

Cost(p, d) =
1− CNCC(p, d)

2
. (9)

Since the images are taken from different view points, and are possibly with
different sample quality, even each small local window has a unique intensity
encoding in the original light pattern, error matches between I1 and I2 will still
occur, especially where the surface curvature is large. So global stereo matching
algorithms such as dynamic programming (DP) [15] have to be utilized for depth
optimization. We find that DP is an effective approach to solve the problem of
error matches caused by pixel sampling and noise.

The DP algorithm is processed along each scanline from left to right. For
each (pixel, disparity) pair (p, d), the accumulated cost is stored in the array S.
Formally,

S(p, d) = Cost(p, d) + min(S(p− (1, 0)′, d), S(p− (1, 0)′, d + (1, 0)′) + P1,
S(p− (1, 0)′, d + (−1, 0)′) + P1,min

k
S(p− (1, 0)′, k) + P2)),

(10)
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where cost Cost(p, d) is the NCC-based cost for matching pixel p in I1 to pixel
p + d in I2. Discontinuities are not prohibited, but discouraged in our system.
P1 and P2 are respectively the constant penalties for disparity discontinuity of 1
pixel and above 1 pixel. We empirically set P1 to 0.2 and P2 to 1.5 throughout
our experiments.

After minimal total matching cost of the scanline is found, the disparity of
each pixel p is taken as the one on the minimal cost path.

Since the disparities obtained from stereo matching are in pixel unit, the
reconstructed shape will appear ladder-like if the disparities are directly used in
triangulation. To solve this problem, for each pixel, we smooth its disparity value
to sub-pixel accuracy by fitting a quadric surface within a 21× 21 local window.
Pixels that have far different disparity values with the center one are excluded
in the fitting process. Outlier matches have less depth supports in their neigh-
borhood, so they are easily detected and eliminated in the same process. The
smoothed and outlier-free disparity map is then used as input in triangulation.

5 Robust Least Square Triangulation

Now we have corresponded any pixel u1 = (u1, v1, 1)′ in I1 with a particular
pixel u2 = (u2, v2, 1)′ in I2. We can obtain the world coordinate (X, Y, Z)′

corresponding to u1 by solving the following linear equations:




Zc1




u1

v1

1


 = M1




X
Y
Z
1


 =




m1
11 m1

12 m1
13 m1

14

m1
21 m1

22 m1
23 m1

24

m1
31 m1

32 m1
33 m1

34







X
Y
Z
1




Zc2




u2

v2

1


 = M2




X
Y
Z
1


 =




m2
11 m2

12 m2
13 m2

14

m2
21 m2

22 m2
23 m2

24

m2
31 m2

32 m2
33 m2

34







X
Y
Z
1




. (11)

By eliminating Zc1 and Zc2, we will get four linear equations concerning about
X, Y , and Z:





(u1m
1
31 −m1

11)X + (u1m
1
32 −m1

12)Y + (u1m
1
33 −m1

13)Z = m1
14 − u1m

1
34

(v1m
1
31 −m1

21)X + (v1m
1
32 −m1

22)Y + (v1m
1
33 −m1

23)Z = m1
24 − v1m

1
34

(u2m
2
31 −m2

11)X + (u2m
2
32 −m2

12)Y + (u2m
2
33 −m2

13)Z = m2
14 − u2m

2
34

(v2m
2
31 −m2

21)X + (v2m
2
32 −m2

22)Y + (v2m
2
33 −m2

23)Z = m2
24 − v2m

2
34

.

(12)
This is an over-determined linear equation set. So (X, Y, Z) is solved using least
square error method [16], which is corresponding to finding the point with small-
est sum of distances to the rays of two cameras.

6 Experimental Results

Our experimental setup consists of an NEC LT 245+ projector working at 1024×
768, two Olympus C-5060 cameras at 2592×1944, and a standard PC. Due to the
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Fig. 5. (a) real object, (b) object illuminated by structured light pattern, (c, d) ac-
quired depth maps and (e) reconstructed meshes of the experiment on a ball.

Fig. 6. (a) real object, (b) object illuminated by structured light pattern, (c) acquired
depth maps and (d, e) two different views of the reconstructed meshes of the experiment
on a hair drier.

depth blurring effect of the projector, although the resolution of our projector is
1024 × 768, we only use half its resolution in practice. A 2-D binary De Bruijn
pattern with size 512×384 is scaled to fill the screen of projector, and thus every
2 × 2 square pixel unit represents a code bit. All the images taken by cameras
are scaled to Video Graphics Array (VGA) size (640 × 480) for the processing
followed. The algorithm is implmented in C++ and run on a PC with 2.6GHz
CPU and 1GB memory. The depth acquisition process takes about 3 ∼ 4 seconds
for each image pair.

Firstly, the depth maps of a ball and a hair drier are reconstructed using our
system. The real objects are shown in Fig. 5a and Fig. 6a, and the objects illu-
minated by the structured light are shown in Fig. 5b and Fig. 6b. The recovered
depth maps using two calibrated cameras are shown in Fig. 5c and 6c. Fig. 6d
shows the ball’s depth map obtained by the alternative system using a calibrated
projector and only one camera. There are more stereo matching errors near the
object boundary, since in these regions, image Ip and I2 have much different
pattern intensities and distortion. The reconstructed mesh of the ball is shown
in Fig. 5e, and two different views of the reconstructed hair drier are shown in
Fig. 6d and 6e.

We find that the reconstructed meshes appear to be a little rough, especially
where depth changes rapidly in Fig. 6d and 6e. The main cause is that our stereo
matching algorithm is based on pixel as searching unit. It is worthwhile to note
that these results are obtained from only a single image pair.
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In another experiment, a rotating cup is taken as the target object, which
illustrates the system’s ability to recover depth maps for moving objects. Due
to space limitation, we only show two frames from the video sequence and their
experimental results in Fig. 7. There are some characters in dark color (see
Fig. 7b). Other structured light approaches base on pattern decoding such as
2-D binary grid [5] and colored De Bruijn sequence [7] will fail on such regions.
On the contrary, our method gives robust reconstruction in such regions. The
matching error to the right of the cup handle is caused by pattern occlusion in
the other view.

Fig. 7. (a) real object, (b, c) two frames of the object illuminated by structured light
pattern and (d, e) acquired depth maps of the experiment on a rotating cup.

7 Conclusion and Discussions

In this paper, we have proposed a new active stereo approach based on 2-D
De Bruijn sequences. It has the advantage of handling the texture problem and
acquiring depth maps of moving and deforming objects. 2-D De Bruijn sequences
are emitted to the target object so that every small local window on the image
is endowed with a unique code. But the difficulty of decoding these codes after
camera’s re-sampling is avoided by the use of NCC-based dense stereo matching.
So there are few erroneous matches in the stereo matching stage.

Both the systems of using two calibrated cameras and one un-calibrated
projector, and that using one calibrated camera and one calibrated projector are
implemented. For geometrically calibrating the projector, we have proposed a
novel reverse calibration method, which is validated by our experimental results.
Good depth reconstruction results are obtained with both the systems.

A drawback of our system is the restriction to working only for indoor envi-
ronments, due to the limitation of the energy emitted by the projector. This is
a common limitation of active stereo.

In our current implementation, the processing speed is relatively slow for
real time applications. By now, we can only record the moving objects with
fixed cameras and reconstruct the depth maps offline. Hardware implementation
of a real time online system is a challenging future work.
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