Concept and Architecture of a Centaur Robot Satoshi Tsuda, Yohsuke Oda, Kuniya Shinozaki, and Ryohei Nakatsu Kwansei Gakuin University, School of Science and Technology 2-1 Gakuen, Sanda, 669-1337 Japan {amy65823, bhy61926, scbc0052, nakatsu}@ksc.kwansei.ac.jp **Abstract.** Recently various types of robots are being studied and developed, which can be classified into two groups: humanoid type and animal types. Since each group has its own merits and demerits, a new type of robot is expected to emerge with greater strengths and fewer weaknesses. In this paper we propose a new type of robot called the "Centaur Robot" by merging the concepts of these two types of robots. This robot has a human-like upper body and a four-legged animal-like lower body. Due to this basic architecture, the robot has several merits, including human-like behaviors. It can also walk smoothly and stably even on non-smooth ground. We describe the basic concept of our centaur robot and then explain its hardware and software architectures as well as its merits. ### 1 Introduction In recent years, various robots are being studied and developed in research institutes and companies that can be classified into two groups: a humanoid robot with two legs [1][2], an animal type robot with four or more legs [3][4][5]. Also a humanoid robot can be classified into those with two legs and those with wheels [6]. Each of these types has its own merits. The design of a humanoid robot with two legs is based on humans and can mimic such human motions as walking. Since this robot's behavior resembles human behavior, it might easily be introduced into society. In the future, such robots are expected to support us in various aspects of our daily life. At the same time, however, its walking capability still lacks stability, and it sometimes falls down, restricting its area of activity. At the same time, quickly returning to a standing position after falling down is a crucial robot capability. Also it does not easily adapt to uneven surfaces. It has difficulty maintaining its balance on ground that is not flat. On the other hand, the merit of an animal type robot is its four legs, which allow it to walk stably even on uneven ground. Since it can also basically stand on three legs, it can adopt to various ground pattern changes. So far, however, the robot has mainly been developed as a pet to which useful applications have rarely been applied. A humanoid robot with wheels for locomotion, which we call a wheel type robot, can move very smoothly and stably on the ground. It rarely falls down. It can even move on slightly uneven ground. On the other hand, it has no ability to move on stairs, which greatly restricts its area of activity since houses usually contain stairs and other types of height differences. One approach to overcome these problems is to develop new types of robots by merging the strengths of existing robots. In this paper we propose a new type of robot with a human-like upper body and an animal-like lower body that we call a "Centaur Robot." In the following sections, we describe its basic concept and then its detailed software/hardware architectures as well as a prototype we developed. ### 2 Related Works Recently, especially in Japan, various kinds of robots have been studied and developed, particularly humanoid robots that are expected to support our daily life. For example, HONDA has developed a humanoid robot called ASIMO that has sophisticated walking capability [1]. For animal types of robots, on the other hand, most have been studied and developed as pets instead of supportive robots, including AIBO developed by Sony [3]. Although much research/development continues on humanoid and animal types of robots, little research has integrated these two types for several reasons. One reason is that since there are so many research themes for new functions and improvements for each of these types of robots, researchers have little incentive to concentrate on new types of robots that go beyond humanoid or animal types. Another is that even myths or folktales only contain a few examples of such creatures as centaurs, mermaids, and sphinxes in which humans and animals are integrated. Thus it is rather hard to imagine the functions and application areas that such a new type of robot might have. Therefore, we developed a centaur robot because we believed by integrating two types of robots we could create a new type of robot with advantages over conventional robots. #### 3 Humanoid Robots In our work, we are developing a robot that can stably achieve various motions by merging two types of robots: a humanoid and an animal. There are two approaches for such integration: from the humanoid robot side and from the animal robot side. The former approach tries to realize a four-legged body as well as four-legged walk while maintaining a human-like upper body and achieving human-like motions. On the other hand, the latter approach achieves various human-like motions by adding a human upper body to a four-legged robot. In our study, we chose the former approach and modified the hardware and software of a humanoid robot to realize a centaur robot. Fig. 1 Humanoid robot Table 1 Specifications of humanoid robot | Size/Weight | 34 cm/1.7 kg | |-------------|---------------------------------------| | Degree of | 22 (12 legs, 8 arms, 1 waist, 1 head) | | flexibility | | | CPU | SH2/7047F | | Motor | KO PDS-2144, FUTABA S3003, FUTABA | | | S3102, FUTABA S3103 | | Battery | DC6V | We adopted a humanoid robot developed by Nirvana Technology as a platform robot [7]. This robot has 22 servo motors that can express various human-like motions. Figure 1 shows its appearance, and Table 1 shows its specifications. Figure 2 illustrates the construction of its hardware. The control board, on which a microprocessor SH2 is attached, is connected to the servo motors, a gyro sensor, acceleration sensors, PC, and a battery. The program on the controller can achieve autonomous robot behaviors. At the same time, we can send commands to the robot by PC. Fig. 2 Hardware construction of humanoid robot Fig. 3 Software construction of humanoid robot Figure 3 illustrates the software construction. The calculation of the commands necessary to move each motor is carried out each fifteen milliseconds and sent to each servo motor. The instructions to the robot from the PC are first analyzed and based on results go through one of two processes: one command for walking and other commands for other motions. For other commands, the motion data corresponding to the command is read from memory and the control data for each motor is calculated, and then the control data is sent to each servo motor. On the other hand, if the input command is a command for walking, then the real time calculation of the control data for each servo motor is carried out and sent to each servo motor. Calculation consists of three processes: trajectory generation calculation, inverse kinematics calculation, and servo motor angle calculation. In trajectory generation calculation, the position of each ankle studied by observing human walking motion is calculated every fifteen seconds. Then by inverse kinematics calculation the rotation angle of each foot joint is calculated for the same timing. Based on these calculations, finally the angle of each servo motor is calculated. Thus the rotation angle to be achieved for each motor is sent every fifteen milliseconds. # **4 Centaur Robot** ### 4.1 Overview We developed a centaur robot based on the humanoid robot described in the previous section. We prepared two humanoid robots and used one as a front body. For another robot, we only used its lower body as a back of the centaur robot. Then we connected these two parts by a flat plastic board that functions as the shoulder part. Figures 4 and 5 show the centaur robot's appearance. Fig. 4 Centaur robot Fig. 5 Centaur robot (side view) # **4.2 Hardware Construction** Fig. 6 Hardware construction of centaur robot Now we explain the robot's hardware construction, as illustrated in Figure 6. Apparently for the front the hardware of the original humanoid robot was used, and for the back only the lower body was used. But a comparison of Figs. 3 and 6 shows that this robot's control structure is somewhat different from the original. Two controllers were used for complete control of the robot. One controls the servo motors required for upper body motions. The other controls the servo motors corresponding to the lower body. Since all the sensors are provided for the upper body, the controller corresponding to the upper body manages all sensor feedback. We adopted these two boards for several reasons. One, by using two boards, one of which controls the motions of the upper body and the lower body, it is possible to separately control the behaviors of the upper body as well as the lower body. For the power supply and battery, both controllers are connected to one battery. Also commands from PC are sent to both controllers. #### **4.3 Software Construction** Fig. 7 Software construction of centaur robot Next, we explain the robot's software construction, as illustrated in Figure 7. The software of the original humanoid controls both the upper and lower bodies together. For the centaur robot, we checked all the original robot's software and separated the software codes into two groups: one that controls the upper body and another that controls the lower body. Thus we reconstructed the whole software. For the upper body, it is unnecessary to carry out calculations for walking. When commands other than a walking command are sent from the PC, it retrieves motion data stored in the memory and sends the necessary rotation angle data to each servo motor. On the other hand software corresponding to the lower body must treat two types of commands as in the case of the original humanoid robot: a command for walking and other commands for additional motions. Also we adopted a method of inserting an arbitrary phase shift between the servo motor control of the front and back legs so that the robot can adopt the most adequate walking motions depending on the walking speed. By adopting such basic software structure, robot control has the following merits: - (1) The upper and lower body motions can be controlled separately. So far all the motion data developed for achieving various types of humanoid robot motions must be developed to describe the whole body movement. Since the motions of the upper and lower bodies have been separated, we can separately develop two types of motions, and by combining these two types of data, we can generate various kinds of whole body movements for the robot. This idea can easily be applied to the original humanoid robot. - (2) The front and back body movements can be separately controlled. Although it seems natural to let the front lower body and back lower bodies perform identical motions, sometimes it is better to control the two bodies by different body motions. Especially in the case of walking and running motions there would be some differences between these two bodies. For example, for trot type walking there should be a 180° phase shift between the front and the back legs. In the case of gallop running, the front legs and the back legs should move synchronously. #### 4.4 Evaluation of the Robot We carried out several experiments to evaluate the motion capability of our centaur robot. (1) Walking capability We inserted a phase shift of 180° between the walking motion cycle of the front and back legs and confirmed that the robot could move very smoothly by adopting this walking style. In this case the front and back legs move in opposite modes. For example, when the front left leg moves forward, so does the back right leg. Thus this walking style corresponds to trot style walking of animals. By changing the degree of phase shift, the robot can carry out various walking motions such as galloping. We will further study the relationship between phase shift and motion stability/speed. (2) Capability for other motions We developed various types of human-like motions for the original humanoid robot [7]. An interesting question is which of these motions could work well on the centaur robot. We tried to transfer the humanoid robot motions to this robot and found that most of the motions worked fairly well on this robot, except bending and twisting type postures. On the other hand, motions including such postures did not work well or needed modifications. One interesting future research theme is automatically transferring the humanoid robot motions to the motions of four legged robot such as this robot. ### **5** Conclusion In this paper we proposed a new type of robot that is an integration of two types of robots: humanoid and four-legged. We adopted a humanoid robot with two legs and walking capability as a platform for this new robot. By integrating two of the humanoid robots we easily and successfully developed a centaur robot. We described its software and hardware and also its merits. We confirmed that by inserting a phase shift of 180° between the front and back leg motions the robot can stably achieve trot walking motion. We are now evaluating the robot's walking capability by changing the phase shift between the front and back legs and trying to determine the optimum phase shift. Since this robot has merits of both humanoid and four-legged robots, we are also going to evaluate its new capabilities that neither of the two type robots could achieve by themselves. ### References - 1. http://www.honda/co.jp/ASIMO/ - M. Friedmann, J. Kiener, S. Petters, D. Thomas, O. von Stryk, H. Sakakmoto, "Versatile, high-quality motions and behavior control of humanoid soccer robots," Workshop on Humanoid Soccer Robots of the 2006 IEEE International Conference on Humanoid Robots, pp. 9-16 (2006.12). - 3. http://www.jp.aibo.com/ - 4. Golubovic, D., Li, B., and Hu, H., *A Hybrid Software Platform for Sony AIBO Robots*, RoboCup 2003: Robot Soccer World Cup VII, 478-486, 2003. - Kerepesi, A., Kubinyi, E., Jonsson, G. K., Magnusson, M. S., and Kiklosi, A, Behavioural Comparison of Human-Animal (Dog) and Human-Robot (AIBO) Interactions, Behavioural Processes, Vol. 73, No.1, 92-99, 2006. - 6. H. Ishiguro, T. Ono, M. Imai, T. Kanda, Development of an interactive humanoid robot "Robovie" -An interdisciplinary approach, R. A. Jarvis and A. Zelinsky (Eds.), Robotics Research, Springer, pp. 179-191, 2003. - 7. Wama, T., Higuchi, M., Sakamoto, H., and Nakatsu, R., *Realization of Tai-chi Motion Using a Humanoid Robot*, Entertainment Computing, Springer LNCS, 14-19, 2004.