Semiautomatic Rule Assist Architecture
Modeling

Hua Liu, Hongxin Zhang, and Hujun Bao

State Key lab of CAD&CG, Zhejiang University, Hangzhou, China

{sun_day, zhx, bao}@cad.zju.edu.cn

Abstract. This paper presents a novel rule-driven architecture model-
ing technique. Different from grammar based procedural modeling ap-
proaches, our proposed method, called rule assist architecture model-
ing (RAAM), tends to integrate user interactions with implied modeling
rules. Construction rules, configure rules and constrain rules are intro-
duced in our method to minimize user interactions and enhance modeling
efficiency. The experimental results demonstrate the efficiency and flex-
ibility of our method to generate villas and skyscrapers.

1 Introduction

Architecture models are widely used in many computer graphics applications.
Commonly, people use commercial modeling software [9, 10] to build 3D archi-
tecture models with high details. It is a tedious task to model thousands of dif-
ferent buildings, which are often used in virtual cities and urban reconstruction.
Recent years, grammar based procedural modeling methods are introduced to
model buildings [6, 8] and synthesize virtual cities [7] efficiently. Unfortunately,
aforementioned methods are only good at modeling virtual buildings in similar
style. To model buildings in different styles, the user has to define rules for each
of them, which turns out to be inefficient. Moreover, writing desirable produc-
tion rules is only possible for professional users. Although the priority can be
assigned to each rule in [8], grammar based methods do not allow enough control
mechanisms over the architecture modeling process.

In this paper, we present an interactive architecture modeling approach which
is assisted by rules, called rule assist architecture modeling (RAAM). Different
from existing grammar based modeling approaches, the modeling process of our
RAAM is mainly controlled by user interactions. The assist rules maintain con-
struction information, default configuration data and modeling constrains of the
target models. In our modeling system, rules are activated and executed au-
tomatically to reflect user interaction and commands. Construction rules are
utilized to reduce user interactions and help users to complete the nonsignificant
part. Additionally, the RAAM also allows users to modify predefined rules. Our
proposed approach can help users to control the architecture modeling process
more efficiently than previous method.

The rest of the paper is structured as follows. After reviewing procedural
modeling methods in section 2, we introduce the assist rules in section 3. Then



the user interface are presented in section 4. In section 5, implementation details
are provided and several modeling examples are demonstrated by using our pro-
totype system. At last, we draw conclusions and discuss future work in section
6.

2 Relate Works

Rule and grammar based modeling techniques were developed in the first years
of 20th century, such as L-System and parameter L-System, which are mainly
used in plant modeling [2-5].

In recent years, several researchers extended the rule based techniques and
leveraged them in other modeling domains. In [7], an extended L-System is
applied to generate streets of a virtual city. Population density, height map and
water map are employed as the input parameters that influenced the generation
of the streets. After that, split grammar [6], which is a subset of the shape gram-
mar [1], is proposed to describe the rules of shape splitting. Control grammar
is also introduced in that paper, which is used to distribute the attributes of
the modeling rules and selecting the next executed rule by matching attributes.
The modeling process started from a bounded simple shape, and then split it
recursively to form a complex shape with many details progressively. By us-
ing the splitting rules, [16] can produce a class of models automatically. More
recently, [8] addressed application related details in the context of procedural
modeling of buildings, such as the definition of the context sensitive shape rules
and the concise notation. It also address the intersection problem of the archi-
tecture modeling process.

As formalizing knowledge of architecture construction is the essential part of
our method, we would recommend starting with books that emphasize structure
of architecture, such as a visual dictionary [11], the Logic of Architecture by
Mitchell [12], Space Syntax [13], Design Patterns [14], and studies of symme-
try [15].

3 Assist Rules

Comparing with the traditional modeling systems, our RAAM has assist rules
between users and operation commands. For users, they only need to tell the sys-
tem where and what components they want to create. Then the assist rules will
translate their designs into real operation commands. Additionally, assist rules
also detect the correction of modeling results and call the corresponding com-
mands automatically, when it is necessary. Obviously, the key part of RAAM is
the assist rules, which formalize the knowledge of architecture construction. The
assist rules work with a configuration of components and operation commands.
Here, we introduce them first:

Component: A component consists of a symbol, geometry (geometric at-
tributes) and numeric attributes. Components are identified by their symbols



which is either a terminal symbol (e.g., door or window) or a non-terminal sym-
bol (e.g., hall or veranda). The corresponding components are called terminal
components and non-terminal components. The most important geometric at-
tributes are the center position P and a size vector S. These attributes define
an oriented bounding box of component in space. All the result models are con-
structed by terminal components non-terminal components.

Operation Commands: An operation command is described as C(), which can
be a transform function, a creating function or a editing function etc. Operation
commands exactly define the action on the components.

The assist rules not only describe the construction information, but also
include the default configuration and modeling constrains. So we divide the assist
rules into three categories: construction rules, configure rules and constrain rules.

3.1 Construction Rules

A class of buildings with similar style are always consist of a set of finite com-
ponents. The generation of the components are described by the construction
rules, which are defined as a set R in our paper. Similar as the production rules
presented in [8,16], for each r, r € R is represented as Equation. 1,

a — C1(B1)C2(B2) - - - Ci((Bi), (1)

where a and (3; are components. C; are operation commands. Terminal compo-
nents are created by simple shapes or loaded directly from the component library,
such as [17]. For example, the window component, which is loaded from the li-
brary, is described by the construction rule: window(s,p) — Load(name, s, p),
where name indicates which component to be loaded and s, p are attributes of
the window. Body components are created by blocks which are represented as:
body(s,p) — T(CreateBlock(s),p), where T is a transform function.

Non-terminal components, such as hall, veranda etc., consist of terminal com-
ponents or non-terminal components. Here, we will show how a veranda compo-
nent is constructed. The related rules are shown as follow:

Table 1. rules for generate a veranda

id construction rules

. veranda(s,p) — vB(Viottom (s, D)
vB(s,p) — T(CreateBlock(s),p)
vL(s,p) — T(CreateBlock(s),p)
vR(s,p) — T (CreateBlock(s),p)

vF(s,p) — T(railing(s),p)

. railing(s) — Repeat(pillar(Rs(s)), Rn(s))railingtop(Riop(s))

. pillar(s) — CreateCylinder(Prop(s))CreateCylinder(Prottom(s))
. railingiop(s) — CreateBlock(s)

JoL(Viesi(s,p))0R(Vrigne(s, p))0F (Viront(s, p))

—

0 NS UE N




ﬂ railing_top

ﬂ pillar_top
pillar_bottom

Fig. 1. construction of veranda

Her67 %ottom, ‘/lefty ‘/M'ghh Vfront, Rs, Rn7 Rtop7 Ptop7 Pbottom are COHﬁgure rules
which will be introduced in the next subsection. Create Block and CreateCylinder
are both operation commands, which will create a parameterized basic shape im-
mediately. Repeat(s,n) is also an operation command, which make a component
cloned n times. As shown in Fig. 1, we can see how a veranda is built up. In
this process, users only need to specify parameters of a veranda and the whole
generation work is done automatically by assist rules.

3.2 Configure Rules

In our modeling process, the user do not need to specify all modeling parameters.
Most of them can be calculated by the corresponding components. For example,
a window or a door component always has a same dimension value of p with
the wall, which it belongs to. The bottom of a roof component always has the
same size with the top of the corresponding body component. The others can
be determined by domain knowledge, e.g., the width and height of each step of
a stair component always has a fixed scale.

At some time, if the default value generated by configure rules conflicts with
users’ purpose, we also allow them to edit the default configure rules or utilize
the interaction tools to set the value directly. If most of the configure rules
have satisfied users’ purpose, it could be great helpful to improve the modeling
efficiency.

A configure rule consists of a symbol (string) and a function F(X). The
symbol indicates which component the configure rule is related to and X is
the input parameter. The function F', which is commonly a linear function or a
constant, indicates the default value of the component’s attribute. In the previous
subsection, we mentioned some configure rules in the modeling of a veranda
component. For instance, the configure rule Vjoitom is written as:

scalepottom = 0.2
V;)ottom(& p) : Sbottom = (3u7 scalebottom * Sy, Sw) (2>
DPbottom = (pmvpy — 05 * Sv(l - Scalebottom)vpz)



where scalepoirom is a constant, which may be changed by users. As shown in
Equation. 2, Viottom (s, p) returns the size vector Sporrom and center position
Dbottom Of the component vB(veranda bottom). The configure rule will be acti-
vated when the related component is created, which is always invoked by con-
struction rules. Here, we should notice that the input of users have the higher
priority than the configure rules. If the user has specified the attributes, the
corresponding configure rule will not be used anymore.

3.3 Constrain Rules

As the modeling process is semiautomatic and is controlled by users, we cannot
know the sequence beforehand. The new added component probably influence
the existing ones and cause bad results and vice versa. Traditionally, the cor-
rection is confirmed by user themselves. But in our method, it is automatically

done by the constrain rules.

Fig. 2. constrain rules

As shown in Fig. 2, a new added window w will intersect an existing wall
f, if we directly load the window component and put it in the scope, which is
indicated by the yellow rectangle. In general, users will add a hole in the wall
before they put a window on it. This task is not the purpose (creating a window
on the wall) of the user, But it is essential. We call this type of tasks as additional
tasks and make them done automatically by constrain rules as many as possible.
The constrain rules are defined as:

T(s,0): con — C(X) (3)

where T is a function which detect the constrains between current scene(s) and
the new added object(o). The sign con indicates the condition value. When the
return value of T'() is equal to con, the operation command C(X) is executed:

Intersect(f,w) : true — hole(f,rec) (4)

For example: as shown in equation 4, this constrain rule is activated when a
new window is added into the scene.lt detects intersections between walls and
window and add a hole on the wall when the detection result is matched. The
result is shown in Fig.2.



= =

Interaction Correction Interaction Correction

(a) (b)

Fig. 3. automatic correction

DEW 22882 IFTLA DeedLdyisF g

BwDSECGHYVMRE

O Lo fHmEOoORE®

(a) 2D drawing (b) The result model

Fig. 4. Modeling of a villa

4 User Interface

In our prototype system, we use simple 2D user interface. Users may paint from
front, back, up, left and right, five directions totally. The only painting tool used
here, is a rectangle drawing tool. A rectangle from one view side determines two
dimensions of the position p and the size vector s. And the left dimension value
will be determines by a rectangle from the other view sides or directly from the
configure rules.

Automatical Correction: As we choose 2D painting as the interaction, rect-
angles maybe not express the user’s input exactly. As shown in Fig. 3, two
rectangles drawn by the user in the left side are intersected. It will be error if
the coordinates of input rectangle are parameterized directly. To solve this prob-
lem, an automatical correction step is performed before the parameterized step.
The new added component is detected with the related components which exist
already. If the dimension error is in a given threshold, the new added component
will be resized and aligned to the exist corresponding one, as shown in Fig. 3(a)
and Fig.3(b).

5 Implementation and Results

We implement the rule assist approach for modeling villas and high buildings.
Fifteen components and ten operation commands are defined in our implemen-
tation. As all user interaction are in 2D, referenced photos may be used to help



J
|

B | S [
18 668 66 Kt O
| (0B k[0 W0
A O
= | [jes (5l oot
L,

i ifi

L

EI‘!

it

= T —

—

(a) Referenced Photo (b) Virtual building

Fig. 5. Building Reconstruction

users to determine the position of components and also it is helpful to get ma-
terial and texture images directly from photos, especially in the application of
urban reconstruction. The interface of our application is illustrated in Fig. 4(a).
And Fig.4(b) shows the result villa model, which is modeled referring to the left
photograph.

5.1 Material and Textures

As the result model is combined by predefined components and all the com-
ponents are well oriented, we can easily assign material and calculate texture
coordinates automatically. When selecting a piece of the referenced photo and
the corresponding component, image quilting [18] is applied to synthesize texture
for filling the faces of component.

5.2 Results

In this paper, we implemented the rules assist modeling approach to model villas
and skyscrapers. Each model is created in less than one minute including the
generation of textures. The generated models (Fig. 5, 6 and 7 ) are exported
from our application and rendered by 3DSMax. Fig.5(a) is the referenced photo
of the virtual building (see Fig.5(b)). From this example, we can see that the
rules assist method not only suits for the virtual architecture modeling but also
can be applied to reconstruct real buildings.

6 Conclusion and Future Work

In this paper, we present a rule assist architecture modeling method. Different
from the existing grammar based ones, the assist rules are activated and exe-
cuted according to the user interactions. Our proposed assist rule set consists of
three types of rules, including construction rules, configure rules and constrains
rules. Construction rules are used to model the non-terminal components auto-
matically, which are similar to the existing production rules [8]. Configure rules



(a) Villa Model A (b) Villa Model B

Fig. 6. Villa models

] ] e

i [

(a) Whole view

Fig. 7. Dorm Building Model

represent the default value and relationship of components’ attributes. Constrain
rules are activated when the corresponding components are added. Then addi-
tional commands are executed automatically to help modeling. All these assist
rules are leveraged to generate modeling commands automatically from user in-
teractions. It is worth mentioning that our RAAM also allows users to modify the
predefined rules which can provides additional flexibility for modeling different
styles of buildings.

In near future, we plan to integrate 2D matching algorithms in our prototype
system. Then the selection of terminal-components can be done automatically
instead of being chosen by users. We will also explore the possibilities for model-
ing and quantitating architecture styles. For different purpose, the requirement
of geometry resolution is not same. For example, in game applications, for ren-
dering fast the geometry resolution of 3D models is always in a low resolution and
details are represented by textures. But in the application of computer aided ar-
chitecture design(CAAD), users require more geometry details. In the future, we
can define a set of construction rules in different resolutions for one component
and choosing them according to users’ requirement.



References

1. G.Stiny: Introduction to shape and shape grammars. Environment and Planning B
7 (1980), Pion Ltd, London, England. pp. 349- 351.

2. Przemyslaw Prusinkiewicz, Aristid Lindenmayer:The algorithmic beauty of
plants, 1990, Springer-Verlag New York, Inc. New York, NY, USA.

3. Przemyslaw Prusinkiewicz, Mark James and Radom: Synthetic topiary. In Proceed-
ings of ACM SIGGRAPH 1994, ACM Press, pp. 351-358

4. Radomir Méch, Przemyslaw Prusinkiewicz: Visual models of plants interacting with
their environment. SIGGRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, 1996, ACM Press, pp. 397-410

5. Przemyslaw.P, Lars Mndermann, Radoslaw Karwowski, and Brendan Lane: The
use of positional information in the modeling of plants. In Proceedings of ACM
SIGGRAPH 2001, ACM Press, pp. 289-300.

6. Peter Wonka, Michael Wimmer, Francois Sillion, and William Ribarsky: Instant
Architecture. ACM Transactions on Graphics,July 2003, ACM Press, volume 22.
number 3. pp. 669-677.

7. Yoav I[.H.Parish, Pascal Miiller: Procedural modeling of cities. In Proceedings of
ACM SIGGRAPH 2001, ACM Press, pp. 301-308.

8. Pascal Miiller, Peter Wonka, Simon Haegler, Andreas Ulmer and Luc Van Gool:
Procedural Modeling of Buildings. In Proceedings of ACM SIGGRAPH 2006, ACM
Press.

9. Autodesk 3ds Max software: 3D studio Max, Autodesk Inc. http://usa.autodesk.com

10. Sketchup Software: Sketchup. Google Inc.http://www.sketchup.com.

11. CHING, F.D. K: A Visual Dictionary of Architecture. Wiley,1996.

12. Mitchell, W. J: The Logic of Architecture: Design, Computation, and Cognition.
MIT Press, 1990.

13. Hillier, B.: Space Is The Machine: A Configurational Theory Of Architecture. Cam-
bridge University Press, 1996.

14. Alexander,C., Ishikawa, S., and Silverstein, M.: A Pattern Language: Towns, Build-
ings, Construction. Oxford University Press, New York, 1977.

15. Shubnikov, A. V. and Koptsik, V. A.: Symmetry in Science and Art. Plenum Press,
New York, 1974.

16. Hua Liu, Wei Hua, Dong Zhou and Hujun Bao: Building Chinese Ancient Architec-
tures in Seconds. International Conference of Computational Science 2005, LNCS,
May 2005, Springer Berlin/Heidelberg, pp.248-255

17. Google 3D Warehouse, Google Inc. http://sketchup.google.com/3dwarehouse/.

18. Alexei A. Efros and William T. Freeman: Image Quilting for Texture Synthesis and
Transfer. Proceedings of SIGGRAPH 2001, August 2001, ACM Press, pp.341-346.



