Implementation and Optimization Issues of the
Triangular Patch-Based Terrain System

Choong-Gyoo Lim**, Seungjo Bae, Kyoung Park, and YoungJik Lee

Electronics and Telecommunications Research Institute(ETRI)
161, Gajeong-dong, Yuseong-gu, Daejeon, 305-350, South Korea
{cglim, sbae, kyoung, ylee}@etri.re.kr
http://www.etri.re.kr

Abstract. A new dynamic LOD system is recently proposed to repre-
sent fairly large artificial terrains using hierarchical triangular patches[5].
Its mesh structure is unique from other conventional methods because it
is designed to reduce the total number of draw primitive calls in a frame
rather than the number of primitives. Another distinctive feature is its
no-triangulation during the mesh adaptation by using its hierarchical
layers and pre-constructed matching blocks. The purpose of the paper
is to explain its implementation issues to make the new approach more
understandable. Some of optimization issues are also discussed for better
implementations.

Key words: artificial terrain, fairly large terrains, level of details, tri-
angular patches, hierarchical layers, terrain cell windowing, dynamic cell
loading

1 Introduction

Even with the high-end PCs, it is not easy to represent fairly large terrains
in interactive applications because of the quite large number of mesh polygons
involved. Dynamic LOD systems where a less number of polygons are used to
represent remote areas and more polygons for close areas have been proposed
in the literature such as ROAM(Real-time Optimally Adaptive Meshes)[2] and
RQT(Restricted Quad-tree Triangulation)[6, 8,9].

The mesh structure of ROAM is based on RTIN(Right Triangular Irregular
Networks) which has a nice property that refining a triangle affects at most 2
triangles of each size in [4.82] Laves nets[3]. ROAM optimizes re-triangulation by
using the deferred lists of splitting and merging[2]. The mesh structure of RQT
is based on quad-trees as its name implies. Each quad is refined according to the
LOD value of the current area. This approach is well suited for texture allocation
because of its rectangular shape while we need to enforce a block structure into
a ROAM-based terrain system.

** This work was supported by the IT R&D program of MIC/IITA,[2006-S-044-02,
Development of Multi-core CPU & MPU-Based Cross-Platform Game Technology]

2 Triangular Patch-Based Terrain System

The new approach is proposed to take better advantage of the pipelined
architecture of modern GPUs. Modern GPUs are known to perform better with
a less number of draw primitive(DP) calls[7,1,?]. While conventional methods
trying to reduce the total number of primitives, the new one try to reduce the
total number of draw primitives.

2 Hierarchical Triangular Patches

One of the major components in conventional terrain systems is how to represent
terrains in polygonal meshes. ROAM represents them in right triangles as it is
a derivation of RTIN while RQT does it in quadtree-based triangles. The new
approach represents terrains in triangular patches. Another component is how
to adapt to the newly computed LODs and how to fill up the possible cracks
between neighboring patches, which is called re-triangulation. A moving window
system is critical to terrain systems because of the limited amount of system
resources.

2.1 Mesh Structure

Modern GPUs use polygons, mostly triangles, to represent 3D meshes. The per-
formance of a graphics system, thus, heavily depends on the number of polygons
it has to draw in a single frame. That’s why most traditional methods try to re-
duce the number of polygons. Modern GPUs are, however, known to work better
with a less number of draw primitive calls due to their pipelined architectures.
They are designed to perform better on a group of consecutive primitive inputs
than on separate primitive inputs. One can reduce the number of draw primitive
calls significantly if a set of triangles can be represented by a triangle which is
just a single triangle of another triangle set as in Fig. 1.

Instead of trying to reduce the number of polygons, the newly proposed
method utilizes a unique mesh structure to represent terrains. It constructs hi-
erarchical layers of triangular patches where a patch can be represented by a
single triangle at the next layer as in Fig. 1. A triangular patch pg; consists of
k x k finest triangles from the given set of evenly spaced surface points, where k
is the number of grid in each triangular patch. Non-overlapping pg;s collectively
constitute the lowest layer of the hierarchy Py = |Jpo; and represent the whole
terrain in LOD 0. The resulting patches p,; of layer n becomes a triangle of a
triangular patch p,41); of the next layer that collectively constitutes the next
layer of the hierarchy P11 = Upm+1)i

2.2 Re-triangulation

Once the camera moves, terrain systems re-compute LODs of each terrain area.
There are possibly some changes in LODs so that they have to re-triangulate
terrain meshes in order to keep terrains continuous. Conventional methods firstly
re-triangulate whenever splitting or merging of triangles is required. Splitting or

Triangular Patch-Based Terrain System 3

U l\\/\ﬁ

Fig. 1. A hierarchical layer of triangular patches when k& = 3(from [5])

(@) (b) © (d)

(O] ® @

Fig. 2. 7 matching blocks(from [5])

merging itself cause the re-structuring of the terrain mesh, that is re-triangulation.
This re-triangulation often leaves gaps between triangles. Another kind of re-
triangulation is often carried out to fill up the gaps. As pointed out in Section 1,
refinement of a triangle affects at most 2 triangles of each size in [4.82] Laves
nets.

The new system does not re-triangulate at all. Because it simply replaces
the current patch with another patch from a higher or lower layer. If the LODs
of 2 neighboring patches are different, then it replaces the current patch with
one of 7 matching blocks. It identifies 7 matching blocks to stitch 2 neighboring
patches of different LODs as shown Fig. 2. There are 7 different cases which are
categorized by how the inner patch p of level i is surrounded by outer patches
Ph, pi, and p,. of level ¢ + 1, where the patch p;, borders on the hypotenuse of the
inner patch and the patches p; and p, on the left and right sides, respectively,
facing the hypotenuse. The LOD difference of neighboring patches is 1 at most,
which is not a rare practice[4]

3 An Implementation

There may be many various implementations for the new method. One can
implement it with a few phases as follows.

Triangular Patch-Based Terrain System

— Phase 1: Initialization
The terrain system first creates a few threads for cell loading in background
and multiple LOD computation. It also creates 1 vertex buffer and 7 index
buffers to keep vertices and indices in memory. The vertex buffer can be used
for every triangular patches because the numbers of vertices are all the same
for the patches, which is 10. There are 7 different matching blocks such that
the system needs 7 different index buffers of which one is also used for the
original triangular patch.

— Phase 2: Cell Loading

The whole terrain is divided into equal-sized cells. For each cell. there is
a heightmap which is a collection of height values for the cell. The terrain
system reads in the height map for the visible cells and the candidate cells.
After reading the heightmaps, it constructs the hierarchical layers of trian-
gular patches. For the simplicity, it uses 3 layers only. 3 layers are enough
to validate the feasibility of the new method. Using more layers, however,
means bigger terrain cells. In other words, it means less flexibility for cell
management because each cell needs more memory.

— Phase 3: Cell Binding
Now that the mesh structures have been constructed for the loaded cells, it
needs to bind them together. Because it should propagate the LOD infor-
mation on the boundary to the neighboring cells later during the phase of
LOD computation

— Phase 4: LOD Computation
The system selects a single patch from 3 layers based on how much detail it
needs to represent the area, which is the LOD value for the area. The cur-
rent implementation determines LODs in proportion to the distances to the
camera. Another way is to compute the sizes of the edges of the bounding
box of the current patch[5].

— Phase 5: Vertex Buffer Merger
There is a severe penalty for the locking and transferring vertex buffers.
The current implementation merges the whole vertex buffers of the current
cell into a single one before transferring to the graphics pipeline. It saves the
bandwidth of the AGP or PCl-express bus, thus improving the performance.

— Phase 6: Rendering
The terrain system renders each patch according to the LOD of the patch.
If there is no neighboring patch of different LOD from the current patch,
it is rendered with the patch from the layer of the current LOD. If not, it
replaces the current patch with one of the 7 pre-constructed matching blocks.
In order to generate realistic terrain images,

Triangular Patch-Based Terrain System 5

0 9
4
2 1 3 5
5 3 1 2
4
9 0
8 7 6

Fig. 3. Repeated uses of indices for the patches of different orientation

4 Optimization Issues

4.1 Re-use of Indexed Buffers

Indexed primitives are widely used in 3D applications as in [8] because of their
smaller vertex buffers, which can maximize the use of the limited bandwidth of
an AGP or PCl-express bus. Because of the same shape of triangular patches
as shown in Fig. 3, the new system can transfers the indexed buffers at the
beginning of the current cell and repeatedly use on all the patches, making
better use of AGP or PCl-express buses. It transfers only the vertex buffers for
the next patches.

A possible index list is {(0,1,2),(1,3,4),(1,4,2), (2,4,5),(3,6,7),(3,7,4),
(4,7,8),(4,8,5),(5,8,9)}. It uses the fixed index lists for matching blocks as
well with keeping the corresponding vertex buffers intact.

4.2 Dynamic Loading of Terrain Cells

The new terrain system uses a windowing system to avoid loading cells outside
the viewing frustum. It loads the visible cells that move in the viewing frustum
and off-loads the cells that move out.

There are, however, some IO delays when loading the cells that newly became
inside of the viewing frustum. In order to avoid those delays which usually cause
some popping artifacts, the new system load 2 rows and columns of neighboring
cells using background threads. There is no popping artifacts, having the inside
cells already loaded into the system.

It computes the LODs for inside patches before rendering. Those LODs of
boundary patches are correct only if the LODs of candidate cells have been
computed already. The system, thus, computes the LODs for candidate cells as
well. The problematic situation occurs if the neighboring cells of a newly visible
cell haven’t been loaded yet and thus it can’t compute the correct LODs for
the patches of the new cell. The new system loads 4 more rows and columns of
the candidate cells for correct LOD computation. 2 more rows and columns of
candidate cells are enough if we allow some popping artifacts on the boundary
cells, which can’t be totally avoided because the LODs of the newly loaded
candidate cells affects the LODs of the now visible cells.

6 Triangular Patch-Based Terrain System

Fig. 4. A resulting surface in wireframe mode and in solid mode(from [5])

5 Conclusion

The implementation clearly shows that the newly proposed method can be used
to represent fairly large terrains as some of screen shots are shown in Fig. 4.

References

1. K. Ashida. Optimising the graphics pipeline. In China Joy 200/4. www.chinajoy.net,
2004.

2. M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Millder, C. Aldrich, and M. B.
Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting meshes. In
IEEFE Visualization ’97 Proceedings, 1997.

3. W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular net-
works. Technical Report 97-09, University of Arizona, Computer Science, 1997.

4. B. V. Herzen and A. Barr. Accurate triangulations of deformed, intersecting sur-
faces. In Proceedings SIGGRAPH 87, pages 103-110. ACM SIGGRAPH, 1987.

5. C.-G. Lim. A dynamic construction and representation scheme of multi-level LOD
terrains using triangular patches. Submitted for Presentation to Pacific Graphics
2007.

6. R. Pajarola. Overview of quadtree-based terrain triangulation and visualization.
Technical Report UCI-ICS Technical Report No. 02-01, Department of Information
& Computer Science, University of California, Irvine, 2002.

7. A. Rege. Optimization for DirectX9 graphics. In Game Developers Conference
2004. www.gdconf.com, 2004.

8. G. Snook. Real-Time 3D Terrain Engines Using C++ and DirectX. Charles River
Media, 2003.

9. A. Szofran. Global terrain technology for flight simulation. In Game Developers
Conference 2006, 2006.

