
Online Expression Mapping for Performance-driven Facial
Animation

Hae Won Byun

School of Media & Information, Sung Shin Woman’s University,
169-1 Dongsun-dong 2, Sungbuk-gu, Seoul, Republic of Korea

e-mail:hyewon@sungshin.ac.kr

Abstract. Recently, performance-driven facial animation has been popular in various entertainment
area, such as game, animation movie, and advertisement. With the easy use of motion capture data
from a performer’s face, the resulting animated faces are far more natural and lifelike. However, when
the characteristic features between live performer and animated character are quite different, expression
mapping becomes a difficult problem. Many previous researches focus on facial motion capture only
or facial animation only. Little attention has been paid to mapping motion capture data onto 3D face
model.
Therefore, we present a new expression mapping approach for performance-driven facial animation.
Especially, we consider online factor of expression mapping for real-time application. Our basic idea
is capturing the facial motion from a real performer and adapting it to a virtual character in real-time.
For this purpose, we address three issues: facial expression capture, expression mapping and facial
animation. We first propose a comprehensive solution for real-time facial expression capture without
any devices such as head-mounted cameras and face-attached markers. With the analysis of the facial
expression, the facial motion can be effectively mapped onto another 3D face model. We present a novel
example-based approach for creating facial expressions of model to mimic those of face performer.
Finally, real-time facial animation is provided with multiple face models, called ”facial examples”.
Each of these examples reflects both a facial expression of different type and designer’s insight to be a
good guideline for animation. The resulting animation preserves the facial expressions of performer as
well as the characteristic features of the target examples.

1 Introduction

Recently performance-driven facial animation has become popular for on-line animation. Its basic idea is
capturing the facial motion from a real performer and adapting it to a virtual character. The performance
animation not only makes it possible to acquire highly natural facial motion but also automates facial
motion generation with little help from animators. Being difficult with conventional approaches, one can
generate time-varying expressions such as lip-synch and eye-blink effectively with performance animation.

In on-line performance-driven facial animation, it is required to capture facial expressions in real time.
For a live performer to feel comfortable in making expressions, it is also desirable, if not required, to
avoid any devices such as a head-mounted camera and face-attached markers. These constraints on facial
expression capture enforce additional difficulties: The performer naturally moves his/her head to express
emotions while making facial expressions according to an animation script. Without a head-mounted cam-
era, one needs to track the position and orientation of performer’s head for more accurate facial expression
capture. Moreover, without any markers attached on the face, extra effort is needed to track the features of
the face that characterize facial expressions. The final difficulty comes from the real-time constraint, that
is, to capture facial expressions in real time while addressing the former two difficulties.

The previous approaches for facial expression capture have tried to track the position of markers at-
tached on a face performer [9, 24]. To promote the convenience of face performer, facial feature extraction
techniques without markers have been proposed in computer vision [6, 7, 22]. These researches are mostly
used for face detection, face recognition, or facial expression analysis. Thus, they must cope with large
variations in the appearance of facial features across rather general subjects as well as the large appearance
variability of a single subject caused by changes in lighting. In this field, the real time constraint is not at
issue. However, in the case of facial expression capture for performance-driven animation, it is required to

track the facial features, in real time, for only a small number of specific persons who are employed as face
performers.

Real-time facial animation is essential for on-line performance-driven facial animation. Multiple face
models, called facial examples, are widely used for real-time facial animation. Those facial examples com-
prise a facial expression database from which we select appropriate face models to blend and to deform.
However, a facial example consists of a set of vertices with few handles to control such geometric op-
erations except the vertices themselves. To achieve smooth local deformation and non-uniform blending
without any tools, one would have to deal with every vertex of facial examples involved in these operations.
Due to its capability of local control on facial features, ”wires”[20] is known as a popular tool for facial
animation. However, we cannot expect that a designer does necessarily employ wire deformation to model
a example of facial expression.

Those facial examples have been hardly used in conjunction with performance-driven facial animation.
In order to combine an example-based facial animation and expression capture approach, we should address
how to blend the facial examples according to the expression of face performer. The combined approach
has the advantage that leverages the usefulness of facial examples, while gaining the efficiency of facial
expression capture. The method is effective even when the size and characteristics of the face of performer
is quite different from that of face model. Furthermore, attenuating or exaggerating an expression is also
possible by making artificial facial examples with those expressions.

In this thesis, we present a new scheme for on-line performance-driven facial animation. As depicted in
Figure 1, we address following three issues: First, we present a comprehensive solution for real-time facial
expression capture from a stream of images without any special devices. The performer is allowed to move
the head as long as all the facial features are observable from a camera. Next, in order to facilitate real-
time expression mapping, we address how to blend facial examples with a set of wires and deformation
parameters extracted from a facial example. Finally, we propose a novel approach for real-time facial
animation with facial examples represented by wire curves.

The remainder of this thesis is organized as follows: In Chapter 2, we explain the overall structure
of on-line performance-driven facial animation. In Chapter 3, we introduce the first step in detail, that is,
how to extract facial expression. To adopt facial examples for real-time facial animation, we present an
expression mapping scheme for facial examples and their effective representation in Chapter 4. The step
for facial animation is described in Chapter 5. We demonstrate some experimental results in Chapter 6.
Finally, conclusion and future works are given in Chapter 7.

Fig. 1.The overall structure of on-line performance-driven facial animation.

2 Related Work

There are rich results on facial expression capture. We specifically refer those that are directly related to
our work. Williams[24] proposed an approach to capture the facial features with markers attached to the
feature points on the face of a live performer. Due to its efficiency and robustness, this approach is widely
used in practice. However, the markers not only cause discomfort to the performer but also are hard to
attach on some facial features such as eyelids.

Terzopolous and Waters[22] adopted an active contour model called “snakes” presented by Kasset.
al.[13] to track the outlines of facial features highlighted with special makeup. Thalmannet. al.[8] and
Oliver et. al.[16] extracted facial features directly from an input image without any markers. Exploiting
anthropometric knowledge, they were able to obtain geometric information such as the width, height, and
area of a feature region. This type of approaches is simple and efficient. Instead of finding the outlines of
the facial features, Essaet. al.[7] proposed a 3D model-based approach for tracking facial features. They
used the optical flow field to displace the vertices of 3D models. DeCarloet. al.[6] deformed a 3D facial
model to produce a least-squares optical flow solution while relaxing constraints with an extended Kalman
filter. Black and Yacoob[2] used locally parametrized models for recovering and recognizing the non-rigid
and articulated motions of human faces.

For real-time facial animation, blending multiple face models with different expressions is popular [3,
17, 10, 19, 26, 5]. Blanz et al.[3] and Pighin et al.[17] proposed an automatic face modeling technique by
linearly blending a set of example faces from a database of scanned 3D face models. To avoid unlikely faces,
they restricted the range of allowable faces with constraints derived from the example set. For local control
on each facial feature, those approaches allow interactive segmentation of a face into a set of regions to
assign a proper blending factor to every vertex. Joshi et al.[10] adopted an automatic segmentation method
to learn the local deformation information directly from the multiple face models. Chuang et al.[5] extends
blendshape retargetting technique to include subsets of morph targets.

Other alternatives are based on deformation techniques. Thalmann et al.[12] employed FFD to simulate
the muscle action on the skin surface of a human face. Kahler et al.[11] and Terzopoulos et al.[14] proposed
a physically-based method for skin and muscle deformation to enhance the degree of realism over purely
geometric techniques. Guenter et. al.[9] and Zhang et. al. [25] used facial motion data captured from real
actors to deform face models. Marschner et al.[15] computed the displacements of control points for a
specific face model from the movements of sample points on a face performer by solving a system of linear
equations in the least squares sense.

3 Facial Motion Capture

We describe how to track the facial features in real time without any devices such as face-attached markers
and head-mounted cameras. We assume a stream of images is captured from a single camera with known
parameters located at a given position with a fixed orientation. Feature tracking consists of three major
tasks: color space transformation, blob construction, and feature curve extraction. Considering that each
feature appears in an image as a blob[1, 16], that is, a set of pixels with similar properties, we track the
movement of the blob to extract the feature. The first task is for enhancing the features for robust tracking.
In the second task, we first exploit anthropometric knowledge to confine a blob within a rectangle and then
explore the rectangle for the blob. This accelerates constructing the blob, from which we extract its outline
in the final task using snakes[13]. The outline is represented as a cubic Bezier curve with small number of
control points. We describe each of these tasks in detail.

3.1 Color Space Transformation

For robust feature extraction, we transform the color space of the input image from the RGB model to a
model in which the facial features such as eyelashes, eyebrows, nostrils, and lips are significantly distin-
guishable from their background, that is, the skin. Color spaces including the chromatic color model were
employed for robust facial expression capture[1, 16]. Based on statistical learning, this model is useful to
detect the lips and the skin robustly.

To enhance the facial features, we design a new color transformation function from RGB values to
gray-scale values(see Figure 2). By making observation of the face performers, we conceive that the skin
has low values of the magenta (M) and black (K) channels in the CYMK color model. A low intensity (V)
value of the HSV color model is observed for the pixels in dark features such as eyebrows, eyelashes, and
nostrils. Moreover, the portion of the hue (H) band occupied by the color of lips is fairly different from that
of the skin. Therefore, we use those four components to emphasize the features in an image.

Fig. 2.Proposed color transformation:(left)Original Image (right)The image obtained by color transforma-
tion

With our transformation function, the intensityI(u, v) of a pixel(u, v) is defined as follows:

I(u, v) = w1M(u, v) + w2K(u, v) + w3V (u, v) + w4G(H(u, v)). (1)

Here,G is a function which has high values at a range of hue values which are similar to those of lips,
and has very low values, otherwise. The terms,wi, 1 ≤ i ≤ 4 are weights for four components, M, K,
V, and H. Here,w3 is negative while the others are positive, since pixels in features have lower V values
compared to those in the skin. We may further emphasize the features by a contrast enhancement function
C. This function is used to amplify lighter pixels and to attenuate dimmer pixels. Thus, by applying this
function on the intensity, that is, the result of Equation, we can make the pixels in the feature regions
brighter and those of the skin darker.

The weightswi, 1 ≤ i ≤ 4 are varied according to both lighting condition change and skin color
variation. In order to estimate the weights, we employ a three-layered neural network . A neural network
which has learned several patterns of facial images can estimate the weights for the four color components
M, K, V, H in Equation (1) from the RGB color values of facial features in the captured image. The input
layer of neural network gets 11 representative intensity values for subareas of each facial feature(skin,
eyes, eyelids, nostrils, a mouth, and so on). Each representative value is computed as the average of all the
pixel values in the subarea which contains each facial feature in the image. The output layer consists of
4 units specifying the weights that we wanted to estimate in Equation (1). The hidden layer has 10 units,
decided empirically, of a sigmoid function to effectively model the non-linear capacity. Once trained for
each puppeteer, the training data can be used for other sessions of the same puppeteer without re-training.
Whenever we capture facial motion, we can obtain the weights in real time by evaluating the trained neural
network with back propagation.

3.2 Blob Contruction

A blob is said to be a set of connected pixels in an image that share similar visual properties such as color
and intensity. Facial features such as eyes, lips, eyebrows, and etc. are normally projected onto the image as
distinct blobs. By constructing those blobs properly, we can estimate the facial features from the image at
each frame. In order to accelerate blob construction, we confine a blob in a rectangle using anthropometric
knowledge such as the relative positions of facial features and their size. A similar idea is used in Thalmann
et al.[23]. Under the assumption that head movement is allowed as long as no blobs disappear in an image,
we empirically determine the size of the rectangle for each feature. Initially, the edges of the rectangle are
parallel with either thex-axis ory-axis of the global coordinate.

Given the rectangle containing a feature, we employ a blob growing algorithm in [1, 16] to construct
the blob. Initially, we sample a small number of pixels in the rectangle, of which intensities are above a

B

A

v
2

v
1

v
2

v
1

v
1

v
2

in

in

out

out

Fig. 3.Two candidates and offset curves:(a)Two candidate contours of the upper lip (b)Offset curves

threshold, as the seed points for blob growing. From each of those seeds, the algorithm searches an area
within a given radius and collects the neighborhood pixels which have greater intensity than the threshold.
For each collected yet not expanded pixel, this process is repeated until no such pixels remain. Ideally,
these pixels would comprise a single connected component. However, in practice, the pixels give multiple
connected components due to threshold and noise. Each of those components form a region that is either
a false blob or a subset of a blob. To reduce the influence of threshold and noise, we apply morphological
operations such as dilation and erosion[18] to connect the separate regions and eliminate their protrudent
features. We finally take the largest region within each rectangle as a feature blob.

3.3 Feature Curve Extraction

In order to extract the outlines of features, we employ snakes as proposed by Kasset al.[13]. Snakes are
energy-minimizing spline curves under the influence of three (possibly conflicting) forces: internal force,
image force, and constraint force. Due to its high degrees of freedom, the snake may snap to unwanted
boundaries. To avoid this problem, we need to design the constraint force carefully. Therefore, we remove
the internal force from our formulation, differently from the original version of snakes. Instead, we em-
ploy cubic Bezier curves with a small number of control points to represent snakes. The outlines of facial
features are so simple that they can be well represented by such curves. Moreover, the Bezier curve is in-
finitely differentiable within itself, and is therefore continuous to any degree. The property of Bezier curve
guarantees its smoothness. This simplification increases time efficiency and robustness while sacrificing
some flexibility that is not necessarily required for our purpose. In practice, we employ cubic Bezier curves
with four control points.

The energy function of our contour model consists of two terms:

E(v) =
∫ 1

0

Eimage(v(s)) + Econ(v(s))ds, (2)

whereEimage andEcon are respectively the energies due to the image force and the constraint force, and
v(s) is a 2D cubic Bezier curve representing the contour of the feature. Therefore, by minimizingE(v),
we compute the unknown control points of the 2D curvev.

The energyEimage is an edge detecting function, that is,

Eimage(v(s)) = −w1|∇I(u, v)|2. (3)

Here,w1 is a constant weight value. Large positive values ofw1 tend to make the snake align itself with
sharp edge in the image.(u, v) is a point on a 2D cubic Bezier curvev(s) and∇I(u, v) is the gradient at a
point (u, v), that is,∇I(u, v) = (∂I(u,v)

∂u
∂I(u,v)

∂v), andI(u, v) is obtained from Equation (1). This energy
function makes the curvev be attracted to the contour of a blob with large image gradients, or the outline
of a feature. However, using only image gradients may cause an unwanted result. For example, as shown
in Figure 3, we cannot discriminate the upper curve (A) and lower curve (B) with image gradients alone.

We resolve this problem by employing the constraint energy together with simple upper and lower
offset curves as illustrated in Figure 3. Suppose that we want to extract the upper curve (A). Provided with
the up-vector of the head, for example, we make those offset curves by slightly shifting the pair of middle
control points of each feature curve of lips in the opposite directions with respect to the up-vector. For each
feature curve, one of its offset curves is supposed to lie inside the feature while the other outside. An offset

curve of a feature curvev(s) is said to be its inner curvevin(s) if it is supposed to lie in the corresponding
feature. Otherwise, it is said to be its outer curvevout(s) (seev1 in Figure 3). LetI(vout(s)) andI(vin(s))
be the intensity ofvout(s) and that ofvin(s), respectively. Because of the color transformation in Section
3.1, a point in a feature region has a high intensity value, and that in the skin has a low value. Given
I(vout(s)) andI(vin(s)), the constraint energy of the feature curvev(s) is defined:

Econ(v(s)) = woutI(vout(s))− winI(vin(s)), (4)

wherewout and win are positive constants providing the relative weighting of the intensity terms. As
illustrated in Figure 3, withwin sufficiently greater thanwout, Econ is positive for a curve (v2 in the
figure) that is not properly located, but negative for a properly located one (v1).

To make an initial guess of the outline of a feature, we first scale the bounding box of each feature, so
that it tightly bounds the feature blob. We use the boundary of this box as the initial guess of the feature
curve at the current frame. To minimize the total energy functionE(v), we adopt the downhill method
which uses the gradient of the energy function. The local minimum problem can be alleviated by blurring
the image intensity.

4 Expression Mapping

We extracted time-varying movements of feature points from a face performer in the previous capture stage.
In this section, given the movements of feature points, our objective is to generate a facial motion for a 3D
face model in real time, so as to mimic the expression of performer. To create facial animation, we adopt
an example-based approach to blend facial examples in accordance with their contributions to synthesize
the resulting expression[4, 10, 19, 26]. Each of facial example reflects both expressions of different types
such as happiness, sadness, and anger and designer’s insight to be a good guideline for animation. With the
advantages of this approach that preserve the characteristic features of examples and reflecting a designer’s
intention accurately, it becomes a popular method for various shape modeling and animation. However, it
is rarely used in combination with performance-driven facial animation. Our contribution is to present a
realtime example-based scheme for facial motion synthesis in conjunction with facial motion capture.

Given the displacements of feature points, our problem is to find the best blend of examples at each
frame to resemble the facial motion of a performer. Provided with the source examples and corresponding
target examples, in the pre-processing, all the target examples are parameterized by using the correspond-
ing source examples to apply multidimensional scattered data interpolation. We provide a simple, elegant
parameterization scheme for effective expression blending. Provided with the parameterized target exam-
ples, the next step is for computing the contribution of every target example to the new expression using
cardinal basis functions. The final step is to blend the corresponding target examples in accordance with
their contributions to synthesize the resulting expression.

4.1 Parameterization

We parameterize the target examples based on the displacements between the source examples. In the
capture step, the displacements of feature points are extracted from a face performer. Concatenating these
displacements, the displacement vector of each source example is formed to parameterize the corresponding
target example. Most individual parameter components tend to be correlated to each other. Thus, based
on PCA (principal component analysis), the dimensionality of the parameter space can be reduced by
removing less significant basis vectors of the resulting eigenspace.

The displacement vectorvi of a source exampleSi from the source base modelSB is defined as
follows:

vi = si − sB , 1 ≤ i ≤ M, (5)

wheresB andsi are vectors obtained by concatenating, in a fixed order, the 3D coordinates of feature
points onSB and those onSi, respectively, andM is the number of source examples. As shown in Fig-
ure 4,vi places each target exampleTi in theN -dimensional parameter space, whereN is the number of
components, that is, three times the number of feature points.

Ti

Source Examples

Parameter Space

Si

TiTarget Examples

Si

Fig. 4.The displacement vector of each source key-modelSi is used for parameterizing the corresponding
target key-modelTi.

Since the dimensionalityN of the parameter space is rather high compared to the numberM of ex-
amples, we employ PCA to reduce it. GivenM displacement vectors of dimensionN , we first generate
their component covariance matrix, which is anN ×N square matrix, to compute the eigenvectors of the
matrix and the corresponding eigenvalues. These eigenvectors are called theprincipal componentsrepre-
senting the principal axes that characterize the distribution of displacement vectors. The dimensionality of
the parameter space can be reduced by removing less significant eigenvectors, which have small eigen-
values. In our experiments, we use an empirical threshold value of 0.00001 to remove those eigenvectors.
The removal of such eigenvectors may cause some characteristics of the examples not to be parameter-
ized. With our choice of the threshold, we have observed that the effect is negligible. In experiments, the
dimensionality of the parameter space can be reduced from 60 to 18 without any difficulty.

Let ei, 1 ≤ i ≤ N be the eigenvector corresponding to theith largest eigenvalue. Suppose that we
chooseN̄ eigenvectors as the coordinate axes of the parameter space, whereN̄ < N . To transform an
originalN -dimensional displacement vector into anN̄ -dimensional parameter vector, an̄N ×N matrixF
called thefeature matrixis constructed:

F = [e1 e2 e3 . . . eN̄]> , (6)

Using the feature matrixF, the parameter vectorpi corresponding to the displacement vectorvi of a target
exampleTi is derived as follows:

pi = Fvi, 1 ≤ i ≤ M, (7)

which reduces the dimensionality of the parameter space fromN to N̄ . This is equivalent to projecting
each displacement vectorvi onto the eigenspace spanned by theN̄ selected eigenvectors. We later use this
feature matrixF to compute the parameter vector from a given displacement vector.

5 Facial Animation

With the target 3D face examples thus parameterized, our problem is how to blend the examples so as to
resemble the input expression extracted from a face performer. Our problem is essentially one of scattered
data interpolation, as we have very sparse target examples in a relatively high dimensional parameter space.
To solve the problem, we predefines an weight function for each target example based on cardinal basis
functions [21], which consist of linear and radial basis functions. The global shape of weight function is
first approximated by linear basis functions, and then adjusted locally by radial basis functions to exactly
interpolate the corresponding example.

5.1 Weight Function

The weight functionwi(·) of each target exampleTi, 1 ≤ i ≤ M at a parameter vectorp is defined as
follows:

Ti

Source:
Input Expression

Parameter Space

Set of
feature points

Target:
Facial Animation

Blended
face model

Fig. 5.Generating a new face model by blending target key-models

wi(p) =
N̄∑

l=0

ailAl(p) +
M∑

j=1

rjiRj(p). (8)

whereAl(p) andail are the linear basis functions and their linear coefficients, respectively.Rj(p) and
rij are the radial basis functions and their radial coefficients. Letpi, 1 ≤ i ≤ M be the parameter vector of
a target exampleTi. To interpolate the target examples exactly, the weight of a target exampleTi should
be one atpi and zero atpj , i 6= j, that is,wi(pi) = 1 for i = j andwi(pj) = 0 for i 6= j.

5.2 Linear Approximation

Our scheme first approximates the global shape of weight function by finding the hyperplane through the
parameter space that best fists each example. Formally, in Equation (8), we would like to solve for the linear
coefficientsail to fix the first term. By ignoring the second term, we obtain the following Equation 11:

wi(p) =
N̄∑

l=0

ailAl(p). (9)

The linear bases are simplyAl(p) = pl, 1 ≤ l ≤ N̄ , wherepl is the lth component ofp, and
A0(p) = 1. Using the parameter vectorpi of each target example and its weight valuewi(pi), we employ
a least squares method to evaluate the unknown linear coefficientsail of the linear bases.

5.3 Radial Basis Function

Given the linear approximation, there still remain residuals between the examples and the approximated
hyper-planes. To correct for the residuals, we associate radial basis functions with each example. The radial
basis function is a function of the distance between one point and another point indicating the location of
example in the parameter space. The radial basis function is a bell shaped curve centered at the example
point. Thus, the radial basis function is used to limit the influence of each example to a local region of the
parameter space, that is, allows for local refinement of the weight function.

Mathematically, to fix the second term of Equation (8), we compute the residuals for the target exam-
ples:

w′i(p) = wi(p)−
N̄∑

l=0

ailAl(p) for all i. (10)

The radial basis functionRj(p) is a function of the Euclidean distance betweenp andpj in the param-
eter space:

Rj(p) = B

(‖ p− pj ‖
α

)
for 1 ≤ j ≤ M, (11)

whereB(·) is the cubic B-spline function, andα is the dilation factor, which is the separation to the
nearest other example in the parameter space. The radial coefficientsrij are obtained by solving the matrix
equation,

rR = w′, (12)

wherer is anM × M matrix of the unknown radial coefficientsrij , andR andw′ are the matrices of
the same size defined by the radial bases and the residuals, respectively, such thatRij = Ri(pj) and
w′

ij = w′i(pj).

5.4 Runtime Expression Synthesis

Given the input expression captured from a face performer, the application computes a novel output model
at runtime by blending the target examples as illustrated in Figure 5. The resulting expression are produced
so as to resemble the input expression. Our scheme consists of three steps. The first, as an input, the
displacement vector of feature points on a face performer is given. The next step is to derive the parameter
vector from the displacement vector by using the Equation 13. Finally, the predefined weight functions
are computed at this parameter vector to produce the weight values, and the output model is generated by
blending the target examples with respect to those weight values.

First, we form theN -dimensional displacement vectordin by concatenating, in a fixed order, the 3D
displacements of feature points captured from a face performer. N is three times the number of feature
points for X, Y, and Z coordinates.

Next, given thisN -dimensional displacement vectordin, we then obtain the correspondinḡN -dimensional
parameter vectorpin as follows:

pin = Fdin, (13)

whereF is the feature matrix defined in Equation (6).
Finally, using the predefined weight functions for the target examplesTi as given in Equation (8), we

estimate the weight valueswi(pin) of all target examplesTi, 1 ≤ i ≤ M at the parameterpin to generate
the output face modelTnew(pin):

Tnew(pin) = TB +
M∑

i=1

wi(pin)(Ti −TB), (14)

whereTB is the target base model corresponding to the source base modelSB with the neutral expression.

6 Experimental Results

To evaluate effectiveness and performance of the proposed method, we performed experiments on a PC with
Pentium IV 1.2 GHz CPU and 512 MB memory. Face images were captured with a single digital camera
and sent to the PC through a video capture board at 30 frames per second. To illuminate the puppeteer’s
face, we used two desktop lamps each of which has a single 13W bulb. As shown in Figure 6, neither
any markers were attached to performer’s face nor any head-mounted camera was employed. The head
was allowed to move and rotate during facial expression capture on condition that all facial features were
visible.

Figures 6 (a), (d) and (g) show the captured face images of nine puppeteers. Face images after color
space transformation are given in Figures 6 (b), (e), and (h). Here, for each of the puppeteers, we could
automatically obtain the weights of the color components in the color transformation function by using the
trained neural network. From those images, we can observe that the intensity values of pixels in the region
of the skin are so different from those of the facial features such as eyelashes, eyebrows, nostrils, and lips
that the facial features are clearly distinguishable from the skin. Indeed, we were able to extract the facial
features robustly from the transformed images. Figures (c), (f), and (i) exhibits the feature curves extracted
from the images.Our method for facial expression capture can process more than 100 frames per second to
exhibit a sufficient efficiency for real-time on-line performance-driven animation.

To demonstrate the final facial animation, we create several examples for various 3D face models.
Figure 6 illustrates the facial animation as a result of deriving a 3D face model from the feature curve,
extracted from a face performer. The first column of Figure 6 shows the original video of the face performer.
The video comprises a total sequence of 800 frames that are recorded at 30 frames per second. With thirteen
target key-models, we made the facial animation for each 3D face model, shown in the next four rows. Four
different styles(Man, Woman, Monkey, and Toy) of 3D face models were used to show the usefulness of
our example-based approach. Each result of facial animation keeps the personalities of each face model
and reflects the designer’s original intention. We can observe that our approach works well even though the
shape of the performer’s face and 3D face model largely differ.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 6.Original images, color-transformed images, and extracted curves

7 Conclusion

In this paper, we have proposed online expression mapping method for performance-driven facial anima-
tion, reflecting the animator’s creativity and imagination for a face model, by using a combination of facial
expression capture and example-based animation. Our method is useful to overcome the characteristic
differences between the performer’s face and the target face model. Our solution consists of three major
steps: facial motion capture, expression mapping, and facial animation. Our approach extracts facial ex-
pression from a performer in real time without employing a head-mounted camera or markers. With facial
example-based approach, we adapt the captured motion of a performer to a specific face model, even if it
is a anthropomorphized animal, in an on-line manner. Moreover, we achieve real-time facial animation by
blending facial examples with their wire curves. As shown in the experimental results, our approach has
achieved very convincing and lifelike facial animation following the expression of face performer, while
reflecting an animator’s intention, with great efficiency.

Fig. 7.Facial Animation

One limitation of our method require animators to prepare a set of facial examples. At the same time,
it can be an advantage that it allows for human control of animation results so that the characteristics of
examples are fully reflected. However, even for skilled artists, it is time consuming work to create a number
of facial examples with extreme expressions. Automatic construction of facial examples from the captured
expression or animator’s sketch will be a good future research topic on facial animation. For more realistic
facial animation, we would like to extend our scheme to incorporate subtle movements in addition to verbal
and emotional expressions, such as eyeballs rolling and tongue movement.

References

1. S. Basu, N. Oliver, and A. Pentland. “3D modeling and tracking of human lip motions”. InProceedings of ICCV
98, 1998.

2. M. J. Black and Y. Yacoob. Tracking and recognizing rigid and non-rigid facial motions using local parametric
models of image motions. InInternational Conference on Computer Vision 95, pages 374–381, 1995.

3. Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces.SIGGRAPH 1999 Conference
Proceedings, pages 187–194, 1999.

4. Erika Chuang and Chris Bregler. Performance driven facial animation using blendshape interpolation.Stanford
University Computer Science Technical Report, CS-TR-2002-02, 2002.

5. Erika Chuang and Christoph Bregler. Mood swings: Expressive speech animation.ACM Transactions on Graphics,
24(2):331–347, 2005.

6. D. DeCarlo and D. Metaxas. Optical flow constraints on deformable models with applications to face tracking.
International Journal of Computer Vision, 38(2):99–127, 2000.

7. I. Essa and A. Pentland. “Facial expression recognition usin a dynamic model and motion energy”. InProceedings
of ICCV 95, pages 360–367, 1995.

8. T. Goto, S. Kshirsagar, and N. Magnenat Thalmann. “Real time facial feature tracking and speech acquisition for
cloned head”.IEEE Signal Processing Magazine, 18(3):17 – 25, 2001.

9. Brian Guenter, Cindy Grimm, Daniel Wood, Henrique Malvar, and Frederic Pighin. Making faces.SIGGRAPH
98 Conference Proceedings, pages 55–67, 1998.

10. Pushkar Joshi, Wen C. Tien, Mathieu Desbrun, and Frederic Pighin. Learning controls for blend shape based
realistic facial animation.Eurographics/SIGGRAPH Symposium on Computer Animation, 2003.

11. Kolja Kahler, Jorg Haber, and Hans-Peter Seidel. Reanimating the dead: Reconstruction of expressive faces from
skull data.SIGGRAPH 2003, 2003.

12. Prem Kalra, Angelo Mangili, Nadia M. Thalmann, and Daniel Thalmann. Simulation of facial muscle actions
based on rational free form deformations.Eurographics 92, 58:59–69, 1992.

13. M. Kass, A. Witkin, and D. Terzopoulos. “Snakes: Active contour models”.International Journal of Computer
Vision, 1(4):321–331, 1987.

14. Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Realistic modeling for facial animation.SIGGRAPH 95
Conference Proceedings, pages 55–62, 1995.

15. Stephen R. Marschner, Brian Guenter, and Sashi Raghupathy. Modeling and rendering for realistic facial anima-
tion. EUROGRAPHICS Rendering Workshop 2000, pages 98–110, 2000.

16. N. Oliver, A. Pentland, and F. Berard. “Lafter: Lips and face tracking”. InComputer Vision and Pattern Recogni-
tion ’97, 1997.

17. Frederic Pighin, Richard Szeliski, and David Salesin. Resynthesizing facial animation through 3d model-based
tracking. International Conference on Computer Vision, pages 143–150, 1999.

18. W. K. Pratt.Digital Image Processing. Wiley Interscience, 2nd edition, 1991.
19. Hyewon Pyun, Yejin Kim, Wonseok Chae, Hyung Woo Kang, and Sung Yong Shin. An example-based approach

for facial expression cloning.Eurographics/SIGGRAPH Symposium on Computer Animation, 2003.
20. Karan Singh and Eugene Fiume. Wires: A Geometric Deformation Technique.SIGGRAPH 98 Conference Pro-

ceedings, pages 299–308, 1998.
21. P.-P. Sloan, C. F. Rose, and Michael F. Cohen. Shape by example.In Proceedings of 2001 Symposium on Interac-

tive 3D Graphics, pages 135–144, 2001.
22. D. Terzopoulos and K. Waters. “Analysis and synthesis of facial image sequences using physical and anatomical

models”. IEEE Transactions of Pattern Analysis and Machine Intelligence, 15(6):569–579, 1993.
23. N. M. Thalmann, I. Pandzic, and P. Kalra. “Interactive facial animation and communication”. InTutorial of

Computer Graphics International ’96, pages 117–130, 1996.
24. L. Williams. “Performance-driven facial animation”. InProceedings of ACM SIGGRAPH Conference, pages

235–242, 1990.
25. Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. Spacetime faces: High resolution capture for mod-

eling and animation.ACM Transactions on Graphics, 23(3):548–558, 2004.
26. Qingshan Zhang, Zicheng Liu, Baining Guo, and Harry Shum. Geometry-driven photorealistic facial expression

synthesis.Eurographics/SIGGRAPH Symposium on Computer Animation, 2003.

