Sextant: Enabling Automated Network-aware
Application Optimization in Carrier Networks

Jingxuan Zhang*, Luis Contreras’, Kai Gao*, Francisco Canof, Patricia Canof, Anais Escribano®
Y. Richard Yang¥
* Tongji University; T Telefonica University; ¥ Sichuan University; § Alten; ¥ Yale University

Abstract—A growing trend is that network service providers
and applications are integrated more closely through open APIs
for better end-to-end performance. In particular, the provided-
aided network information can help applications orchestrate
their traffic for a better quality of experience, and is gaining
a lot of attention from both the academia and the industry.
However, enabling automated network-aware application opti-
mization in today’s Internet is difficult because of the multi-
vendor, multi-domain nature of carrier networks. In this paper,
we introduce Sextant, a novel network information exposure
system, taking a solid step towards enabling network-aware
application optimization in carrier networks. Our work is driven
by a real requirement from an international ISP, where timely,
accurate distance information is critical to fully utilize its CDN
caches deployed at different Point-of-Presence (PoP). We design a
novel, flexible requirement model, allowing applications to specify
their interests. The queries are efficiently carried out using
our aggregation and incremental update algorithms. Evaluations
demonstrate that our prototype system operates on top of real
router software images, and can efficiently handle dynamics from
multiple ASes.

Index Terms—network-awareness, ISP-CDN collaboration

I. INTRODUCTION

A foundation of intelligent network management is net-
work openness, where the network provider and its customers
exchange information through automated, open APIs. Thus,
the network and overlay applications can potentially be better
integrated to provide better end-to-end performance. Network
openness can substantially improve the QoE of web-based
applications, as reported by several researches [1-9].

In particular, an important feature of network openness
is that network service providers facilitate guidance (e.g.,
abstract network view [10]) to the overlay applications for
mutual benefits over the measurement-based, fully end-to-end
solutions.

As the network service provider has full visibility and
control over the network, it can easily identify and even
foresee potential network dynamics including failures and
policy updates. Thus, those changes can be timely reflected
in the abstract network view and help the applications take
actions accordingly.

Several systems dynamics may effect the quality of service
(QoS) of an application, like network failure events or some
capacity upgrades in the application side (e.g., through the
deployment of new servers). In consequence, it is crucial
for the application to quickly obtain the performance metrics

978-3-903176-32-4 © 2021 IFIP

between end hosts and these newly deployed servers to better
steer the traffic. However, this cannot be achieved using a
measurement-based solution. In the meantime, the network
service provider can quickly adopt the changes in the abstract
network view. It may even provide the information without
actually deploying the new servers. Thus, the application can
estimate the expected performance before the real deployment,
and decide whether to invest the new servers or not.
Pioneering work such as ALTO [10] has identified this prob-
lem and provided automated ways to distribute an abstracted
network view to applications. However, realizing it in carrier
networks ! as we target in this paper, is not trivial because of
the following practical challenges:
« How to collect and disseminate the network information
with the practical constraints posed by carrier networks.
« How to efficiently obtain fine-grained global abstract
network view from multiple networks.
« How to efficiently reconstruct and disseminate the ab-
stract network view upon dynamics
Existing researches [1, 11-13] is not practical to address
those challenges in our settings. Therefore, in this paper, we
introduce Sextant, a novel framework to enable Automated
Network-aware Application (ANA) optimization leveraging on
the structure of the real carrier network (§ II). Sextant uses
BGP [14] and BGP-LS [15] to aggregate network information,
and provides the abstract network to applications through the
Application-Layer Traffic Optimization (ALTO) protocol [10].
The information collected from every AS is aggregated using
a novel algorithm that aggregates prefixes based on the first
hop and provides hop-by-hop cost values. We also introduce
how the networks can be properly configured to make sure the
aggregator obtains the accurate and complete global network
routing information. To enable fast responses to dynamics, we
develop a novel algorithm to efficiently reconstruct abstract
network views from incremental updates. The prototype sys-
tem is now running on a testbed using real router software
images as a previous validation step before being deployed on
an actual operational network (§ III).

II. SEXTANT

In this section, we first give an overview of Sextant and
introduces how it interacts with applications. Then, we present

By carrier networks, we are referring to the networks owned and oper-
ated by a single Internet Service Provider (ISP) which spans over a wide
geographical area, and providing multiple services (e.g. fixed and mobile).



Abstract Network Queries Abstract Network View

Applications

| Global Query Database & Query Engine

ol i
I I 'J'. T !
| Local Network Database & Query Engine

Query Engine ¥
BGP (—J BGP-LS
I

AS-level
Network

As-level
Network

AS-level
Carrier Network Network

Infrastructure

Fig. 1: Overview of Sextant.

the basic idea of each design component and discuss how it
can enable automated network-aware application optimization
in carrier networks. Given the limitation of pages, we put more
details of Sextant in an extended technical report [16].

A. Overview

Fig. 1 gives a high-level overview of Sextant. In a nut-
shell, Sextant 1) continuously collects AS-level inter-domain
connectivity and intra-domain link state using BGP [14] and
BGP-LS [15], and stores them in local network databases, and
2) accepts abstract network queries from multiple applications,
and returns an abstract network view for each query using the
ALTO protocol [10].

The hierarchical query engine monitors changes from both
the application (e.g., new queries or modifications on existing
queries) and the network (e.g., link state changes caused by
network dynamics). When necessary, as we discuss in § II-D,
it automatically updates the abstract network view to provide
the applications with the most up-to-date fine-grained network
information.

a) Abstract Network Query: Sextant allows applications
to specify the information they are interested in, using abstract
network queries. Each abstract network query is modeled as an
abstract directed graph. Each node represents a specific type of
entities, each link represents that the application is interested
in the distance between the source entities and the destination
entities, and a self-loop represents the interest to know the
distance between the corresponding entities.

Nodes and links in an abstract network query can be
annotated with filters to better express the interests of an
application. Entities or entity pairs that do not satisfy the
filter conditions will not be included in the abstract network
view. This approach has two benefits: first, it helps reduce the
data transmission between the network provider and the ap-
plications; second, it allows the Sextant query engine conduct
optimizations to avoid unnecessary computation, speeding up
the query execution.

Right now we only support filters on IPv4 addresses for the
nodes, and hop-count constraints between entities. However,
the design is very extensive and can be adopted to support

{

"nodes": {

"cdn-origin": { "ipv4": ["12.34.56.0/24"] },
"cdn-cache": {
"ipv4": ["8.8.8.0/24", "4.4.4.0/24")

I
"end-users": {}
I
"links": {
"cdn-origin": {
"cdn-cache": {
"cdn-cache": [
"end-users": {}
}
} hopcount <= 3

}

"cdn-cache": {} 1},

"hopcount <= 3" ],

C

CDN Origin CDN Cache End Users

Fig. 2: An Example Abstract Network Query and its Graphical
Representation. Node Filters are Omitted.

constraints on other properties as well. We also enforce that
there can be at most one wildcard node, i.e., a node without
any IPv4 filter. Also, we forbid self-loops on the wildcard
node. It is the case where an application is querying the
end-to-end distance between all users of the ISP network.
This type of query requires a lot of storage and computation
power, posing a heavy burden both on the network and the
application’s scheduler. Given the circumstance, it is unlikely
that the application can take real advantage of the information.
Thus, we forbid this undesired behavior.

b) Abstract Network View: We reuse the abstractions pro-
vided by the ALTO protocol [10]. For each abstract network
query, Sextant automatically generates two ALTO resources:
a network map which aggregates IPv4 prefixes to different
PIDs, and a cost map which contains the distances between
PID pairs, measured by the number of hops.

The PIDs are constructed based on the nodes in the corre-
sponding abstract network query. If two IP prefixes belong to
different types of entities, they will be put into two different
PIDs even if they may be located at the same PoP. The
PIDNames in the network map are derived from the type
of entities. Specifically, it appends a suffix to the type of
entity, where the suffix is a hash of where the prefixes are
attached. Distances are only computed for PID pairs whose
corresponding link type is specified in the abstract network
query. Also, distances that violate the link filters are omitted
in the cost map.

¢) Network Information Collection: The fine-grained
network information is collected using BGP and BGP-LS.
Specifically, to obtain the AS-level connectivity for each
prefix, we configure a border router running eBGP as a route
reflector in each AS.

B. Sextant in Practice

A common abstract network query, derived from the real
requirements of a CDN operator, is as shown in Fig. 2,
alongside its graphical representation. It specifies three types



"meta": { ... },
"network-map": {

"cdn-origin-793bbl": { "ipv4": ["12.34.56.0/24"] },
"cdn-cache-6314£f2": { "ipv4": ["8.8.8.0/24"] },
"cdn-cache-0d45ea": { "ipv4": ["4.4.4.0/24"] },
"end-users-30elac": { "ipv4": ["5.5.5.0/24"] 1},
"end-users-b9cdad9": { "ipv4": ["3.3.3.0/24"] }

"meta": { ... },
"cost-map": {
"cdn-origin-793bbl": {
"cdn-cache-6314f2": 2,
"cdn-cache-0d45ea": 2
br

Fig. 3: The Generated ALTO Maps for the Query in Fig. 2.

of entities, whose meanings are quite straight-forward: cdn-
origin, cdn-cache, and end-users. It contains 3 links including
a self-loop. The links from cdn-origin to cdn-cache and from
cdn-cache to end-users are unidirectional since the application
is mostly interested in the downloading performance, which
is the major QoS metric for video streaming. Since the CDN
allows caches to fetch data from neighbors, it is also interested
in the distances between different caches, resulting a self-loop
on the cdn-cache node. However, if two caches are too distant,
for example, more than 3 hops away, the cache-to-cache data
transfer is not economic. Thus, it puts a constraint on the self-
loop link, specifying interests only in caches no more than 3
hops away.

The automated-generated ALTO maps for the example
query are illustrated in Fig. 3. Given the limited space, we
only include two prefixes for the end users in the network
map, only include the cost values between cdn-origin nodes
and cdn-cache nodes in the cost map, and omit the meta field
in both maps. The hash values are also truncated for better
readability. As we can see, the network map re-groups the
prefixes into different PIDs, and the cost map only returns
values for PID pairs whose link type appears in the query.

The application (e.g., the CDN request router) can periodi-
cally query the generated maps, or subscribe to the resources
using ALTO’s incremental update mechanism [17]. The latter
is recommended as it allows an application to automatically
receive the most up-to-date network information.

C. System Design

Now we introduce the design details of the core query
system, as illustrated in Fig. 4. It includes three key compo-
nents: 1) network listener that collects the low-level network
information (e.g., LSDBs, RIBs) using southbound interfaces
(e.g., BGP, OSPF, ISIS), 2) network view database that main-
tains database tables representing Sextant network abstraction,
and 3) network view updater that transfers the low-level
network information into Sextant network abstraction with
user demands in real-time.

Network View
Updater

Prefix Table

Update &
Subscribe

Notify

Network View
Database -

Topology Table

\ Update

I Path Vector Table

Network Listener

1
1
s 00

~
- L] ~

Fig. 4: A Closer Look at Sextant’s Query Engine.

The designs of these components make it possible to fulfill
the requirements of enabling automated network-aware appli-
cation optimization in a carrier network. First, the southbound
interfaces use standard protocols, which ensures the interop-
erability between devices from multiple vendors. Second, the
network view database forms a hierarchical structure, where
the global view database aggregates local forwarding views.
Third, the network view updater performs incremental updates
in the network view database.

a) Network Listener: This component is to monitor the
control plane of the routing elements in a network domain
and to collect the low-level network information via the
southbound interfaces. In particular, a network listener collects
subnets and the routing information in intra-domain areas from
the OSPF and ISIS routers, and external subnets and the inter-
domain routing information from the BGP border routers. To
reduce the southbound connections and simplify the collection,
Sextant uses BGP-LS as a unified southbound interface to
collect the link-state database of OSPF or ISIS areas.

b) Network View Database: The main function of this
component is to maintain the network information collected by
the network listener and the Sextant network view generated
by the network information. Each network view database
contains three database tables: 1) prefix table that records the
internal and external IP prefixes that may send or receive traffic
going through the current network domain, 2) topology table
that records the network graph annotated with properties of
each link and routing element, and 3) path vector table that
caches the path vector of each potential network flow in the
scope of the current network domain. Each network domain
can maintain its own local network view database. The ISP
and the higher-level network administrator can build network
view databases hierarchically. All the network view databases
organize the network view in the same format.

¢) Network View Updater: This is a component to con-
vert the low-level network information into the network view
database, and update the tables in the existing network view
database.



-
\ :’\zs

\ ya
"_Edge Network |

% \

X%

7.—:\? /ISP AS2
‘ P21

| 3 z]
/€N
— [1sPAs T \ﬁ

P12

(a) Local network forwarding views of two ASes.
P1

) . 5l =
|
d / AN QBA: ON
¢ ) il ISPAS1 \
| A= \sa‘w‘-
N Edge Network / / k&
/-N% ISP AS 2

(b) Aggregated network forwarding view of the ISP.

Fig. 5: Hierarchical Forwarding View in Sextant.

Each network domain can have its own local network view
updater to generate and update its local network view database.
The higher level aggregated network (e.g., ISP, collaborative
network) can set up the aggregated network view updater
to build the aggregated network view database based on the
network view databases of its member networks hierarchically.
Thus, a major responsibility of the network view updater is to
aggregate local network forwarding views into a global view,
as illustrated in Fig. 5. A local forwarding view represents the
network information of potential network flows in its own local
scope. In particular, it includes a set of forwarding entries.
Each forwarding entry records the path vector for a potential
network flow going through this network domain. A network
flow is identified by the IP prefix of the traffic sender (s), the
IP prefix of the traffic receiver (d), and the ingress point where
the traffic enters this network domain ().

When the low-level network information changes (e.g., link
failures, demand changes), the corresponding local network
view updater will reconstruct the network view and update the
local network view database dynamically. The updates of local
network view databases will trigger the aggregation process
and then be aggregated into the global network view database
dynamically.

D. Efficient Network View Computation

The main difficulty is how to efficiently compute the net-
work view. To achieve this practically, Sextant develops two
techniques:

a) Compact View Database Aggregation: For a carrier
network involving multiple network domains, the most time-
consuming process is the aggregation of databases, in partic-
ular, the aggregation of the path vector tables from different
local network view databases. The traditional approach is to
store path vector tables in standard relational databases, and

simply use the union operation to aggregate them. It is very
inefficient as the application has to lookup the union of tables
recursively for multiple times to get the complete forwarding
entries (i.e., path vectors). To reduce the lookup time of the
path vector table, Sextant maintains the compact path vector
table in both local and global query manager.

b) Incremental View Database Recomputation: The net-
work view database has to be updated once the network
information (e.g., DHCP, LSDB, BGP RIB, etc.) changes.
However, recomputing the whole network view database from
scratch whenever the network changes is very inefficient.
From our practical experience, we find that, in each given
time window, only a limited number of low-level network
information entries may change, which may affect very few
table entries in the network view database to be updated.
To avoid recomputing the whole network view database ev-
erytime, we apply incremental updates to the network view
database tables.

III. EVALUATIONS

In this section, we evaluate Sextant in both real testbed and
microbenchmark scenarios.

A. Evaluation on Real Testbed

In this evaluation, we set up a real testbed as a shortcut
version of the real ISP topology to answer the first two
questions. We deployed Sextant in our testbed to demonstrate
the usability of Sextant and performance of the application
using Sextant. The experiment includes two types of network
dynamics: (1) network failure, and (2) demand change.

a) Testbed setup: The testbed setup used in this evalu-
ation is as reflected in Fig. 6. It has been built in leveraging
on virtual images of commercial routers. In our case all the
routers are based on Cisco IOS XRv 9000 Router, version
6.6.2. The setup represents a partial view of the real topol-
ogy pattern of an operational network, including backbone
(hierarchical level 2, HL2, formed by router R9 and R10),
distribution (HL3, formed by R8, R4 and R2) and aggregation
(HLA4, formed by R1, RS and R6) layers. On this topology a set
of residential users are emulated as connected to HL4 routers
with different /24 prefix ranges (e.g., 5.5.5.0 /24 attached to
RS). Similarly, a couple of CDN end-points are emulated as
connected to R4 and R8 to illustrate different deployment
options. Specific virtual machines have been instantiated for
emulating both hosts and CDN end-points, using iperf tool for
generating traffic among them. Finally, two specific routers
(R3 and R7) play the role of route reflectors, one aggregating
BGP sessions (for collecting network topology) and the other
maintaining BGP-LS sessions (for the link states).

The route reflectors maintain those BGP sessions with all
the routers in the setup, and also with the OpenDayLight
(ODL) controller in its version Oxygen-SR4, including an
operational ALTO implementation, in which on top of that a
specific plugin has been developed for enabling the interaction
between ALTO and BGP modules, not existing up to now.



{'osPF RR1
garen 39,39.39.0/30 i
HL2 ﬁ"—" —— &‘ S 33.3333.0030
; 0.95'80.0/3 i
! 89.69.85.030 &‘ ? TR0
i FIRI.0/30 P
w0404 > RR2
3 1Pva
HL3 8 - it e
i i
; RS_‘;,«:‘ ;
("Dw”-i}
P ey
: B1.81.61.0/30/

11.11.11.0/24]

H3 Ha AS 100

Fig. 6: Topology of testbed

All this setup physically runs on top of three Dell Power
Edge R740XD compute nodes with 128 GB of RAM, 80
CPUs, 1,8 TB HDD and 240 GB SSD, and CentOS 7.6.1810,
involving one additional node as controller based on a Dell
PowerEdge R730 server hosting a KVM Linux VM with 8
GB RAM, 8 CPUs, 150 GB HDD and CentOS 7.6.1810. The
OpenStack version used is Queens.

b) Response time for network failure: We first evaluate
the Sextant response for network failure.

We set up a simple CDN mapping using the hop-count
based ALTO cost map to allocate the CDN replica server for
the client. The allocated server IP is mapped by the domain
name cdn.optimal. During the evaluation, we continuously
measure the RTT between the client (H1) to the allocated CDN
replica server cdn.optimal.

To illustrate the network failure, we manually shut down
the port of R4 that is connected to RS.

Fig. 7 shows the RTT measure between the client H1 and
the CDN servers (CDN1, CDN2, and cdn.optimal). We
shutdown the link R4-RS5 at 25s and recover the link at 105s.
As we set the link-state advertisement interval as 1 second,
the link-state updates can be received by Sextant very quickly.
The overall QoS is better than any fixed CDN mapping. Note
that although we use RTT to estimate the QoS of the CDN,
the optimization of the CDN mapping is based on the hop
count information, which may lead to suboptimal allocation
sometimes.

c) Response time for demand change: Then we evaluate
the Sextant response for the demand change.

To illustrate the demand change, we add/remove a CDN
node manually. We use the same network and CDN mapping
setup in this evaluation. We continuously measure the RTT
between the CDN users (H1, H3) and the allocated CDN
replica server cdn.optimal.

Fig. 8 shows the measured RTTs between users and the
CDN. In the beginning, we do not include CDN2 in the
network map. Both H1 and H3 select CDN1. At 75s, we add
CDN2. For HlI, it still selects CDN1. But for H3, it change

the replica server to CDN2. At 175s, we remove CDN1. Both
H1 and H3 select CDN2.

B. Evaluation on Mirco-benchmark

To answer the last two questions, we set up a micro-
benchmark and run simulated networks and queries on it
so that we can evaluate the efficiency of our solution in
larger scale networks. In particular, we evaluate (i) the lookup
efficiency of the compact network view database, and (ii) the
update efficiency of the incremental network view database
computation.

a) Benchmark Setup: We use the sample networks in
topologyzoo [18] to simulate the AS-level inter-domain net-
work, and use the mrinfo [19] dataset to simulate the intra-
domain networks. We use a custom network simulator to set
up the whole network in a workstation (Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30GHz, 64GB RAM). We run BGP on each
border router of each AS, and link-state protocol inside each
AS. We attach the IP prefixes reported by CIDR Report [20]
to the routers of ASes.

b) Efficiency of compact view database aggregation: In
this experiment, we compare the lookup efficiency between
using (i) the compact network view database and (ii) the
simple union network view database.

To evaluate the lookup efficiency, we simulate an ALTO
client to send abstract network queries to the query engine,
and estimate the number of database queries that the query
engine does to respond to the ALTO client. We simulate 30
abstract network queries.

Fig. 9 shows the nummber of database queries that the query
engine does, and the number of table entries queried from
the database. Using the simple union view aggregation, the
query engine has to query the database for multiple times to
respond a single application query request. In the experimental
network, the query engine has to execute 6-7 database queries.
However, using the compact view aggregation, the query en-
gine can always finish the asbtract network view computation
in one database query. It can reduce both database queries and
queried table entries by 5-6 times.

c) Efficiency of incremental view database computation:
We also evaluate the efficiency of applying incremental net-
work view database computation, to compare with the fully
recomputation.

We consider the number of recomputed entries in the path
vector table as the performance metric, and trigger three kinds
of network changes: (i) IP prefix changes, (ii) intra-domain
link state changes, and (iii) inter-domain routing changes.

To evaluate the performance of incremental network view
database computation, we trigger 10 times of network changes
in each AS. Fig. 10 demonstrates the fraction of table entries
recomputed by the local query engine of each AS. From
the result, for most of the network changes, the incremental
computation even don’t have to recompute any table entries. In
average, the incremental computation only needs to recompute
the table entries less than 5%. For very few (less than 0.5%)
extrame cases, the incremental computation recomputes over



—— CDN1
CDN2
-»- cdn.optimal 120

— H1
H3

140 &

|
|
x|

“
|
|
|
|

H
"
|
|
|
|
L

RTT (ms)
RTT (ms)

& e W W

. . . ecmwe 0o vese o
* simple union view

compact view

e

Number of Database Queries
~ -

0 20 W 6 % W 120 10 10 180 0 2 50
Duration (s)

Fig. 7: Response for network failure

7 100 1
Duration (s)

Fig. 8: Response for demand change

5 150 175 200 500 3000

1000 1500 2000 2500
Number of Queried Table Entries

Fig. 9: Lookup efficiency of aggregation.

o
o

o
wn

I
IS
L
[e]

o
N

o]

°
-

=)

=)
lo
loo
oo
o
o
o

[e]
o]
_____g__ﬁgg_gé_ﬂggﬁé__gDg___g&__gggﬁ_ﬂggﬂi__gﬁ_g___a_ﬁg_g_ﬂ

oo o]
o O o

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Fraction of Recomputed Table Entries
o
)
(o}

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162

Local Query Engine

Fig. 10: Update effiency of incremental view database computation.

half of table entries, but the fraction is still less than 60%,
which is much better than the fully recomputation.

IV. RELATED WORK

Network Information Exposure. An abstract network view
is a fundamental feature in Software-Defined Networking [21]
(SDN). Thus, SDN controllers [22-25] provide the network
topology to its applications. However, for confidentiality, the
information is usually not directly exposed to end users. Some
researches [7, 26-28] are built on top of SDN and can provide
more abstracted network views. However, they depend on
devices that are not yet widely deployed and cannot be applied
directly in carrier networks.

ALTO (Application Layer Traffic Optimization) [10] is a
protocol that defines standard interfaces for network providers
to expose network information to overlay applications. We use
ALTO as our northbound interface and propose a concrete
implementation on top of carrier networks.

Application-Network Collaboration and Integration.
Since traffic optimization is beneficial for both the network
and the overlay applications, several studies have proposed to
deepen the application-network integration and collaboratively
optimize the traffic, such as P4P [1], Joint TE [11] and
Unison [12]. In this paper, given the real requirements from the
customers, we focus on a loosely coupled application-network
integration approach which only gives guidance and allows
applications to steer their traffic based on their own objectives.

FlowDirector [8] is the most relevant study to this paper.
It also collects network information and exposes it to large
content providers, which are referred to as hyper-giants. We

are different from FlowDirector in several ways. First, the
ISP in FlowDirector forbids caches inside the network but
cache placement is a major motivation in our paper. Second,
we use BGP-LS protocol for topology collection in carrier-
grade application-network integration, which simplifies the
configuration of the system. Last, we give details of key
algorithms which are not fully described in FlowDirector.

V. CONCLUSIONS

In this paper, we introduce Sextant, a novel automated
network information exposure system that is workable in
realistic carrier-grade ISP networks. Sextant allows overlay
applications to express their need with a novel, flexible require-
ment model, and automatically generates ALTO information
resources for each application based on routing information
collected by technologies that are already widely deployed,
i.e., BGP and BGP-LS. Evaluations demonstrate Sextant can
work on real router software images, and can efficiently handle
dynamics in multiple ASes. We include more details and
further discussions in an extended technical report [16] due
to the limited space.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. We also would like to thank
Telefonica and IETF ALTO working group for collaborations
and substantial contributions.

This work was supported in part by the National Natural
Science Foundation of China under Grant 61902266, Grant
61702373, Grant 61672385, and Grant 61701347.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

REFERENCES

H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and
A. Silberschatz, “P4P: Provider Portal for Applications,”
in Proceedings of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM *08. ACM, 2008,
pp- 351-362.

H. Xu and B. Li, “Joint request mapping and response
routing for geo-distributed cloud services,” in INFO-
COM, 2013 Proceedings IEEE. 1EEE, 2013, pp. 854—
862.

K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan,
“Choreo: Network-aware Task Placement for Cloud Ap-
plications,” in Proceedings of the 2013 Conference on
Internet Measurement Conference, ser. IMC *13. ACM,
2013, pp. 191-204.

A. Ganjam, J. Jiang, X. Liu, V. Sekar, F. Siddiqi, I. Sto-
ica, J. Zhan, and H. Zhang, “C3: Internet-scale Control
Plane for Video Quality Optimization,” in Proceedings
of the 12th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’'15. USENIX
Association, 2015, pp. 131-144.

N. Zhang, Y. Lee, M. Radhakrishnan, and R. K. Balan,
“GameOn: P2p Gaming On Public Transport,” in Pro-
ceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services. ACM Press,
2015, pp. 105-119.

R. Viswanathan, G. Ananthanarayanan, and A. Akella,
“CLARINET: WAN-Aware Optimization for Analytics
Queries,” in 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16). USENIX
Association, 2016, pp. 435-450.

K. Gao, Q. Xiang, X. Wang, Y. R. Yang, and
J. Bi, “NOVA: Towards on-demand equivalent network
view abstraction for network optimization,” in 2017
IEEE/ACM 25th International Symposium on Quality of
Service (IWQoS), 2017, pp. 1-10.

E. Pujol, 1. Poese, J. Zerwas, G. Smaragdakis, and
A. Feldmann, “Steering hyper-giants’ traffic at scale,”
in Proceedings of the 15th International Conference
on Emerging Networking Experiments and Technologies,
ser. CONEXT ’19. Association for Computing Machin-
ery, Inc, 2019, pp. 82-95.

Y. Zhang, G. Li, C. Xiong, Y. Lei, W. Huang, Y. Han,
A. Walid, Y. R. Yang, and Z.-L. Zhang, “Mowie: Toward
systematic, adaptive network information exposure as
an enabling technique for cloud-based applications over
5g and beyond (invited paper),” in Proceedings of the
Workshop on Network Application Integration/CoDesign,
ser. NAI ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 20-27.

S. Kiesel, W. Roome, R. Woundy, S. Previdi,
S. Shalunov, R. Alimi, R. Penno, and Y. R.
Yang, “Application-Layer Traffic Optimization (ALTO)
Protocol,” RFC 7285, Sep. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7285.txt

[11]

[18]

[23]

[24]

W. Jiang, Z. S. Rui, J. Rexford, and M. Chiang, “Cooper-
ative content distribution and traffic engineering in an ISP
network,” in Proceedings of the 11th International Joint
Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’09, vol. 37. ACM Press,
2009, pp. 239-250.

Y. Zhao, A. Saeed, M. Ammar, and E. Zegura, “Unison:
Enabling Content Provider/ISP Collaboration using a
vSwitch Abstraction,” in Proceedings the 27th Interna-
tional Conference on Network Protocols (ICNP). 1EEE,
2019, pp. 1-11.

V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying
Software-Defined Network Optimization Using SOL,” in
13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), 2016, pp. 223-237.

Y. Rekhter, S. Hares, and T. Li, “A Border Gateway
Protocol 4 (BGP-4),” RFC 4271, Jan. 2006. [Online].
Auvailable: https://rfc-editor.org/rfc/rfc4271.txt

H. Gredler, J. Medved, S. Previdi, A. Farrel, and
S. Ray, “North-Bound Distribution of Link-State and
Traffic Engineering (TE) Information Using BGP,”
RFC 7752, Mar. 2016. [Online]. Available: https:
[lrfc-editor.org/rfc/rfc7752.txt

J. Zhang, L. Contreras, K. Gao, F. Cano, P. Cano,
A. Escribano, and Y. R. Yang. (2021) Sextant Technical
Report. [Online]. Available: https://www.dropbox.com/s/
r0s7kbsbcwudmwu/sextant-tech-report.pdf?dl=0

W. Roome and Y. R. Yang, “Application-Layer Traffic
Optimization (ALTO) Incremental Updates Using Server-
Sent Events (SSE),” RFC 8895, Nov. 2020. [Online].
Available: https:/rfc-editor.org/rfc/rfc8895.txt

S. Knight, H. Nguyen, N. Falkner, R. Bowden, and
M. Roughan, “The internet topology zo0o,” Selected Areas
in Communications, IEEE Journal on, vol. 29, no. 9, pp.
1765 —1775, october 2011.

J.-J. Pansiot, P. Mérindol, B. Donnet, and O. Bonaven-
ture, “Extracting intra-domain topology from mrinfo
probing,” in Proceedings of the I11th International
Conference on Passive and Active Measurement, ser.
PAM’10. Berlin, Heidelberg: Springer-Verlag, 2010, p.
81-90.

T. Bates, P. Smith, and G. Huston. (2020) Cidr report.
[Online]. Available: https://www.cidr-report.org/as2.0/
S. Shenker, M. Casado, T. Koponen, N. McKeown et al.,
“The Future of Networking, and the Past of Protocols,”
Open Networking Summit, vol. 20, pp. 1-30, 2011.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker, “NOX: Towards an
Operating System for Networks,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 3, pp. 105-110, 2008.

T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. In-
oue, T. Hama et al., “Onix: A Distributed Control Plat-
form for Large-scale Production Networks.” in OSDI 10,
vol. 10, 2010, pp. 1-6.

J. Medved, R. Varga, A. Tkacik, and K. Gray, “Openday-



[25]

[26]

[27]

(28]

light: Towards a model-driven SDN controller architec-
ture,” in Proceeding of IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks,
2014.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov,
W. Snow, and G. Parulkar, “ONOS: Towards an Open,
Distributed SDN OS,” in Proceedings of the Third Work-
shop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. ACM, 2014, pp. 1-6.

A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan,
B. Schlinker, N. Feamster, J. Rexford, S. Shenker,
R. Clark, and E. Katz-Bassett, “SDX: A Software De-
fined Internet Exchange,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 4, pp. 551-562,
2015.

A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey,
“Ravel: A Database-Defined Network,” in Proceedings of
the Symposium on SDN Research, ser. SOSR "16. ACM,
2016, pp. 5:1-5:7.

Q. Xiang, S. Chen, K. Gao, H. Newman, I. Taylor,
J. Zhang, and Y. R. Yang, “Unicorn: Unified resource or-
chestration for multi-domain, geo-distributed data analyt-
ics,” in IEEE SmartWorld, Ubiquitous Intelligence Com-
puting, Advanced Trusted Computed, Scalable Comput-
ing Communications, Cloud Big Data Computing, Inter-
net of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1-6.



