
Optimal configuration determination in Cognitive
Autonomous Networks

Anubhab Banerjee1,2, Stephen S. Mwanje1, and Georg Carle 2

1Nokia Bell Labs, Munich, Germany
2Dept. of Informatics, Technical University of Munich, Germany

Email:anubhab.banerjee@tum.de, stephen.mwanje@nokia-bell-labs.com, carle@net.in.tum.de

Abstract—Cognitive Autonomous Networks (CAN)
promises to raise the level of operational autonomy in
mobile networks through the introduction of Artificial
Intelligence (AI) and Machine Learning (ML) in the
network processes. In CAN, learning based functions,
called Cognitive Functions (CF), adjust network con-
trol parameters to optimize their objectives which are
different Key Performance Indicator (KPI). As the CFs
work in parallel, there is often an overlap among their
activities regarding control parameter adjustment, i.e.,
at one point of time, multiple CFs may want to change
a single control parameter albeit by different degrees or
to different values depending on their respective levels
of interest in that parameter. To resolve this dispute,
a coordination mechanism is required for sharing the
parameter among the independent CFs according to
their individual interest levels. In this paper we provide
the design of such a Controller in CAN to determine the
optimal control parameter value. The Controller first
quantifies the impact of that parameter on the objective
of each CF, based on which the Controller determines
the optimal value using Eisenberg-Gale solution. A nu-
merical evaluation shows that compared to state-of-the-
art, the proposed Controller can improve performance
by up to 7.7%, while implementation in a simulation
environment shows that the proposed Controller is
feasible for use in a real life scenario.

Index Terms—Network Automation, Game Theory,
Deep Learning, Fisher Market Model

I. Introduction
Cognition and autonomy are strongly desired capabilities

in future communication networks to serve more connec-
tions with increasing demands for throughput, latency and
reliability. Using Artificial Intelligence (AI) and Machine
Learning (ML) algorithms, new automation functions,
called Cognitive Functions (CF), automate specific tasks
in the evolved network known as Cognitive Autonomous
Network (CAN) [1], thereby raising the levels of opera-
tional efficiency and reducing cost. In CAN, each CF is
an independent learning agent - it continuously observes
and learns from the network states, and acts based on
it. As these CFs work in parallel often sharing the same
resources, coordination among them is necessary regarding
the usage of shared resources. They can coordinate by
communicating - either directly with one another, or via
a central entity (called a controller). In [2] we showed that

in CAN, a centralized coordination mechanism using a
controller is more beneficial. Nevertheless, designing such
a Controller is not a trivial task, since the behavior of any
of the CFs is unknown to the other CFs and the Controller
itself. The Controller must act in a dynamic manner based
on current available information from the CFs.
In [3] we proposed the design of such a controller whose

main functionality is to resolve all types of conflicts that
may arise among the CFs. We modeled CAN as a Multi
Agent System (MAS), as MAS is a generic and very
widely used framework for multi-criteria optimization, and
extensively looked for existing multi-criteria optimization
studies in MAS. After a very thorough search we did not
find any existing research work on a MAS similar to the
one we propose. As we elaborated this in [3], we do not
reproduce the same background research in this paper and
consider [3] as the only existing state-of-the-art.
The Controller proposed in [3], [4] selects that particular

value of the parameter of conflict for which the product
of the utilities of all the competing CFs is maximum.
According to Nash’s Social Welfare Function (NSWF) [5],
this solution is optimal for the combined interest of the
CFs. However, it has two major shortcomings -
1) The Controller needs a priori knowledge on the con-

figuration sharing among multiple CFs, i.e., which
configuration is used by which set of CFs. So, when-
ever a new CF is introduced in the system, there
has to be an exchange of information between the
newly introduced CF and the Controller, which is not
discussed in [3].

2) the controller does not consider varying interests
among the CFs for a specific configuration. Changing
a configuration by a certain amount may change the
objective of one CF significantly and objective of
another CF merely. Such CFs should not be treated
equally even if both have interest in the configuration.

Our main contribution in this paper is to design a new
Controller which accounts for the importance of individual
CFs while determining optimal configurations in CAN. Our
contributions in this paper are two-fold:
• we design a Controller using which both the afore-

mentioned disadvantages of [3] are overcome. While
determining the optimal value of a shared configura-978-3-903176-32-4 © 2021 IFIP



(a) CAN abstraction (b) example CAN model (c) Output variations of F1 and F2 w.r.t. p1

Fig. 1: CAN abstraction and example CAN model

tion, the Controller takes the influence of it on the
output of each CF into account, so that the calculated
configuration gives more priority to those CFs whose
outputs heavily depend on that configuration.

• We quantify the importance of a configuration on
the output as config-weight. When a configuration is
shared among multiple CFs, these config-weight values
help to visualize the importance of that configuration
to each CF so that based on the values, actions of CFs
can be prioritized.

Our proposed method gives a significant improvement over
existing solution [3] and using a real life scenario, we also
discuss on the implementation of the proposed solution.

II. Problem Description
A typical network is characterized by many control

parameters (CP) and Key Performance Indicators (KPI).
For example, a Base Station (gNB), has several CPs like
Transmission Power (TXP), Antenna Tilt (RET), and,
multiple observable KPIs like downlink throughput, Radio
Link Failures (RLF), latency. In CAN, each CF focuses
on optimizing of one or more KPIs as its objective. The
CF continuously observes and learns the variation in its
performance w.r.t. changes in the CPs or the external
environments, and based on that, it determines the values
of CPs for which its objective is optimal in a certain state.
In 5G, the environment can change very rapidly [6], and
the CFs may detect frequent changes in the optimal CP
values. If each CF changes the CPs according to its own
will, stability of the whole system may be compromised.
This is why we assume, for sake of stability issue, only the
Controller can change the CPs. Without going into details,
we abstract a CAN as shown in Fig. 1a in a hierarchical
overview where Controller stays one level above the CFs.
Before changing any network configuration, the Controller
takes feedback from all the CFs and makes a decision which
is beneficial for the collective interest of all the CFs.

Most significant challenge for the Controller is to de-
termine the optimal value of a shared CP (configuration).
The challenge is described as follows: consider a CAN with

two CFs - F1 and F2, and one Controller (Fig. 1b). Both
the CFs share the input CP p1, so both of them should
have a say on determining the final value of p1, but how
much say each of them should have is a matter of utmost
importance. Let us assume that we plot the variations of
objectives of the two CFs with respect to p1 in Fig. 1c.
It is evident from Fig. 1c that when p1 changes, o1 varies
more than o2. For example, when p1 changes from p11 to
p12, o1 decreases from its maximum to its minimum, yet o2
remains almost constant. So, for F2 it does not matter if p1
is set at p11 or p12, but for F1 it is clearly a matter of utmost
importance. From this observation, it is evident that F1
should be given more importance while determining the
value of p1 than F2, or, to express it mathematically, while
determining p1, if the Controller gives importance wp1

F1
to

F1 and importance wp1
F2

to F2, then wp1
F1

should be greater
than wp1

F2
, i.e., wp1

F1
> wp1

F2
. At the same time we assume in

our CAN model, for the Controller, o1 and o2 have equal
importance (wo1 = wo2), i.e., by changing a configuration
value if the output F1 decreases by x% and output of F2
increases by y% with y > x, then the new configuration is
selected by the Controller.

In this paper, our target is to propose the design of
a Controller, which takes these wpiFi values into account
while calculating optimal configurations in CAN, with the
following properties -

• The Controller can be used to determine the optimal
values for all configurations in CAN.

• The Controller has to calculate configuration of the
system in a way that is optimal for the combined
interest of all the CFs.

• While calculating the optimal value for the system,
the Controller should take individual wFi values into
account, and, at the same time should give equal
importance to the output of each CF.

• The calculation mechanism of the Controller has to be
very generic and dynamic to be used in real life.



III. Proposed Solution

In this Section we provide end-to-end workflow of the
whole system along with the design of the Controller which
satisfies all four properties listed in Section II.

A. Requirements for Optimal Configuration Calculation

During optimal configuration calculation, the Controller
requires three pieces of information -

a) optimal-config-range set: Being a learning agent,
a CF can generate its most favorable configuration set
based on its learning, called optimal-config-range set
(OCRS). An OCRS has the following structure: [minconfig,
maxconfig] where minconfig and maxconfig denote the
lower and upper bound of the set respectively. For any
configuration value between minconfig and maxconfig, the
objective of the CF always lies within a certain percentage
(value of which to be decided by the Mobile Network
Operator (MNO)) of its maximum objective value, called
cf-return-size.

b) utility function: In CAN, for the Controller to
understand and compare between objectives of different
CFs which have different dimensions, it is recommended to
convert them in some identical predefined scale. This scale
can be provided by the MNO or Controller beforehand.
Example of such a scale is [0:10], where 0 means the lowest
and 10 means the highest achievable value by the CF.

A CF can generate the utility function based on its
learning. To convert its output to this scale, each CF
generates a function which is called utility function (UF).
Let us assume that while using a configuration p, maximum
and minimum achieved performance of the CF are cmax
and cmin respectively. A utility function, denoted by f(p),
maps the objective obtained from p (which is c) in the
predefined ([0:10]) scale -

f(p) = c− cmin
cmax − cmin

= c− 0
10− 0 = c

10 (1)

Similarly, if for a value p1 objective of the CF is c1, then
the utility value corresponding to p1 is c1

10 .
c) Config-weight: In general, different input config-

urations have different levels of importance (weight) in
determining a CF’s objective. The relative importance of a
configuration on the output is called config-weight (CW).
For example, in Fig. 1b we see that F1 has two input
configurations p1 and p2. If we assume that w1 and w2 are
their config-weight values respectively, we have to calculate
w1 and w2 in such a way so that w1 + w2 = 1, so that
these wi values generated by different CFs for the same
configuration are expressed on the same scale and become
comparable. This value can be calculated either by the CF
itself (based on its learning) or set by the MNO (based on
previous knowledge). Also, MNO can always override the
value calculated by the CFs.

Fig. 2: End-to-end workflow of CAN

0 20 40 60 80 100
parameter p1

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y 
va

lu
es

F1 F2 NSWF Proposed

Fig. 3: Comparison between NSWF and proposed solution

B. Workflow of Optimal Configuration Calculation

Here we give an overview on how a CAN works. All
the CFs are trained with real life data (or some simulator
generated data in case real life data is unavailable) before
they become operational. This is a standard practice used
in many Self Organizing Networks (SON) cases. Main
purpose of the training is to determine the config-weight
values which remain fixed unless MNO changes them.
CAN starts with initial configurations set by the MNO

manually from previous experience. The end-to-end work-
flow of an optimal configuration calculation consists of five
steps (Fig. 2) -

a) Step 1: After the system becomes operational, each
CF begins its learning process. After every certain time
interval, the CF calculates the OCRS and compares it
with the one calculated in the last cycle. If these two are
identical, the CF continues its learning until the next cycle,
otherwise, it proceeds to Step 2.

b) Step 2: After a CF finds a change in its OCRS, it
requests the Controller to recalculate that configuration.
This CF is denoted as Requesting CF (Fig 2). There can
be one or multiple Requesting CFs at a cycle for same or
different configurations. However, the Controller calculates
optimal value of a configuration only once in a cycle.



c) Step 3: After the Controller receives a request for
configuration recalculation, it sends a message to all CFs
in the system, asking to send their OCRS, UF and CW.

d) Step 4: After all the CFs receive the request from
the Controller, each CF sends its latest (i) OCRS, (ii) UF
and (iii) CW values to the Controller.

e) Step 5: In the final step, the Controller calcu-
lates the optimal configuration (discussed in Section III-C)
based on information received from CFs and makes neces-
sary changes in the network.
C. Optimal Configuration Calculation
1) Fisher Market Model (FMM): In Game Theory,

Fisher Market Model (FMM) [7] provides optimal solution
for the combined interest of all while taking individual in-
terests into account. To calculate the optimal configuration
for the combined interest of all interested CFs while taking
their individual interests into account, in this Section we
model CAN as an FMM. An FMMM consists of a set of
buyers D = {d1, d2, . ., dd} and a set of items C = {c1, c2,
. ., cc}, where every buyer di has:
• An initial budget (bi) which can be visualized as

money that can only be utilized to purchase the items
and has no intrinsic value to the buyer.

• A utility function ui:[0,1]c →R, that maps a quantity
vectors of the c items to some real predefined scale.

ui(xi) represents the buyer’s utility when receiving xi
amount of items. The set of budgets is denoted by B =
{b1, b2, . ., bd}. Without any loss of generality, the supply
of each good is assumed to be one unit and the total budget
of all buyers is normalized to one, i.e.,

∑d
i=1 bi = 1 [8]. In

an FMM game, each agent first reports its preference to
some central entity and the central entity then determines
a market equilibrium according to the budgets of the agents
and their reported preferences on the items of C, i.e., based
on the budget bi of a buyer di, the target is to determine
the set of items (ci) the buyer should possess for an optimal
allocation of items [8].
2) CAN as a FMM: We introduce an FMM game in

CAN to calculate optimal value of a configuration. The
Controller can be visualized as the central entity and CFs as
buyers. Considering example of Fig. 1b, while determining
optimal p1, D = {F1, F2} and C = {p1}. Now, we visualize
the wp1

Fi
values as their respective budgets, e.g., wp1

F1
= w1,

wp1
F2

= w2 and respective UFs are f1(p1) and f2(p1). Now,
the game model is complete as: D = {F1, F2}, C = {p1}
and B = {w1, w2} and the target is to find optimal p1.
3) Solution to FMM: It is important to find the equi-

librium solution in an FMM game to obtain the optimal
value of p1.It can be captured by the Eisenberg-Gale convex
program [9] if the utility functions of the buyers belong to
the same class in Constant Elasticity of Substitution (CES)
family. Utility functions in the CES family take the form
of

ui(xi) = (
c∑
j=1

aij · xρij)
1
ρ (2)

Fig. 4: Radio coverage of the cells

where ρ parameterizes the family, −∞ < ρ ≤ 1, ρ 6= 0.
The Leontief, Cobb-Douglas, and linear utility functions
are obtained when ρ approaches −∞, 0, and equals 1
respectively [8]:

Leontief : ui(xi) = minj∈[c]

{
xij
aij

}
(3)

Cobb−Douglas : ui(xi) =
∏
j∈[c]

x
aij
ij (4)

Linear : ui(xi) =
∑
j∈[c]

aij · xij (5)

For these three types of utility functions, the Eisenberg-
Gale solution takes the following form:

max
d∏
i=1

ubii (6)

s.t. ui = (
c∑
j=1

aij · xρij)
1
ρ ,∀i ∈ [d]

d∑
i=1

xij ≤ 1,∀j ∈ [c] & xij ≥ 0,∀i ∈ [d], j ∈ [c]

For some values of ρ, e.g., ρ = 1, the objective function
of this convex program is not strictly concave, which means
that there can be multiple market equilibria [8].
4) Eisenberg-Gale solution for CAN: When we use Eq. 6

for optimal p1 calculation,we see that ui(xi) becomes fi(p1)
and bi becomes similar to wi but not equivalent as bi values
are normalized (

∑d
i=1 bi) but wi values are not. So, w1 and

w2 are normalized to w′1 and w
′

2 such that w′1 + w
′

2 = 1
and w′i become equivalent to bi. From Eq. 1 we see that CF
utility functions are linear w.r.t. CPs and they are members
of Linear CES family (Eq. 5, ρ = 1).
5) Optimal Configuration Calculation by Controller:

Here we describe how the optimal configurations are calcu-
lated by the Controller. Considering CAN model of Fig. 1b,
let us assume that when the Controller calculates p1, the
values of OCRS, UF and CW, for F1 are - {[pF1

1min, p
F1
1max],

wF1
p1
, f1(p1)} and for F2 are - {[pF2

1min, p
F2
1max], wF2

p1
, f2(p1)}.



The Controller combines two OCRSs into a final-optimal-
config set (FOCS) taking minimum of (pF1

1min, p
F2
1min) and

maximum of (pF1
1max, p

F2
1max) and selects the p∗1 from FOCS,

for which f1(p∗1)w
′
1 · f2(p∗1)w

′
2 is maximum.

In case, there are multiple values of p1 for which
f1(p1)w

′
1 · f2(p1)w

′
2 is maximum, the one for which the

weighted utility values are closest to one another is selected.
The closeness of the values can be measured using standard
deviation (SD), the lower the SD value, the closer the values
are to one another. For example, let us assume p11 and p12
are two values of p1, which belong to the FOCS and f1(p11)
= 10, f2(p11) = 6, f1(p12) = 6, f2(p12) = 5.83, w′1 = 0.3,
w
′

2 = 0.7. For both p11 and p12, value of fw
′
1

1 · f
w
′
2

2 is 6.992.
As the final value is equal for both p11 and p12, we measure
the SD of [fw

′
1

1 , fw
′
2

2 ] for both cases. For p11, the SD value
is 0.755 and for p12, the SD value is 1.186 and so, p11 is
selected as the optimal value of p1.

IV. Implementation
Here we show the advantages of using our proposed

solution over [3] using an example. Let us consider the
CAN model shown in Fig. 1b and assume that the CFs
are capable of generating the UFs and CWs based on their
learning. As both F1 and F2 share p1, we discuss how the
optimal value of p1 is calculated taking individual interests
of F1 and F2 into account. This is to be noted that, values
of all the parameters in this Section have been assumed in
accordance with the values assumed in [3].

Let us assume that the UFs generated by F1 and F2 are
modeled as Gaussian distributions:

f1(p1, p2) = 0.5e
−(p1+50)2

2p2
2 (7)

f2(p1, p3) = e
−(p1−50)2

2p2
3 (8)

As we discuss calculation of optimal p1, we keep p2 and p3
constant. Both F1 and F2 have been trained on p1: [0, 100]
and their UFs are expressed on a [0:1] scale. The reason
behind assuming Gaussian functions as UFs is - in real life,
distributions of KPIs resemble Gaussian Distribution to a
great extent [10]. We assume cf-return-size as 50% for p1,
so that from Eq. 7, F1 calculates OCRS as [0, 36] and from
Eq. 8, F2 calculates OCRS p1 as [27, 73]. Based on learning,
F1 generate CW values as ζp1 = 0.339, ζp2 = 0.661. As ζp1

+ ζp2 = 1, no further normalization is needed. For F2, input
parameters are p1 and p3. Based on learning, F2 generate
CW values as ζp1 = 1, ζp3 = 0. As ζp1 + ζp3 = 1, there is
no need for further normalization.

A. Optimal p1 Calculation
After the CFs send OCRS, UF, CW to the Controller, the

Controller calculates the optimal configuration as described
in Section III-C5. Value of w1 (config-weight of p1 sent by
F1) is 0.339 and value of w2 (config-weight of p1 sent by
F2) is 1. After normalization, w1 becomes w′1 = 0.25 and

30 40 50 60 70
TXP (dBm)

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y

MLB CCO

Fig. 5: Utilities of CFs vs TXP

w2 becomes w′2 = 0.75. When the Controller combines the
OCRSs provided by F1 and F2, the FOCS becomes [min(0,
27), max(36,73)] or, [0, 73]. As the CFs have been trained
when p1 is varied in steps of 1, the Controller also samples
values in [0, 73] in steps of 1 and selects the sample value
for which fw

′
1

1 · fw
′
2

2 is maximum.

B. Comparison with NSWF solution
In Fig. 3 we plot the variations of utility values with

respect to p1. The red plot shows the utility of F1 and the
green plot shows the utility of F2. According to [3], optimal
p1 for the system is 40 and according to our proposed
solution, optimal p1 is 46. However, we see that, when we
use our proposed solution, utility of F1 decreases by 2.4%
but utility of F2 increases by 10.1%, so the overall system
performance improves by 7.7% which is quite significant.

V. Real life Scenario
A. Simulator Description
Here we discuss how the optimal configurations are

calculated in a real life scenario based on a system level sim-
ulator that uses and extends the emulator in [11] and has
already been used extensively in previous research works
like [12], [13]. The environment of the simulations is an
authentic recreation of a small part of the city of Hamburg.
In an area of 4 sq. kilometer we deploy 5 cells as shown in
Fig. 4. All the cells are 1-sector macro cells (2GHz) using
realistic radio propagation models (the WINNER+ model
[14]). We place 100 users across all cells randomly for 20
times and collects data for all 20 cases. As user mobility
greatly affects in depicting the variation of the KPIs w.r.t.
control parameters, we make the users static so that the
relationship between each KPI and control parameter can
be clearly observed. Although we only use radio related
measurements in this evaluation, the simulator implements
full flow-level simulation, such as FTP or video traffic, and
could also provide flow related data if needed.

B. CF Implementation
In all our simulations, we focus on the central cell shown

in Green color in Fig. 4. We assume a CAN deployed



at the this cell with two CFs - Mobility Load Balancing
(MLB) and Capacity and Coverage Optimization (CCO).
MLB tries to reduce the load in the cell and CCO tries to
maximize the coverage and capacity of the cell. For MLB,
the CPs are - Time To Trigger (TTT), Cell Individual
Offset (CIO), Downlink Transmission Power (TXP) and
Antenna Tilt or Remote Electrical Tilt (RET) and for CCO
the CPs are - TXP and RET. Objectives and the input
parameters of these CFs [15] are listed in Table I. Although
we simulate with 2 CFs, proposed concept can be extended
to any finite number of CFs in a CAN. We use two neural
network (NN) to implement these two CFs. Each CF has
5 fully connected layers, and each layer has 50 nodes. We
use MSE as the loss function and Adaptive learning rate
optimizer or Adam optimizer [16]. Each CF has the inputs
and outputs as listed in Table I. We collect data from 20
different scenarios and use them for training the NNs,so
that after the training is done, each CF can predict the
output corresponding to a set of input configurations. As
TXP is shared between both the CFs, in this paper we
describe how optimal values for TXP can be calculated
using the proposed Controller.

TABLE I: Inputs and Outputs of CCO and MLB
Name Input Target
MLB TTT, CIO, TXP, RET Minimize Load
CCO TXP, RET Maximize downlink

throughput

We generate the training data from the simulator and
range of TXP, used for training, is 25 dBm to 75 dBm.
CW values for TXP, which MLB and CCO generate based
on their learning, are 0.35 and 0.08 respectively. We use a
linear function to convert output of each CF into a utility
value using Eq. 1. For generating the OCRS for a particular
parameter, each CF varies TXP in steps of 1 and selects
those values for which its utility value is within 50% of its
maximum utility value (cf-return-size).
C. Utility Interpretation

When a CF generates UF for TXP all the other parame-
ters (TTT, CIO, RET) are kept constant. In case of CCO,
utility value is directly proportional to the CF output, i.e.,
the higher downlink average user throughput, the higher
the utility value whereas, in case of MLB, utility value is
inversely proportional to the output, i.e., the higher the
load, the less favorable is that configuration for the system
and the lower is the utility value.

In Fig. 5 we plot the utility functions of MLB and
CCO when TXP is varied. We see that when the TXP
is increased, utility value of MLB gradually increases, and
remains constant after a certain value of TXP, and, utility
value of CCO gradually increases, reaches the maximum
and then starts decreasing. This happens because when
TXP is kept increasing, interference from neighboring cells
also keep increasing and downlink throughput value starts
decreasing because of that interference.

D. Optimal Configuration Calculation
In this section we describe how optimal configuration for

TXP is calculated. The same approach has to be followed
for calculating the optimal configurations for RET, CIO
and TTT. As already stated earlier, we assume -
• The system starts with some pre-loaded configuration:

TXP = 46 dBm, RET = 0 deg, CIO = 0 dB.
• The CFs also have loaded OCRS, UF and CW values.

CW and UFs are the same as defined in last section.
However, for OCRS, MLB has [43 - 50] and CCO has
[43 - 50]. These values have been chosen deliberately
so that the CFs trigger the optimal configuration
calculation process

After the system starts, in an interval of 120 seconds, both
the CFs check for their OCRS. After recalculation, OCRS
for MLB is [37, 75] and for CCO is [36, 75]. Both of them
send request to the Controller to recalculate TXP value.
After exchanging necessary information, the Controller
generates the FOCS as [min(37,36), max(75,75)] = [36, 75].
After this the Controller calculates the optimal value of
TXP as described in this paper and the optimal value of
TXP is 66 dBm. We also calculate the optimal TXP by the
method proposed in [3] (in which case the optimal TXP is
64 dBm), and found that our proposed method gives a 2%
overall improvement.
E. Time Complexity
In this Section we discuss about the time complexity of

our proposed design. Our proposed solution is beneficial to
use in real life if another configuration recalculation request
does not arrive before previous configuration recalculation
is complete. We run the simulations to determine the time
consumed while calculating each of the control parameters
(TXP, TTT, CIO, RET) and the result is shown in Table II.
We see that time consumed for calculating one optimal con-
figuration varies between 0.2 - 0.35 ms, which is negligible
compared to the frequency of request arrival (120 s in our
simulation set-up).

TABLE II: Time consumed in each parameter calculation

Param Time
(ms) Param Time

(ms) Param Time
(ms) Param Time

(ms)
TXP 0.35 TTT 0.22 CIO 0.22 RET 0.32

VI. Conclusion and Future Direction
In this paper we designed a Controller for dynamically

calculating optimal configurations in a CAN. Our proposed
Controller overcomes the existing problems and provides
up to 7.7% improvement in overall system performance
over state-of-the-art. Along with that we also proposed a
new metric called config-weight to quantify the importance
of a control parameter on a KPI in a cellular network. We
also implemented our solution in a simulation environment
and showed the benefits of using our proposed solution. As
a next step we plan to implement our solution in a mobile
network environment and make necessary adjustments.



References
[1] S. S. Mwanje and C. Mannweiler. Towards Cognitive Au-

tonomous Networks: Network Management Automation for 5G
and Beyond. John Wiley & Sons, 2020.

[2] A. Banerjee, S. S. Mwanje, and G. Carle. On the necessity
and design of coordination mechanism for cognitive autonomous
networks. arXiv:2001.07031, 2020.

[3] A. Banerjee, S. S. Mwanje, and G. Carle. Game theoretic conflict
resolution mechanism in cognitive autonomous networks. In
2020 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS), pages 1–
8. IEEE, 2020.

[4] A. Banerjee, S. S. Mwanje, and G. Carle. Ran cognitive con-
troller. arXiv:2010.10278, 2020.

[5] S. Ramezani and U. Endriss. Nash social welfare in multiagent
resource allocation. In Agent-mediated electronic commerce. De-
signing trading strategies and mechanisms for electronic markets,
pages 117–131. Springer, 2009.

[6] A. Alnoman and A. Anpalagan. Towards the fulfillment of 5g
network requirements: technologies and challenges. Telecommu-
nication Systems, 65(1):101–116, 2017.

[7] W. C. Brainard, H. E. Scarf, et al. How to compute equilibrium
prices in 1891. Citeseer, 2000.

[8] S. Brânzei, Y. Chen, X. Deng, A. Filos-Ratsikas, S. K. S. Fred-
eriksen, and J. Zhang. The fisher market game: equilibrium
and welfare. In Twenty-Eighth AAAI Conference on Artificial
Intelligence, 2014.

[9] E. Eisenberg and D. Gale. Consensus of subjective probabilities:
The pari-mutuel method. The Annals of Mathematical Statistics,
30(1):165–168, 1959.

[10] I. Marsh, B. Grönvall, and F. Hammer. The design and imple-
mentation of a quality-based handover trigger. In International
Conference on Research in Networking, pages 580–591. Springer,
2006.

[11] Nokia Siemens Networks. White paper: Self-organizing network
(son): Introducing the nokia siemens networks son suite-an effi-
cient, future-proof platform for son. Technical report, October,
2009.

[12] S. S. Mwanje, M. Kajó, S. Majumdar, and G. Carle. Environ-
ment modeling and abstraction of network states for cognitive
functions. In NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium, pages 1–8. IEEE, 2020.

[13] J. Ali-Tolppa and M. Kajó. Mobility and qos prediction for dy-
namic coverage optimization. In NOMS 2020 - 2020 IEEE/IFIP
Network Operations and Management Symposium, pages 1–2,
2020.

[14] J Meinilä, P Kyösti, L Hentilä, T Jämsä, EK Essi Suikkanen, and
M Narandzic. Wireless world initiative new radio winner+, d5.
3: Winner+ final channel models. CELTIC Telecommunication
Soultions, Tech. Rep, 2010.

[15] S. Hämäläinen, H. Sanneck, and C. Sartori. LTE self-organising
networks (SON): network management automation for opera-
tional efficiency. John Wiley & Sons, 2012.

[16] D. P Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.


