
Optimized Contextual Data Offloading in Mobile
Edge Computing

Ibrahim Alghamdi
University of Glasgow, UK

i.alghamdi.1@research.gla.ac.uk

Christos Anagnostopoulos
University of Glasgow, UK

christos.anagnostopoulos@glasgow.ac.uk

Dimitrios P. Pezaros
University of Glasgow, UK

dimitrios.pezaros@glasgow.ac.uk

Abstract—Mobile Edge Computing (MEC) is a new computing
paradigm that moves computing resources closer to the user at
the edge of the network. The aim is to have low-latency, high
bandwidth, and to improve energy consumption when running
computational tasks. The idea of deploying MEC servers near
to the users along the 5G technology has led to open an
interest in the field of Vehicular Network (VN). MEC servers
can play significant roles in improving the performance of VN
applications. In this environment, offloading computational tasks
over collected contextual data by the mobile nodes (Autonomous
Vehicles (AV)) meets the challenge of when & where to offload
the collected data while on the move. In this work, we modeled
the problem of offloading contextual data to the MEC servers as
an optimal stopping problem. Our objectives are to offload to a
MEC server with lower execution time and before the collected
data get stale. We evaluated our model using real mobility trace
with real servers’ utilization; the results showed that the proposed
model outperforms other offloading methods.

Index Terms—Mobile edge computing, quality data offloading,
optimal stopping theory, sequential decision making.

I. INTRODUCTION

Mobile Edge Computing (MEC) refers to a computing
paradigm that moves computing resources closer to the user
at the edge of the network. It intends to relocate the Cloud
computing resources in the radio access network to optimize
the delivery of content and applications to end-users [1]. It
involves deploying small data centers (servers) at the edge of
the network in locations such as base stations, access points,
or within a Roadside Unit (RSU). Further, MEC servers can
be an intermediate data-processing layer for data offloaded by
mobile nodes [2]. MEC servers can play significant roles in
improving the performance of Autonomous Vehicles (AV) and
Unmanned Aerial Vehicles (UAV) applications. For example,
despite AVs typically including on-board units, they have
small-scale computing and storage resources because of which
they are dependent on other computational resources [3].
Further, AVs are equipped with a massive number of sensors
that collect contextual data for different types of applications
such as transportation systems and navigation applications
[4]. An autonomous driving vehicle, for example, produces
and consumes approximately 40 terabytes of data per eight
driving hours (e.g., a city’s High Definition (HD) map is
approximately 1.5TB) [5]. It should be noted that using too far
data centers (Cloud) for data offloading is ineffective and has

Figure 1: MEC environment.

a cost concerning the network resources such as bandwidth
and the delay it may introduce.

Consider the architecture where MEC servers deployed
within the RSU as proposed in [4] and [6] and visualized
in Fig. 1. These servers provide computing resources for
mobile nodes. The mobile node in this work mainly refers
to autonomous vehicles but it also can refer to smartphones
used by the passenger in the AV passing by in the road. The
AVs collect data from sensing devices, and offload the data
to one of the edge servers for further processing. The key
problem now is the data offloading decision by which the
vehicles select an edge server to offload the data. The selection
of where (MEC server) and when (time) to offload has a large
impact on satisfying the requirements of the mobile node and
the running applications [3]. In addition, data gathered by the
AVs tend to have strict timeliness requirements which may
result in the data becoming out-of-date.

A naive centralized offloading method can be considered
within such an environment in which the vehicle can request,
from a centralized server, the information about the possible
MEC servers that can be used for offloading along the road
[6], [7]. The centralized server can be located in a higher
layer and it is connected to all MEC servers with wired
network connectivity [6], [7]. However, such architecture is
not visible as this might introduce load on the network as
the number of vehicles on the road increases [6]. Another
solution would be using Vehicle to Vehicle communication
(V2V) as discussed in [4], where a vehicle can send tasks
to the MEC server (using V2V technology) that it will pass
by at the time the computational task finishes. Such a solution
requires the presence of other vehicles, which is not guaranteed
all the time. Without having a centralized server nor global
information about the potential MEC servers [6] [8], the978-3-903176-32-4 © 2021 IFIP



mobile node is expected to encounter the situation where
it only knows about the server in the range of that mobile
node and it does not know about the next MEC servers and
their resources. As a result, the mobile node has to make an
independent offloading decision while in the move. Thus, the
challenge now is how to optimize the decision of selecting the
MEC server if the mobile node only knows about the MEC
server it is observing. In other words, the mobile node does not
have global information (or the mobile node has incomplete
information) about the candidate MEC servers to be used for
offloading. In this case, we consider two important factors
that can be used in order to delay the offloading in the light of
finding a better MEC server. First, we can consider mobility
as an advantage to optimize the decision of which MEC
servers to offload. As the speed of the vehicle increases, the
probability of having a better MEC server with low workload
increases [9]. Second, there is usually a certain deadline for the
computational task which gives an opportunity for the decision
maker to delay and explore more options for offloading [6],
[10].

As an example, consider the use case where MEC servers
deployed in RSUs can act as an Edge-Assisted HD map update
as discussed in [11]. The MEC servers, in this case, can
be used to build or update an HD map based on collected
data by vehicles exploiting the Vehicle-to-Infrastructure (V2I)
communication method [5]. In this situation, it is necessary
that the data are offloaded in the best time in terms of
the processing time and that the data are offloaded prior to
becoming out-of-date [11]. The previous requirements can
be also applied to other types of contextual data with aim
of maximizing the quality of data analytics. Therefore, we
need an intelligent algorithm that selects an optimal or near-
optimal server based on the requirements of the mobile nodes’
applications.

In this work, we argue that in MEC environments, with
a set of edge servers and a set of mobile nodes (AVs),
data-orientated task offloading decisions can be optimized by
applying the principles of Optimal Stopping Theory (OST).
The principle of the OST involves selecting a time to pick a
given action based on sequentially observed random variable
in order to maximize an expected reward or to minimize an
expected cost [12]. Our objective is to provide an efficient,
a lightweight, independent and contextual data offloading
mechanism to meet the requirements of the data offloading
in MEC environments.

The paper is organized as follows: we summarize related
work and present our contribution in Section II, while de-
tails of our OST-based system are described in Section III.
Evaluation results are provided in Section IV, and Section V
concludes the paper and outlines future research directions.

II. RELATED WORK & CONTRIBUTION

Offloading decisions in general in MEC environments have
been widely studied in the literature with the objectives of
minimizing execution time and power consumption. In this
work, we focus on the decision of when and where to

offload in edge computing environments. In this regard,
studies have focused on specific applications as in [13], [14]
and [15] or created general models under the assumption that
the models can be applied to different applications (tasks) as
in [16]. Different from these works, we investigate a scenario
where a mobile node lacks information about potential avail-
able MEC servers and needs to calculate the best time for
data offloading considering the timeliness of the data in a
sequential manner. The authors in [6] proposed a decentralized
management scheme for mobile edge servers and an offloading
approach in the edge computing environment. The proposed
idea is based on the Peer to Peer (P2P) networking architecture
where peers (MEC servers and moving vehicles) have equal
privileges. Different from this study, in our work, we are trying
to make the mobile node more independent with respect to
the offloading decision-making. The study in [6] requires the
mobile node (vehicle) to be involved in a P2P network with
the MEC servers which might not be available for the mobile
node in all environments.

This work considers the use case where MEC servers
can form a platform for gathering, storing and processing
a huge amount of data collected and offloaded by mobile
nodes, e.g. AVs [2]. In this regard, BEGIN was proposed in
[17] to utilize the big data collected from the edge environ-
ment to provide energy-efficient edge computing. RedEdge
[18] is a big data processing architecture that incorporates a
mechanism that facilitates the processing of big data streams
at the edge near to the user. The idea of having the edge
servers as a platform for data analytics was also proposed in
[19]. The proposed MEC architecture is for a mobile crowd-
sensing (MCS) service. The MCS refers to a human-driven IoT
service to which people send their observations of different
phenomena in their surroundings by sharing their sensor data
while on the move. The work in [20] proposed a decentralized
traffic management system to minimize the average response
time caused by traditional centralized traffic management. The
scenario in this work is that vehicles can upload sensed events
(e.g., traffic jams, car accidents, and road surface damages) to
a nearby Road Side Unit (RSU). Our work can be a supportive
method for such systems by optimizing the way by which data
are collected and offloaded to an edge server.

In our previous works [21], [22] and [23], we proposed a set
of OST-based models with the objectives of maximizing the
probability of offloading to the best server or at the best time
and minimizing the total delay when offloading a task. Our
previous studies are general frameworks for task offloading
in MEC environments. The OST was also utilized in [8] for
the objective of deriving a good balance between the gain
of choosing the best edge device and the accumulated cost
of deep resource probing. The authors try to enhance the
ability of the proposed OST-based model by utilizing a layered
learning mechanism to define the OST thresholds and the
sequence of the edge nodes used for offloading. However, such
enhancement can be an overhead and battery consumption for
the mobile nodes as it implements deep neural network and
Deep Q-Networks. Also, in their applications, the assumption



is that the mobile node will have a list of edge devices once
a task is generated and then the mobile node will define
which edge node makes a good balance between the cost of
probing and the execution delay of the task. We depart from
the previous work and try to focus on offloading collected data
from the mobile nodes. The contributions of this work are:
• Derived by the use case of AVs in MEC environments as

suggested by [4] and [5], we enhance our work in [21]–
[23] and study the case that arises when a mobile node
(AVs) wants to offload contextual data to a MEC server
while it is moving. We treat the decision-making as an
optimal stopping time problem.

• Performance evaluation of our quality-aware optimal data
offloading model and a comparison with baseline solu-
tions and the methods [21]–[23] in the literature.

III. SYSTEM MODEL & PROBLEM FORMULATION

A. System Model:

We consider a setting where there exists a set of MEC
servers deployed along the mobile node’s path on the move
as shown in Fig. 1. Such a setting can be seen in the VN
applications as studied in [4] and [6], where smart vehicles,
e.g. AVs, perform different types of tasks. This can be also
applied to other mobile nodes such as passengers in cars [11]
or unmanned aerial vehicles [2]. A mobile node can offload
contextually collected data to perform data analytics tasks on
one of the deployed MEC servers. As the MEC servers are
operated within the radio access networks with the help of
RSUs, their services coverage are limited [4]. As a result, as
the AVs move, they will pass by a set of MEC servers once
a time during the data offloading session. In this work, we
assume that the AV can have (check or connect to) only one
MEC server at a time and does not know about the MEC
servers in the road ahead [4]. The AVs or mobile nodes in
the car can access the RSUs using Vehicle-to-Infrastructure
(V2I) communication mode. We elaborate on the existence of
an offloading decision framework implemented in the mobile
node from previous work, which provides the entity of a
network/edge servers profilers as studied in [14]. Network
profiler is utilized to provide information about the current
load (or delay) of MEC servers. The data analytics task can
be data correlation analysis, inferential and predictive analytics
[24], statistical learning models building, model selection [25],
[26], a mobile crowd-sensing (MCS) [19] or data for HD
maps as in [11]. In this setting, we consider the following
optimization problem.

B. Problem Formulation:

A mobile node (AVs for example) collects contextual data
from its surrounding environment and desires to offload them
to the best MEC server in terms of computational load,
expected execution delay or the time it takes the MEC server
to broadcast the results to other systems to perform analytics
task before the data turns obsolete. Trying to offload the most
up to date data is usually described in the context of data
analytics as the timeliness or the freshness of contextual data

[27]. The data can be environmental data such as critical, i.e.
safety or traffic data, weather condition, traffic information
or information for HD maps to be used by the MEC server
to update map information in a specific area [11]. Let Xk

be the random variable indicating the time the MEC server
k needs to perform an analytical task. As mentioned earlier,
Xk can also indicate different random variables, e.g., the
transmission time, the computational workload of a server or
the broadcasting time for the results to other systems. Let n be
the maximum number of MEC servers (or simply the number
of observations) that can be observed before the collected data
turns obsolete.

We then define a data offloading cost function Yk including
the delay Xk for k−th MEC accessible server and the staleness
of the data c when observing server k as:

Yk = Xk + c · k, (1)

with cost rate c = 1/n, n > 0, i.e. the collected data, at
each observation, get old by 1

n · k. For example, if n = 5,
at observation 3 (k = 3), the timeliness of the data is
1
5 · 3 = 3

5 = 0.6. We then formulate the problem of data
offloading as follows:

Problem 1. Given a staleness data within n observations,
the mobile node after collecting (fresh) data tries to find the
best MEC server k ∈ [1, n] to offload the data such the
expected data offloading function in (1) is minimized. At that
time (optimal data offloading time) the following infinum is
attained:

inf
τ∈[1,n]

E[Yτ ]. (2)

In order to proceed with an optimal solution for Problem 1,
we introduce two states of our system represented by zk:
• The system state zk = z> at k ≤ n indicates that the

mobile node has offloaded the data to a MEC server with
delay Xk and staleness degree c · k, and where z> is the
terminating state.

• The system state zk = yk−1 at k ≤ n indicates that
the mobile node has not yet offloaded the data. In such
case, the state zk refers to the MEC server delay and
staleness value when observing MEC server k − 1, i.e.,
yk−1 = xk−1 + c(k − 1).

Hence, based on the decision of the mobile node to either
offload the data or not at the observation k in light of
minimizing the expected cost in Problem 1, the system state
is then:

zk+1 =

{
z>, if zk = z> (stop and offload data),
zk, (do not offload data and continue).

(3)

At each observation k, the staleness of the data increases
by 1

n . Let Jk(zk) be the optimal time to offload the data.
The Bellman’s equation for our system, based on principle of
optimality, is:

Jn(zn) = zn (4)



for k = n, , i.e., at the end of the staleness period, and

Jk(zk) = min

(
zk,E[Jk+1(zk+1)]

)
, (5)

for k = 1, ..., n− 1.
Equation 4 refers to the situation where the mobile node

arrives at the last observation n. At that stage, we must offload
to the last observation. Equation 5, on the other hand, refers
to the situation where the mobile node is at observation k. In
that case, the mobile node chooses to offload to the minimum
between the current observation zk = yk−1 and the expected
zk+1 = yk. In particular, the expectation E[Jk+1(zk+1)]
denotes the expected data offloading cost of the mobile node
offloads the data at time k + 1. Hence, for the mobile node:
• It is optimal to stop and offload the data to the MEC

server k such that zk ≤ E[Jk+1(zk+1)]
• Or, it is then optimal to continue to the next state.

If we notate ak = E[Jk+1(zk+1)]− ck then we obtain:

Jk(zk) = min(zk, ak + ck) = min(xk, ak) + ck. (6)

This indicates that the optimal offloading time, when the
mobile node evaluates the value xk, is achieved according to
the following optimal data offloading rule:
• Offloading data to the server with xk, if xk < ak
• Continue and do not offload, if xk > ak
• Both actions (offload or continue) are optimal if xk = ak

Based on this formulation, we then seek the optimal decision
scalar values {ak}nk=1 to be known to the mobile node before
starting off any data offloading decision at any time within
the number of observations n. We obtain these scalar values
as stated in the following theorem.

Theorem 1. The scalar decision values a1, a2, . . . , an are cal-
culated through backward induction based on the recursion:

ak = ak+1(1− FX(ak+1)) +

∫ ak+1

0

xdFX(x) + c, (7)

for k = 1, . . . , n− 1, with initial condition

an = E[X] + c, (8)

where FX(x) = P (X ≤ x) is the cumulative distribution
function of the delay X .

Proof. We have that Jk(zk) = min(xk, ak) + ck based on
the definition of ak = E[Jk+1(zk+1)] − ck. We then obtain
that Jk+1(zk+1) = min(xk+1, ak+1) + ck + c. Hence, by
taking the expectation and taking away the factor ck from
both sides, we obtain that: ak = E[Jk+1(zk+1)] − ck =
E(min(xk+1, ak+1)) + c, which is the recursion: ak =
Ex(min(x, ak+1)) + c and obtain

ak =

∫ ak+1

0

xdFx(x) +

∫ max(X)

ak+1

ak+1dFX(x) + c

=

∫ ak+1

0

xdFx(x) + ak+1(1− FX(ak+1)) + c,

max(X) is the maximum X value and an = E[X] + c.

Remark. It should be noted that Theorem 1 can also be
applied to a situation where the mobile node is moving within
the range of one MEC server and tries to choose a time with
minimized delay. In such case, the horizon n can be divided
into time slices, and then we calculate decision values {a}
using (7) and (8) based on the probability distribution of the
X of the MEC server over time.

As an example, consider Fig. 2 where the collected con-
textual data have to be offloaded to a MEC server before the
data get obsolete for stale periods n ∈ {10, 20, 30}. We can
observe that when we are at an earlier time k = 1, we look for
a lower delay. As the data turn more obsolete with time, we
become more tolerant to accept higher delay, thus the decision
values are getting higher reflecting this tolerance. Moreover,
to have a clear idea, in Fig. 3, we show the values of {ak}50k=1

with the load (or delay) Xk following normal distribution for
µ = 50 and σ = 10 when n = 50; it is optimal to offload when
k = 27 as it is the first time the condition x27 < a27 holds true.
In particular, in our model, we firstly specify the maximum
number of MEC servers n that can be observed during the
timeline of the collected data which directly defines how many
decision time instances the mobile node can wait until the data
become obsolete. We also need to get the scalar values ak by
solving (7) and (8) based on the probability distribution of the
delay X , e.g., server resource utilization if we are looking for
minimized server load. After we obtain the values of ak, we
check the value of xk. If xk ≤ ak, the mobile node selects the
MEC server k for data offloading, otherwise, it continues to
the next available MEC server. At k = n, if the mobile node
has not yet offloaded the data, it offloads the data to the first
available MEC server (n-th MEC server).

IV. PERFORMANCE EVALUATION & COMPARATIVE
ASSESSMENT

A. Data Set

To simulate the movements of the mobile nodes, we used
the real data set of taxi cabs’ movements in Rome [28]. The
data set contains the GPS coordinates of 320 taxis collected
over 30 days. For each row in this data set, we have the cab-
id, date/time and GPS coordinates of the current location. It is
worthwhile to mention that the use of mobility trace here is not
for studying the mobility of users. It is used in our experiment
to use each time movement as location or time to check for
a server/time to offload. In other words, each movement is
modeled as an observation or connection to a MEC server.

The random variable X is represented in this experiment
by real servers’ utilization (the CPU utilization) data set
obtained from [29]. In the servers’ data set, we have around
150 servers’ data (more than 1 billion rows). Thus, for each
movement in the mobility trace, the car picks a server from
the servers’ data set, checks the server utilization, and takes
a decision of whether the car should offload at that time
or continue observing based on the decision suggested by
the proposed model being compared with different selection



0 5 10 15 20 25 30

35

40

45

50

Observation {k}

a
k

n = 10
n = 20
n = 30

Figure 2: The optimal scalar values {ak}nk=1 for data staleness
horizon n ∈ {10, 20, 30}, delay X is following normal
distribution for µ = 50 and σ = 10.

0 10 20 30 40 50

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Observation {k}

X
{k

} 
&

 a
{k

}

Figure 3: The decision values {ak}50k=1 (black points) and sim-
ulated server delay or load Xk (blue points) vs. observations
k for horizon n = 50; the optimal data offloading time when
k = 27, 29, 46, 47, 48 and 50 where X < a.

0 20 40 60 80 100
CPU utilization

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
en

si
ty

Figure 4: The distribution of the servers’ CPU utilization.

schemes explained in the coming subsections. In the mobility
trace, we focus on the movements of 5 days (5000 rows
of movements). An offloading decision was taken for each
minute, i.e. we have to offload the data within one minute.
Therefore, the value of n is set to be the maximum number
of locations (observed CPU servers’ utilization) within one
minute. For example, if a car observes 5 servers within one
minute, then the value of n is set to be 5. Now, we have more
than 1000 offloading decisions. This will ensure to see the
behavior of the proposed model for a long time. Fig. 4 shows
the probability distribution of the servers’ utilization for all

servers in the data set. We can see that the servers’ utilization
in general follows normal distribution with µ = 36 and
σ = 16. We calculated the values of the threshold a using (7)
and (8) and based on the mean and standard deviation of the
servers’ CPU utilization in the servers’ data set. Specifically,
consider one car that has 5 movements during one minute in
different locations. We set the value of n = 5 representing
that the data get stale at k = 5. Each time, the AV checks
(connects to) a server and checks the server utilization and
compares it with the value of ak. If the server utilization is
less than the value of ak, we select that server for offloading.
If the AV does not find a server that satisfies the condition,
we enforce the AV to select the last server.

B. Performance Assessment

We compare the Quality-aware OST-based data offloading
model (QDO) discussed in Section III with the offloading
models proposed previously namely DTO [22], BCP and COT
with c = 4 [23], the Random selection model (Random),
the p-stochastic model (p-model) for p = 0.8. In the BCP
[23], as n ≈ 5, the rule is to reject the first two servers,
take the best among them as a baseline and start looking for
a server that is better than the baseline. If we reach server
5 without offloading, we then must offload to server 5. The
COT model [23] takes the probability distribution function
p(Xk) and a cost per observation (probing cost) c as inputs
and outputs a threshold V ∗ for each cost c. The mobile node
should offload if the observed processing time Xk ≤ V ∗,
otherwise, the mobile node should continue observing until a
defined deadline. By that time, the mobile node must offload
to the first observed server. We set the value of c = 4, but
different cost values can be used as shown in [23]. In Random,
for each offloading session (one minute), we randomly select
a server to offload the data. In p-model, for each offloading
session, each server has probability p of being selected for data
offloading (not selected with probability 1 − p). We assign
a probability of offloading p to be p = 0.8. If a server is
selected, we stop the process and consider that server for
offloading. If there was no server selected, we select the
last server for data offloading. The goal of this model is to
enforce the mobile node to offload at the first observed server
which is a simulation of a situation where the mobile node
tries to offload at the first observed server. We compare the
results from all models with the ground truth, i.e., the Optimal
model, in which we select the server with the minimum CPU
utilization for each offloading session. The closer a model is
to Optimal, the better the model performs in terms of the data
offloading decision. Note that the optimal is not available in
the considered scenario as the mobile node is independent in
the decision making and only knows about the current network
and server status. We obtain the average server utilization
suggested by each model and the results are in Fig. 5 where
we show the expected CPU utilization along with the 95%
Confidence Intervals. We also show the difference between the
Optimal and all the models in Fig. 6. We can see from the two
figures that the QDO and the DTO are the closest models to the



optimal with servers’ utilization of (QDO,24.70) (DTO,24.60)
and difference is less than 7. The COT is also achieving a
good performance comparing to the rest of the models. The
BCP model is performing better than the Random and the
p-stochastic model.

Opt
ima

l
QDO DTO

COT
, c=

4 BCP
Ran

dom
P-m

ode
l

0

5

10

15

20

25

30

35

Se
rv
er
 C
PU

 U
til
iza

tio
n

Figure 5: Expected CPU utilization selected by each model.

In terms of the offloading time (when the mobile node
offloads), the p-model, most of the time, as it can be seen
from Fig. 7 (average stopping times) will go with first server.
This model has a high difference compared to the Optimal
model. Thus, going with the first observed server (time) is
not a good decision. In other words, the mobile node should
exploit the mobility and the deadline of the task to look for a
better MEC server. From Fig. 7, we also observe that the BCP
delays the offloading with higher expected offloading time.

We also evaluate our proposed model in terms of the
Successful Offloading Probability (SOP) [30] which refers
to the proportion of times a server with pre-defined CPU
utilization was selected. The aim is to see how reliable the
proposed model in selecting an offloading time when we have
specific requirements [30]. For example, if the mobile node is
looking for a MEC server with CPU utilization less than 20%,
the SOP is the number of times the model selects a server
with a CPU utilization less than 20% divided by the number
of offloading decisions that were made in our experiment, i.e.
≈ 1728 offloading decisions. We set three CPU utilization
thresholds: {17%, 20%, 25%}. The results are shown in Fig. 8.
We can see that the BCP [23] is performing better with a
small threshold, i.e. (17%), than the other models, but as

Opt. vs QDO

Opt. vs DTO

Opt. vs COT

Opt. vs BCP

Opt. vs Random

Opt. vs P-model
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Di
ffe

re
nc

e

Figure 6: The difference between the Optimal and all the
models.

Opt
ima

l
QDO DTO

COT
, c=

4 BCP
Ran

dom
P-m

ode
l

0

5

10

15

20

25

30

35

Ex
pe

ct
ed

 o
ffl
oa

di
ng

 ti
m
e

Figure 7: Expected offloading time for each model.

Opt
QDO

DTO

COT
c=

4
BCP

Ran
d

p=
0.8

0

50

100

150

164

93 97
82

97

43 47

94

47 49
42

53

22 24

40

20 21 18 23
10 10

SO
P%

Threshold ≤ 17 Threshold ≤ 20 Threshold ≤ 25

Figure 8: The Successful Offloading Probability (SOP) for
each model based on different threshold values.

mentioned earlier, it delays the offloading and it has higher
expected offloading time which can affect the quality of the
offloaded data being out of date. The proposed model QDO,
DTO and COT have similar results and performing better than
the Random and the p-model.

V. CONCLUSIONS

With the envision MEC paradigm and the corresponding
applications such as AVs’ applications, we proposed optimized
contextual data offloading decision-making model to be uti-
lized by mobile nodes when dealing with tasks that involve
collecting contextual data from the surrounding environment.
Our evaluation showed that the proposed model is promising
and can be easily implemented in MEC environments. In
future work, we aim to implement the proposed model in real
mobile nodes with real MEC applications in order to evaluate
the effectiveness of utilizing the OST in the data offloading
decision in MEC environments.

VI. ACKNOWLEDGEMENT

This research has been supported in part by the UK En-
gineering and Physical Sciences Research Council (EPSRC)
project EP/N033957/1, and by the European Cooperation in
Science and Technology (COST) Action CA15127: RECODIS
Resilient communication and services. The first author is
funded by Al-Baha University, Saudi Arabia.



REFERENCES

[1] G. Brown, “Mobile edge computing use cases and deployment options,”
Juniper White Paper, pp. 1–10, 2016.

[2] Q.-V. Pham, F. Fang, V. N. Ha, M. Le, Z. Ding, L. B. Le, and W.-
J. Hwang, “A survey of multi-access edge computing in 5g and be-
yond: Fundamentals, technology integration, and state-of-the-art,” arXiv
preprint arXiv:1906.08452, 2019.

[3] R. Akmam Dziyauddin, D. Niyato, N. Cong Luong, M. A. M. Izhar,
M. Hadhari, and S. Daud, “Computation offloading and content caching
delivery in vehicular edge computing: A survey,” arXiv, pp. arXiv–1912,
2019.

[4] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Vehicular Technology Magazine, vol. 12,
no. 2, pp. 36–44, 2017.

[5] D. Sabella, H. Moustafa, P. Kuure, S. Kekki, Z. Zhou, A. Li, C. Thein,
E. Fischer, I. Vukovic, J. Cardillo et al., “Toward fully connected
vehicles: Edge computing for advanced automotive communications,”
5GAA Automotive Association White Paper, 2017.

[6] W. Tang, X. Zhao, W. Rafique, L. Qi, W. Dou, and Q. Ni, “An offloading
method using decentralized p2p-enabled mobile edge servers in edge
computing,” Journal of Systems Architecture, vol. 94, pp. 1–13, 2019.

[7] M. Li, P. Si, and Y. Zhang, “Delay-tolerant data traffic to software-
defined vehicular networks with mobile edge computing in smart city,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp. 9073–
9086, 2018.

[8] T. Ouyang, X. Chen, L. Zeng, and Z. Zhou, “Cost-aware edge resource
probing for infrastructure-free edge computing: From optimal stopping
to layered learning,” in 2019 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2019, pp. 380–391.

[9] S. Zhou, Y. Sun, Z. Jiang, and Z. Niu, “Exploiting moving intelligence:
Delay-optimized computation offloading in vehicular fog networks,”
IEEE Communications Magazine, vol. 57, no. 5, pp. 49–55, 2019.

[10] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Transactions on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, 2012.

[11] J. Zhang and K. B. Letaief, “Mobile edge intelligence and computing
for the internet of vehicles,” Proceedings of the IEEE, 2019.

[12] T. Ferguson, “Optimal Stopping and Applications,” http://www.math.
ucla.edu/∼tom/Stopping/Contents.html, March 2019.

[13] M. H. ur Rehman, C. Sun, T. Y. Wah, A. Iqbal, and P. P. Jayaraman,
“Opportunistic computation offloading in mobile edge cloud computing
environments,” in Mobile Data Management (MDM), 2016 17th IEEE
International Conference on, vol. 1. IEEE, 2016, pp. 208–213.

[14] B. Silva, W. Junior, and K. L. Dias, “Network and cloudlet selection
for computation offloading on a software-defined edge architecture,” in
International Conference on Green, Pervasive, and Cloud Computing.
Springer, 2019, pp. 147–161.

[15] S. Zhu, L. Gui, J. Chen, Q. Zhang, and N. Zhang, “Cooperative
computation offloading for uavs: A joint radio and computing resource
allocation approach,” in 2018 IEEE International Conference on Edge
Computing (EDGE). IEEE, 2018, pp. 74–79.

[16] H. Ko, J. Lee, and S. Pack, “Spatial and temporal computation offloading
decision algorithm in edge cloud-enabled heterogeneous networks,”
IEEE Access, vol. 6, pp. 18 920–18 932, 2018.

[17] Z. Zhou, H. Yu, C. Xu, Z. Chang, S. Mumtaz, and J. Rodriguez,
“Begin: Big data enabled energy-efficient vehicular edge computing,”
IEEE Communications Magazine, vol. 56, no. 12, pp. 82–89, 2018.

[18] M. Habib ur Rehman, P. Jayaraman, S. Malik, A. Khan, M. Med-
hat Gaber et al., “Rededge: A novel architecture for big data processing
in mobile edge computing environments,” Journal of Sensor and Actu-
ator Networks, vol. 6, no. 3, p. 17, 2017.

[19] M. Marjanović, A. Antonić, and I. P. Žarko, “Edge computing architec-
ture for mobile crowdsensing,” IEEE Access, vol. 6, pp. 10 662–10 674,
2018.

[20] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A
fog-enabled real-time traffic management system,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 10, pp. 4568–4578, 2018.

[21] I. Alghamdi, C. Anagnostopoulos, and D. P. Pezaros, “Time-optimized
task offloading decision making in mobile edge computing,” in 2019
Wireless Days (WD). IEEE, 2019, pp. 1–8.

[22] I. A. I. Alghamdi, C. Anagnostopoulos, and D. Pezaros, “Delay-tolerant
sequential decision making for task offloading in mobile edge computing
environments,” Information, 2019.

[23] I. Alghamdi, C. Anagnostopoulos, and D. P. Pezaros, “On the optimality
of task offloading in mobile edge computing environments,” in 2019
IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–
6.

[24] N. Harth, C. Anagnostopoulos, and D. Pezaros, “Predictive intelligence
to the edge: impact on edge analytics,” Evolving Systems, vol. 9, no. 2,
pp. 95–118, 2018.

[25] N. Harth and C. Anagnostopoulos, “Edge-centric efficient regression
analytics,” in 2018 IEEE International Conference on Edge Computing
(EDGE). IEEE, 2018, pp. 93–100.

[26] C. Anagnostopoulos and K. Kolomvatsos, “Predictive intelligence to
the edge through approximate collaborative context reasoning,” Applied
Intelligence, vol. 48, no. 4, pp. 966–991, 2018.

[27] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality
means to data consumers,” Journal of management information systems,
vol. 12, no. 4, pp. 5–33, 1996.

[28] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi,
“CRAWDAD dataset roma/taxi (v. 2014-07-17),” Downloaded from
https://crawdad.org/roma/taxi/20140717, Jul. 2018.

[29] “Alibaba cluster trace program cluster-trace-v2018,” Downloaded from
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/
trace 2018.md, Nov. 2018.

[30] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, “Energy-efficient joint
offloading and wireless resource allocation strategy in multi-mec server
systems,” in 2018 IEEE international conference on communications
(ICC). IEEE, 2018, pp. 1–6.


