
Reinforcement Learning for value-based Placement
of Fog Services

Filippo Poltronieri∗, Mauro Tortonesi∗, Cesare Stefanelli∗, Niranjan Suri†‡
∗ Distributed Systems Research Group, University of Ferrara, Ferrara, Italy

{filippo.poltronieri,mauro.tortonesi,cesare.stefanelli}@unife.it
† Florida Institute for Human and Machine Cognition (IHMC), Pensacola, FL, USA

nsuri@ihmc.us
‡ US Army Research Laboratory (ARL), Adelphi, MD, USA

niranjan.suri.civ@mail.mil

Abstract—Optimal service and resource management in Fog
Computing is an active research area in academia. In fact, to
fulfill the promise to enable a new generation of immersive, adap-
tive, and context-aware services, Fog Computing requires novel
solutions capable of better exploiting the available computational
and network resources at the edge. Resource management in
Fog Computing could particularly benefit from self-* approaches
capable of learning the best resource allocation strategies to
adapt to the ever changing conditions. In this context, Reinforce-
ment Learning (RL), a technique that allows to train software
agents to learn which actions maximize a reward, represents a
compelling solution to investigate. In this paper, we explore RL
as an optimization method for the value-based management of
Fog services over a pool of Fog nodes. More specifically, we
propose FogReinForce, a solution based on Deep Q-Network
(DQN) algorithm that learns to select the allocation for service
components that maximizes the value-based utility provided by
those services.

Index Terms—Fog Computing, Service Management, Rein-
forcement Learning.

I. INTRODUCTION

Fog Computing applications require smart, adaptive, and
robust resource management solutions, capable of dealing with
the highly dynamic nature of the environment and the chal-
lenging demands of a new generation of immersive, context-
aware, and latency-sensitive services [1]. Service management
in Fog and Edge Computing has thus received an increasing
attention in scientific literature, to solve several problems such
as the optimal placement of Virtual Network Functions (VNFs)
and services [2], [3].

Resource management solutions for Fog applications re-
quire frequent, and possibly continuous, re-configurations of
network and services in order to guarantee high levels of
Quality-of-Experience (QoE) and Quality-of-Service (QoS)
[4]. In turn, this requires the adoption of relatively complicated
continuous optimization solutions, whose proper setup often
requires the tuning of several parameters, that further increase
the problem complexity.

A different and potentially very promising approach lies in
the adoption of self-* approaches, leveraging solutions that are
capable of autonomously learning the best strategies to adapt
to the current conditions. To this end, a recent trend is the

adoption of Reinforcement Learning (RL): an evolving area
of machine learning originally inspired by the psychology of
animal learning [5]. RL consists of a goal-oriented training of
an agent to learn the optimal actions (a policy) to interact
with a specific environment [6]. The applicability of RL
tools has been investigated in several fields, such as the
optimal placement of Network Function Virtualization (NFV)
[7], [8], energy-efficient resource allocation [9], and latency
minimization [10].

RL can be a valuable building block for Fog Computing
management solutions. Differently from supervised learning
methods, that require human intervention for labeling data,
RL allows to naturally train a software agent to learn an
optimal policy by interacting directly with the environment.
This provides a valuable tool to tame the dynamicity of Fog
Computing environments, which require continuous interven-
tions to manage the available resources and meet the current
applications’ requirements [3], [11]. Therefore, Fog Comput-
ing management solutions can leverage RL for automatically
tuning the configuration parameters when the environment
conditions change to guarantee the delivery of the expected
QoS and QoE.

Motivated by the promising capabilities of such techniques,
this work investigates the application of RL as a candidate
for the online/continuous optimization of a Fog manage-
ment framework. Towards that goal, we focus on Value-
of-Information (VoI) optimization as resource management
criterion for Fog Computing applications. VoI methodologies
and tools aim to find an optimal configuration for the available
computational and network resources that maximizes the end-
users utility of Fog services, which prioritizes the most im-
portant data to be processed and disseminated, thus effectively
addressing the data deluge of IoT applications. As a promising
methodology for addressing information management and pri-
oritization in constrained environments, VoI has been recently
proposed for resource management in several works [12], [13],
[14].

Built upon our previous work [14], in which we formalized
an optimization framework for the value-based management
of Fog services, this paper investigates the applicability of
RL and Deep RL (DRL) techniques as an optimization tool978-3-903176-32-4 c© 2021 IFIP

for learning the optimal VoI allocation of Fog services [15].
In this paper, we first introduce RL and we report the VoI
optimization model for Fog Service management defined in
[14]. Then, we define a Markov Decision Process (MDP) to
model the system and the reward signal. Finally, we present
FogReinForce, a learning algorithm leveraging a Deep Q-
Network (DQN) that given a service component allocation is
capable of migrating service components to achieve increased
value-based utility for the end-users of Fog services.

The remainder of the paper is organized as follows: Section
II discusses RL and gives an overview of its application in
related fields. Section III illustrates the value-based optimal
placement of Fog services described in [14]. Then, Section
IV formalizes a Markov Decision Process (MDP) to solve the
given problem problem using the DRL algorithm described
in Section V-A. Section V-B discusses the integration of
FogReinForce into a management framework. Finally, Section
VI presents an evaluation of the proposed algorithm and
Section VII concludes this manuscript.

II. RELATED WORK

RL is an evolving field of machine learning consisting in
a goal-oriented training in which an agent interacts with an
environment to learn the best possible actions to reach a
specific goal [5], [6]. At each action is assigned an immediate
reward and the goal of the agent is to learn a policy that
would maximize the sum of those rewards. In order to learn
a good rewarding policy, the agent needs to solve the same
task multiple times in which it will be capable of exploring a
consistent number of states.

RL has been applied to different sort of problems from
learning how to play classic games to network and service
management. Dab et al. formalize an RL problem to learn
the best offloading decisions in order to minimize energy
consumption on the devices-side under latency constraints
for 5G applications in [16]. The proposed strategy is eval-
uated with extensive simulations in NS3 and proved to be
successful in reducing computation time. Long-Term latency
minimization for Fog Computing is also discussed in [10].
This paper proposes an RL approach combined with evolution
strategies for dealing with real-time task assignment and
reducing computation latency in the long-term period.

In [17], Nakanoya et al. propose an interesting and cost-
effective technique for applying RL to online optimization of
Virtualized Network Functions (VNF) sizing and placement.
In particular, the authors propose a two-step RL that divides
the learning process into two phases with the aim of reducing
the learning exploration steps. In [3] Chen et al. discuss two
Double DQN learning algorithm for task offloading decision
in MEC for mobile ultra-dense in sliced RAN. The authors in
[18] discuss a Q-learning based load-balancing algorithm for
Fog Networks that enables to reduce the processing time and
overload probability of networks.

Li et al. investigate RL for Network Slicing in [19] by
illustrating general concepts and applications for resource
management by comparing different scheduling algorithms.

An interesting formulation leveraging DQN is the one dis-
cussed in [20]. In this work, the authors propose an algorithm
called JTOBA that iteratively solves the problem of best joint
task offloading and bandwidth allocation in MEC. A different
RL application is described in [21], in which a fast task
allocation (FTA) algorithm leveraging DRL is proposed to
allocate tasks among heterogeneous UAVs. The authors claim
that FTA is highly adaptive even in case of different set of
tasks and environment variability.

III. SYSTEM MODEL AND NOTATION

In general, the idea of Fog/Edge computing paradigms is to
allocate information processing close to both users and devices
in order to provide reduced latency and increased QoE and
QoS. To this end, intelligent allocation of service and accurate
management of resources are required to best exploit the few
resources available at the edge.

In this work, we will model resource management according
to the Adaptive, Information-centric, and Value-based (AIV)
service and information maturity model defined in [22], [14].
The AIV notation allows us to model Fog services as a
coordinated composition of re-usable and independent service
components that can be combined in a workflow fashion.

A. VoI Optimal Resource Allocation Problem

Let us report the VoI Optimal resource allocation problem
that we defined in [14]. First, the building blocks to model
service component allocations are:

• a set of Fog Service S;
• a set SC of service component sck;
• a set U of user groups uh.

Furthermore, it is worth specify that, a Fog service s
is a composition of one or more service components sc.
These building blocks allow us to model a service component
allocation among a pool of fog devices and to calculate the
VoI value of delivered messages m.

The VoI Optimal resource allocation problem aims at max-
imizing the total VoI delivered to the end-users of a set of
Fog services during a fixed time-window. More specifically,
we have:

fn = TOTALV oI(tn, tn+1) =
∑

m∈M(tn,tn+1)

V oIΘ(m). (1)

To measure the total VoI delivered within a time window,
we also consider a Proximity Relevance Decay (PRD) and a
Time Relevance Decay (TRD) functions to take into account
the decay a message is subjected to from its origination
(location/time) to its delivery (location/time). In particular,
both PRD and TRD functions assumes values in [0, 1] ∈ R
and they act as decay multiplier. Moreover, because modeling
such functions it is a per se challenging task, it is convenient
to specify an average decay for each class of messages:

V oIΘ(m, Im, s, t) = V oI(mt, s) ×∑
mt∈M

[TRD(mt)× PRD(mt)×
∑
ut∈U

U(ut,mt)] (2)

where Im is the set of input messages used for the generation
of message m, s a Fog service, and mt represents a class of
messages.

In a previous work [14], we modeled eq. (2) within the
Phileas simulator [23] and we used Meta-heuristics for its
optimization. Instead, in this paper we present a model to
enable the optimization of (2) using DRL techniques.

IV. A MARKOV DECISION PROCESS FOR VOI ALLOCATION

To exploit RL techniques in our Fog Service Management
Framework, we need to define a Markov Decision Process
(MDP) for the system model [24]. An MDP is a general
framework (particularly suited for RL) for defining decision
making problems [5]. Let us note, that using proper modeling
of states and actions is essential for RL tasks. In fact, RL in
general requires a good knowledge of the whole problem and a
proper reward definition in order to allow the training process
to converge.

The MDP for VoI allocation defines a set S of states s,
a set A of actions that allow an agent to move from a state
s to another state s′, and a Reward policy R the defines the
reward given by an action that moves the environment into a
different state. In particular, Ra(s, s

′) is the immediate reward
for performing action a ∈ A under state s ∈ S . Finally, the
goal of the MDP is to find the optimal policy a = π(s) that
gives the best action a ∈ A under state ∈ S that allows to
maximize the Q-function Q(s, a) for each state action pair.

With regards to a state s ∈ S, we define it as an array-
like service component allocation s = {sc1, sc2, ..., scn} in
which the value of the i-th element represents the fog device
dj where the service component sci is allocated. For instance,
{3, 2, 4, ..., k, 3 } is an example of a state s ∈ S, where the
service component sc1 (the first element of the state array) is
allocated on fog device d3 and k is |D|, the number of fog
devices.

On the other hand, we define an action a ∈ A as the
selection of a fog device d ∈ D where to allocate a service
component sci on. For example, an action a = 2 indicates to
allocate the service component on fog device d2. Furthermore,
let us note that, because the state and action spaces are finite,
the formalized MDP is finite MDP.

More specifically, the VoI allocation MDP consists of a
sequence of n discrete time steps t = 0, 1, 2, ..., i, ..., n in
which an agent analyzes each service component sci (where
the i index corresponds to the i time step) and decides
whatever or not allocates it on a different fog device dj . When
an action a ∈ A under state s ∈ S is performed, a new
state s′ is reached, and the agent gets an immediate reward
Ra(s, s

′). Finally, for modeling rewards, we decide to adopt
the simplistic but effective strategy of assigning 1 to those

actions that define an allocation capable of improving the value
of (2) with respect to previous state, and 0 to the others.

V. THE FOGREINFORCE DRL SOLUTION

Having defined the MDP formulation for the VoI allocation
of service components allows us to adopt a suitable RL
algorithm for optimizing the problem. Given the dimension of
the state space, which grows exponentially with the number of
service components to allocate, we investigate DRL solutions,
and we propose a Deep Q-Network (DQN) based learning
algorithm FogReinForce. Finally, we discuss the adoption of
FogReinForce within a management framework for enabling
the continuous optimization of Fog Computing resource man-
agement.

A. FogReinForce Learning Algorithm

To solve the VoI allocation MDP problem, we propose
the FogReinForce learning algorithm, which exploits DQN
for implementing the learning process. FogReinForce aims at
finding the VoI optimal allocation for service components by
learning the optimal policy a = π(s) that selects the best
actions to take under a particular state s ∈ S to obtain a
performing service components allocation in a finite number
of steps N .

Alg. 1 gives a simplified illustration of the FogReinForce
algorithm, which implements a DQN algorithm with experi-
ence replay. Alg. 1 takes as input the values for ε, γ, and the
update step used during the training of the neural network.
The replay memory RM is used to store the transitions and
for sampling a mini-batch during the training with experience
replay [25].

As depicted in Alg. 1, we define the allocation problem
as an episodic task with a maximum number of episodes
max episode. Let us specify that, FogReinForce defines an
episode as a finite number of steps N , after which the episode
is considered finished. With regard to the number of steps, we
decided to use n = 2× k, where k = |SC| is the number of
service components to allocate. This would allow the agent to
perform two actions on the same service component.

At the beginning of a new episode, the initial state s1 is reset
to the random state sr generated in the initialization phase of
the algorithm. This is a common practice when defining a DRL
training process, however, different policies can be chosen.
During each step, the agent interacts with the environment by
selecting at step t a fog device for the service component sct.
The new state is evaluated using (2) to calculate the total VoI
that new state st+1 generates. During these steps, the goal
of the agent is to maximize the cumulative reward over the
episode given a finite amount of actions.

B. Continuous Optimization for Fog Computing

To illustrate readers how we intend to realize continu-
ous optimization of Fog Computing resource management
we present a proof-of-concept framework that incorporates
FogReinForce into a learning component that continuously
checks for improvements. To this end, Fig. 1 depicts the

Algorithm 1: FogReinForce pseudo-algorithm
Data: ε, γ,update step
Result: π a policy for mapping states into actions
Q0(s, a) = 0 initialize action-value function to 0;
initialize target action-value Q-network for Q
estimation;

initialize replay memory RM ;
initialize a random allocation sr to be used as

initialization state;
for i in 1,max episodes do

initialize state s1 = sr;
initialize er = 0 episode reward ;
for t in 1, N do

if rand() ≥ ε then
select action at = argmax{Q(st, a)};

else
select a random action at;

take action at and generate the next state st+1;
evaluate st+1 using (2) and calculate the

reward rt;
set st as the next state st+1;
store transition in replay memory RM ;
update er;
if t is an update step and there enough

transitions in memory then
sample a random subset of transitions from
RM and learn;

else
calculate discounted reward using γ;

decrease ε and make it decay;

envisioned architecture for allowing continuous optimization
of Fog services running in a Fog Computing site. More
specifically, the Fog management framework includes three
main components: a learning component, a Fog controller, and
a Fog monitor.

Firstly, the Fog monitor is responsible for collecting in-
formation regarding a Fog Computing site including users’
interests, available fog devices, running services, and network
conditions. In addition, the Fog monitor updates the collected
information into the Learning Component to create an input
configuration for the Phileas simulator.

The Learning component is to find the optimal VoI allo-
cation of service components on the resources available at
the Fog site. To this end, the Phileas simulator is configured
with the data collected by the Fog monitor to be a realistic
representation of the environment at the Fog Computing
site. In order to achieve the optimal allocation of service
components on Fog devices, the Learning Component runs
FogReinForce for a finite number of episodes. In this way,
FogReinForce interacts with the Phileas simulator to find the
service components configuration that maximizes the feedback
representing the total VoI delivered during the simulation.

Fig. 1. An overview of the management framework for enabling the
continuous optimization of Fog Computing environments.

When the Learning component finds a suitable allocation,
it instructs the Fog Controller where to allocate the service
components running at the Fog Site. Finally, for enabling
online optimization, this loop runs continuously, thus ensuring
to tackle the dynamicity of Fog Computing environments and
deal with users’ mobility, system’s load, and other conditions.

VI. EVALUATION

To verify the capabilities of FogReinForce, we use the
realistic Fog Computing scenario defined for the evaluation
of VoI management framework in [14]. This scenario is a
representation of a Fog Computing use-case in Smart City,
in which smart citizens exploit the functionality of different
Fog services provided by the municipality (traffic monitoring,
air quality info, etc.). More specifically, the testbed contains
the description of 7 devices, 9 data sources, 4 user groups,
and 8 service components. Finally, each fog service is defined
as the composition of 2 service components for a total of 4
Fog services.

To reenact realistic conditions, we set the locations of
devices, data sources, and user groups defined in the Smart
City scenario with a latitude and longitude position in ac-
cordance with the GPS position system. This allows setting
fixed communication ranges for users and devices reenacting
wireless communications. We believe this to be essential in
our experiments, because it drives FogReinForce to allocate
service components according to a minimum distance policy,
e.g. privileging those allocations that process data messages
close to where they will be consumed.

The aim of these experiments is to verify the capabilities
of FogReinForce in optimizing the total VoI delivered to the
end-users of Fog services during a fixed time-window. More
specifically, FogReinForce will learn how to configure service
components on the available fog devices using the total VoI
delivered as feedback.

TABLE I
CONFIGURATION PARAMETER FOR THE Q-NETWORK.

number of layers 2
γ 0.95
lr 0.0005

start 1
εend 0.01

mini batch size 64

A. Reinforcement Learning Configuration

FogReinForce leverages on a Deep Q-Learning Network
(DQN) implemented in Python, which exploits the pytorch
library https://pytorch.org for implementing the training of
the Deep Q-network (neural-network) responsible for mapping
states in action values. We chose Python as programming
language because it is a valuable tool for experiencing with
machine learning and data analysis. In addition, the pytorch
library provides a user-friedly API for implementing the state-
of-the-art machine learning models and optimization algo-
rithms.

The Q-Network is implemented as a two-layers neural
network with 64 nodes for each hidden layer, a γ = 0.95 the
discount rate to determine the present value of future rewards,
a learning rate of lr = 0.0005, and ε value starting from 1
and annealing to 0.01. Finally, for experience replay we set
the mini-batch size to 64. To summarize the configuration,
Table I shows the value of each configuration parameter.

During the training phase, FogReinForce interacts with the
Phileas simulator using a HTTP REST interface, thus allowing
the two different software modules to communicate. More
specifically, given a state s representing a service components
allocation, FogReinForce makes a request (via HTTP) to
Phileas to calculate the value of (2) for the given configuration.
Even if performance-wise is not great, this is a common
practice to integrate software components written in different
programming languages. Future versions of this optimization
framework will provide a better integration of FogReinForce’s
features within the VoI management framework to reduce the
required training time and speed-up the entire process.

Given the time-complexity of calculating the value of (2),
which evaluation requires a simulation run, we choose to
configure training phase with a number of episodes of 1000 to
give the agent a fair amount of iterations to learn an optimal
policy, i.e. the optimal value for Q(s, a). In addition, each
episode is defined as a sequence of 16 steps after which
the episode is considered done. As described in the previous
Section, if the action of allocating a service component to
another fog device (different configuration) brings to a more
performing allocation (in terms of total generated VoI) the
agent gets a reward of 1, otherwise it gets 0.

As first state we select a random allocation of service
components on fog devices. Other options such as a greedy to
calculate a feasible starting state are possible. However, opting
for a random state is a good assumption to verify if given a fair
amount of training iterations, the agent can learn a sequence

0 200 400 600 800 1000
Episode #

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Av
er

ag
e

Sc
or

e
Pe

r E
pi

so
de

Fig. 2. The training of the DRL agent over the VoI model for 1000 episodes.

of actions leading to a high-value VoI state. In fact, the agent
should be capable of learning from whatever starting point
given a finite number of steps and episodes [5].

B. Results

We configure FogReinForce using the parameters discussed
in Section VI-A to learn the optimal policy a = π(s) that
would maximize the total VoI (2) delivered within a specific
time window. To this purpose, we configure the Phileas
simulator to reenact the fictional Smart City scenario for a
limited time window of six minutes. This is to reduce the Q-
network training time and to allow the evaluation of different
service component configurations. As illustrated in Alg. 1, at
the beginning of each episode, FogReinForce initializes the
initial state using a randomly generated state. Then, at each
step, it learns the actions that maximize the cumulative reward
of the episode. During the evaluation, for each episode, we
collect the score, i.e. the sum of rewards, and the state soptimal

which leads to the best value of (2).
Fig. 2 reports the training phase of FogReinForce to opti-

mize the VoI model defined in (2). More specifically, Fig. 2
depicts the time-series of the average scores that FogReinForce
achieved during the 1000 episodes of the learning process. The
reported trend is increasing, thus indicating that the algorithm
is capable of learning a good rewarding policy. Given a finite
number of 16 steps, FogReinForce can improve the current
state up to 12 times for an episode. Moreover, it achieves
a cumulative reward value of 8 after only 500 episodes. We
believe this to be an encouraging result, which demonstrates
the viability of DRL methodologies for our particular VoI
management framework.

On the other hand, Fig. 3 illustrates the best VoI values
for (2) achieved during the training of FogReinForce. It is
worth to note, how the best value is achieved around the 600-
th episode, thus indicating that FogReinForce is capable of
improving the value of (2) in a relatively limited number of
iterations. This also shows that FogReinForce can find a good

0 200 400 600 800 1000
Episode #

0

100000

200000

300000

400000

To
ta

l V
oI

Fig. 3. The best values for the VoI model during the training phase.

0 200 400 600 800
Episode #

300

350

400

450

500

Av
er

ag
e

Pr
oc

es
se

d
ra

w-
da

ta
 m

es
sa

ge
s

Fig. 4. The number of processed raw-data messages during the training phase.

rewarding policy to improve the allocation described by the
random starting state sr.

Another proof that FogReinForce is capable of improving
the management of the processing resource at the edge comes
from Fig. 4. More specifically, Fig. 4 depicts the number of
raw-data messages that the fog devices can process during the
time-window defined by the simulation time. It is worth noting
how this number increases during the episodes and that this
increasing trend is also related with service component alloca-
tions leading to higher VoI values. Finally, this demonstrated
that VoI methodologies and tools are beneficial for addressing
resource management.

Then, to compare the performance of FogReinForce with
our previous work [14], Fig. 5 shows the best VoI values for
FogReinForce and the preliminary distance heuristic presented
in our previous work. More specifically, the distance heuristic
aims to allocate services components on devices in the close
proximity of both raw-data sources generating the data and

0 200 400 600 800 1000
Episode #

250000

275000

300000

325000

350000

375000

400000

425000

To
ta

l V
oI

FogReinForce
Distance Heuristic

Fig. 5. The comparison between FogReinForce and the distance heuristic
presented in our previous work.

users with the goal of reducing the overall distance generated
by a service component allocation. The distance heuristic illus-
trated in Fig. 5 is optimized with the Quantum Particle Swarm
Optimization (QPSO) meta-heuristics. Let us specify that for
the distance heuristic, an episode corresponds to an iteration
of the QPSO’s algorithm. The results prove that for the given
configuration FogReinForce is capable of outperforming the
heuristic presented in our previous work, thus demonstrating
the soundness of our approach.

VII. CONCLUSION AND FUTURE WORKS

This work presented our efforts for applying RL techniques
into a VoI management framework for Fog service compo-
nents. Starting from the Fog Service management framework
defined in [14], we investigated DRL as another optimization
tool for value-based service components placement. We de-
fined an MDP for the VoI allocation problem to enable the
application of RL algorithms.

Then, we present FogReinForce a DQN algorithm that
allows an agent to find optimal solutions for the VoI service
components allocation problem. More specifically, FogRein-
Force will learn an optimal policy to allocate a set of Fog
services on a pool of Fog devices in a way that would
maximize the total VoI delivered to the end-users in a given
time-window. To evaluate the capabilities of FogReinForce,
we devised a scenario on which FogReinForce proved to be
efficient in finding a good-rewarding allocation policy and
high VoI service components allocation in a relatively limited
number of iterations of the training algorithm. Even if RL
techniques suffer from the curse of high training time, we
believe that there still room for improvement and that they
provide interesting and novel ideas for continuous optimiza-
tion. Finally, as future works we intend to investigate different
DRL algorithms and to test the capabilities of FogReinForce
in more dynamic scenarios.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing - MCC ’12. ACM Press,
2012. [Online]. Available: https://doi.org/10.1145/2342509.2342513

[2] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali,
A. Niakanlahiji, J. Kong, and J. P. Jue, “All one needs to know about
fog computing and related edge computing paradigms: A complete
survey,” Journal of Systems Architecture, vol. 98, pp. 289–330, Sep.
2019. [Online]. Available: https://doi.org/10.1016/j.sysarc.2019.02.009

[3] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4005–4018, 2019, cited By 67.

[4] I. Coms, a, R. Trestian, G. Muntean, and G. Ghinea, “5mart: A 5g
smart scheduling framework for optimizing qos through reinforcement
learning,” IEEE Transactions on Network and Service Management,
vol. 17, no. 2, pp. 1110–1124, June 2020.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Bradford Books, 2018.

[6] A. Gosavi, “Reinforcement learning: A tutorial survey and recent
advances,” INFORMS Journal on Computing, vol. 21, no. 2, pp. 178–
192, 2009.

[7] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1318–1331, Dec 2019.

[8] H. Yao, S. Ma, J. Wang, P. Zhang, C. Jiang, and S. Guo, “A continuous-
decision virtual network embedding scheme relying on reinforcement
learning,” IEEE Transactions on Network and Service Management,
vol. 17, no. 2, pp. 864–875, June 2020.

[9] A. Kaur and K. Kumar, “Energy-efficient resource allocation in cognitive
radio networks under cooperative multi-agent model-free reinforcement
learning schemes,” IEEE Transactions on Network and Service Manage-
ment, vol. 17, no. 3, pp. 1337–1348, Sep. 2020.

[10] L. Mai, N.-N. Dao, and M. Park, “Real-time task assignment approach
leveraging reinforcement learning with evolution strategies for long-term
latency minimization in fog computing,” Sensors, vol. 18, p. 2830, 08
2018.

[11] F. Wei, G. Feng, Y. Sun, Y. Wang, and Y.-C. Liang, “Dynamic network
slice reconfiguration by exploiting deep reinforcement learning,” vol.
2020-June, 2020, cited By 0.

[12] N. Suri, G. Benincasa, R. Lenzi, M. Tortonesi, C. Stefanelli, and
L. Sadler, “Exploring value-of-information-based approaches to support
effective communications in tactical networks,” IEEE Communications
Magazine, vol. 53, no. 10, pp. 39–45, October 2015.

[13] S. Bharti, K. K. Pattanaik, and P. Bellavista, “Value of information based
sensor ranking for efficient sensor service allocation in service oriented
wireless sensor networks,” IEEE Transactions on Emerging Topics in
Computing, pp. 1–1, 2019.

[14] F. Poltronieri, M. Tortonesi, A. Morelli, C. Stefanelli, and N. Suri,
“Value of information based optimal service fabric management for fog
computing,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium, 2020, pp. 1–9.

[15] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“A brief survey of deep reinforcement learning,” arXiv preprint
arXiv:1708.05866, 2017.

[16] B. Dab, N. Aitsaadi, and R. Langar, “Q-learning algorithm for joint
computation offloading and resource allocation in edge cloud,” in 2019
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), 2019, pp. 45–52.

[17] M. Nakanoya, Y. Sato, and H. Shimonishi, “Environment-adaptive sizing
and placement of nfv service chains with accelerated reinforcement
learning,” in 2019 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), April 2019, pp. 36–44.

[18] J. Baek, G. Kaddoum, S. Garg, K. Kaur, and V. Gravel, “Managing fog
networks using reinforcement learning based load balancing algorithm,”
in 2019 IEEE Wireless Communications and Networking Conference
(WCNC), April 2019, pp. 1–7.

[19] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018, cited
By 37.

[20] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,” Digital Communications and Networks,
vol. 5, no. 1, pp. 10 – 17, 2019, artificial Intelligence for
Future Wireless Communications and Networking. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352864818301469

[21] X. Zhao, Q. Zong, B. Tian, B. Zhang, and M. You, “Fast task allocation
for heterogeneous unmanned aerial vehicles through reinforcement
learning,” Aerospace Science and Technology, vol. 92, pp. 588 – 594,
2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1270963818318704

[22] M. Tortonesi, M. Govoni, A. Morelli, G. Riberto, C. Stefanelli, and
N. Suri, “Taming the IoT data deluge: An innovative information-centric
service model for fog computing applications,” Future Generation
Computer Systems, vol. 93, pp. 888 – 902, 2019.

[23] F. Poltronieri, C. Stefanelli, N. Suri, and M. Tortonesi, “Phileas: A
simulation-based approach for the evaluation of value-based fog ser-
vices,” in 2018 IEEE 23rd International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks (CAMAD),
Sep. 2018, pp. 1–6.

[24] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

