Network Service Embedding for
Cross-Service Communication

Angelos Pentelas and Panagiotis Papadimitriou

Department of Applied Informatics, University of Macedonia, Greece

{apentelas, papadimitriou} @uom.edu.gr

Abstract—Network Function Virtualization (NFV) facilitates
the deployment and orchestration of network services (NSes) on
virtualized infrastructures. NFV orchestration, in its prevailing
form, deals with NSes independent to each other. This introduces
significant limitations to cross-service interactions, i.e., a service
that requires the consumption of (part of) another service. In an
evolving service ecosystem that promotes cross-service interac-
tions, orchestrating NSes with their cross-service communication
(CSC) requirements into account is of crucial importance.

In this paper, we propose a CSC-aware NS embedding
heuristic that optimizes NS placement, not only based on inner-
component resource and communication demands, but also with
respect to another deployed NS that will be consumed. To this
end, we study potential types of CSC and introduce a new
data structure, namely VNF embedding tree, which is used to
generate the most appropriate embedding sequence. Assessing
the efficiency of the proposed heuristic using simulations, we
uncover significant gains in terms of service co-location without
any perceptible embedding efficiency penalty, compared to a
baseline heuristic that is oblivious of CSC.

I. INTRODUCTION

The advent of Network Function Virtualization (NFV) [1],
[2], as a key ingredient for innovation in network processing,
has brought virtual network functions (VNFs) to the spotlight
of both researchers and practitioners. While NFV emerged
to satisfy network processing requirements in the telco do-
main (i.e., softwarization of middleboxes, such as firewalls
and NATs) [3], [4], its scope gradually expanded to cellular
networks [5], [6] and other applications in various domains of
social and economic activity (e.g., automotive, media, e-health,
manufacturing), known as verticals [7]. This evolved service
ecosystem creates opportunities for cross-service interactions,
in the sense that one network service (NS), i.e., a sequence
of VNFs [8], [9], can consume another NS, enhancing its
functionality. For example, an augmented reality service of-
fering overlaid metadata for current location could enrich its
service delivery by providing personalized recommendations
through a social network. Such services could be deployed
using dedicated network slices within datacenters [10], [11].
This trend is gaining traction in edge computing for the support
of latency-sensitive applications [7].

The orchestration of network services that need to consume
others requires particular care. For example, NS embedding
or scaling should be handled jointly with the consumed NS.
More precisely, the embedding optimization of a NS does not

978-3-903176-32-4 © 2021 IFIP

solely pertain to resource/communication demands, but is also
pertinent to the placement of the NS that will be consumed.
However, the prevailing way of service orchestration deals
with NSes independent to each other. As such, placement
or scaling decisions are performed only with respect to the
individual service/resource requirements. This approach can
yield suboptimality in terms of CSC, i.e., the communicating
components of the two services may be assigned to datacenter
regions (e.g., different racks) with low-bandwidth connection
or unnecessary long hop-count, increasing response time.

At first glance, CSC-aware NS embedding (NSE-CSC)
could be presumably addressed by NSE methods that account
for VNF sharing (e.g., [6], [12]); however, this is not the
case. In particular, such studies consider the shared VNFs as
an indispensable part of the service graph to be embedded
and, if needed, new instances can be spawned within the
physical infrastructure. In contrast, CSC implies that the
shared VNF(s) comprise an exclusive property of a separate
service, hence, the service which requires embedding has no
means of replicating them on demand.

Along these lines, we stress on the need for NSE-CSC, with
the aim of introducing a new embedding policy dimension, i.e.,
the co-location of the pair of communicating services. As such,
NS embedding should not only take into consideration the var-
ious inner-component communication and resource demands,
but should also strive to optimize the mapping of CSC links.
This problem is further exacerbated by the potentially different
types of CSC, depending on whether the entire or part of the
service is consumed. Since existing NS embedding methods
are, in principle, oblivious of CSC, we propose a new heuristic
for the NSE-CSC problem. A key aspect of the proposed
heuristic is the VNF embedding tree, i.e., a new data structure
that aids the evaluation of VNF embedding steps, with the aim
of generating the most suitable sequence for the embedding
of a VNF-graph. Comparing the proposed heuristic with a
baseline heuristic designed for generalized NS embeddings
(thereby, not accounting for CSC), our proposed method yields
a higher degree of communicating service co-location without
any perceptible penalty in terms of embedding efficiency.

The remainder of the paper is organized as follows. In
Section II, we elaborate on the notion of CSC and distinguish
between three envisaged cases of CSC. Section III describes
the problem at hand, with emphasis on the intricacies of CSC
with respect to the NS embedding. Section IV introduces

Edge Cloud

Augmented Reality (AR) Service

ARyl AR |yl AR ;i
: X AR User 1
Ps A
A A5
sm sm sm AR User 2
1 2 3

User preferencesl

Social Media (SM) Service

—) Typical AR service flow

"") Enhanced AR service flow

Fig. 1: Cross-service interaction between an augmented reality
(AR) service, and a social media (SM) service.

our service models and presents the proposed heuristic, as
well as the baseline. In Section V, we present our evaluation
environment and compare the efficiency between the two
heuristics. Finally, Section VI highlights our conclusions.

II. CROSS-SERVICE COMMUNICATION

Before delving into the NSE-CSC embedding problem, we
lay out our perception of cross-service interactions. In this
respect, we consider the following service classification: (i)
consuming services, and (ii) providing services. Essentially,
CSC provides the means for a consuming service to enhance
its functionality by gaining access to service elements or
functions offered by a providing service. Such services may
be co-located in the same (edge) cloud infrastructure, opening
up an opportunity for peering between the two services [10].
As such, the consuming service can be enabled to consume
another (i.e., providing) service with very low latency, enhanc-
ing its functionality and potentially the experience offered to
the user. For instance, Fig. 1 illustrates an augmented reality
(AR) service co-located with a social media (SM) service. In
particular, the AR service retrieves user preferences stored in
the SM service; thus, it can offer an enhanced personalized AR
experience to users. In this example, the AR is the consuming
service, while the SM fulfills the role of the providing service.
Henceforth, a pair of a consuming and a providing service is
referred to as a CSC pair.

We distinguish between three types of CSC, illustrated in
Fig. 2. More specifically, CSC type I represents a cross-service
interaction, at which a certain VNF of the providing service
is only consumed. In this case, a subset of the traffic traverses
only the consuming service (i.e., VNF A — VNF B), whereas
the rest of the traffic is redirected through the providing
service (i.e., VNF A — VNF E — VNF B). For example,
consider a mobile application as the consuming service, which
offers basic and premium subscriptions. This subscription
discrimination exposes basic users to advertisements, while, at
the same time, providing an ad-free experience for premium
users. In this scenario, VNF E of the providing service could
be a virtualized cache that stores advertising content, which is
offered to the consuming service. Consequently, traffic asso-

ciated with basic subscriptions will traverse the path VNF A
— VNF E — VNF B, instead of the path VNF A — VNF B,
which will be utilized for premium users.

We further identify an additional CSC type, i.e., CSC type
2, at which the consuming service accesses a subset of the
providing service, in the form of a sequence of VNFs, as de-
picted in Fig. 2. This CSC type pertains to services that require
the consumption of a wider spectrum of functions offered by
a providing service. For example, assume that VNF A is a
firewall, whereas VNF E and VNF F correspond to a light and
heavy intrusion detection system (IDS), respectively. In this
case, flows that are suspicious for intrusion can be subjected
to an additional two-level inspection by utilizing the respective
VNFs of the providing service (VNF A — VNF E — VNF F
— VNF B). Instead, all remaining traffic will traverse only the
VNFs of the consuming service.

Last, we consider the scenario where the whole providing
service needs to be consumed. For instance, assume that the
providing service is a machine learning (ML) application,
composed of VNFs that implement feature selection, model
training, model testing, and classification, which practically
constitutes an inseparable pipeline. This case is expressed by
CSC type 3, at which the traffic traverses the entire chain of
the providing service.

III. PROBLEM DESCRIPTION

The network service embedding problem (NSE) consists in
the optimized mapping of virtual nodes and links comprising a
VNF-graph, onto physical counterparts on a substrate network,
e.g., a datacenter. Whereas the optimization objectives might
slightly vary across research studies, the most common one
is the minimization of the embedding footprint (e.g., [13],
[14], [15], [16], [17]). This is practically translated into VNF
consolidation, meaning that the VNF-graph should be mapped
onto the minimum amount of servers, while generating the
lowest possible amount of traffic. In this respect, inter-rack
traffic becomes a highly undesirable implication, seeking its
minimization given the oversubscription of datacenter network
topologies. For instance, in Fig. 3, the providing service is
mapped onto Servers 1 and 2. VNFs D and E, as well as VNFs
F and G, communicate through virtual switching (e.g., OVS),
while the remaining edge of the VNF-graph (i.e., VNF E —
VNF F) is mapped onto a path that traverses the top-of-the-
rack (ToR) switch, i.e., Switch 1. NSE, being a generalization
of the NP-complete virtual network embedding (e.g., [18],
[19]), is also classified as NP-complete, and its combinatorial
nature requires greedy embedding methods in order to generate
efficient solutions in polynomial time (unless P = NP).

The need to establish cross-service interactions introduces
additional complexity and challenges into the NSE problem.
The main challenge stems from the need to embed CSC links,
which are marked with bold arrows in Fig. 3. These links
establish the required connection between the services of a
CSC pair. In case both services are instantiated concurrently,
we could rely on existing techniques (e.g., [13], [14], [15],
[17]) for their embedding, by merely bundling the respective

CSC Type 1 CSC Type 2

VNF A

VNF B VNF C VNF A

VNF B VNFC

N NN

CSC Type 3

Consuming Service

VNF A (requests optimized embedding)

VNF D VNF E VNF F VNF G VNF D VNFE VNF F

Providing Service

VNFE (already embedded)

VNF G

|VNFD

VNF A

fixed deslinati& /ﬁxed source

VNF B VNF C

Graph to be embedded
(CSC Type 1)

fixed network position
(already embedded)

Switch 3

Switch 1 Switch 2

Server 3 Substrate Network

Server 4

Fig. 3: CSC-aware VNF-graph embedding.

VNF-graphs. In reality, however, this is very unlikely; instead,
the reasonable assumption is that the providing and consuming
services will be deployed asynchronously. More precisely, we
consider that the providing service is already in place (and
consumed by its own dedicated clients), before the deployment
of the consuming service. As such, the CSC VNFs of the
providing service (e.g., VNF E for the CSC type 1) will already
be fixed on the underlying network infrastructure. Thereby, the
NSE optimization should handle these as additional constraints
in the assignment of CSC links, and, in extension, in the
mapping of the entire VNF-graph of the consuming service.

To explain this further, notice how the VNF-graph of the
consuming service is expanded in the CSC type I scenario
(top of Fig. 3). In particular, two CSC links are inserted,
which connect VNF A with VNF E, and VNF E with VNF B,
respectively. Given that VNF E is already placed (in Server
1, as shown at the bottom of the same figure), a single end-
point of each CSC link should be attached to Server I. This
introduces additional embedding limitations, compared to the
generalized NSE problem, which are further exacerbated in
CSC types 2 and 3. More specifically, the last two CSC types
imply that four VNFs (two VNFs belonging to the providing
and the other two VNFs being part of the consuming service)
are involved in the CSC, whereas three VNFs are engaged in
CSC type 1.

IV. SERVICE MODELS AND EMBEDDING HEURISTICS

A. Service Models

Network Service Model. A network service can be formulated
as a directed graph G = (V,E), which comprises vertices i € V,
representing VNFs, and edges (i,j) € E,i,j € V, expressing

Fig. 2: CSC types stemming from different CSC scenarios.

virtual links. Each vertex i is associated with a CPU demand
d', whereas gach edge (i,j) has bandwidth requirements,
denoted by d".

In the problem at hand, we denote the consuming service
with G¢ = (Ve,Ec), and the providing service with Gp =
(Vp,Ep). According to the discussions in Section III, a CSC
path comprises VNFs of both services (i.e., CSC VNFs), as
well as links that do not exclusively pertain to any service (i.e.,
CSC links). We model V= {i, j} (i, j € Vc,i# j) as an ordered
set that holds the CSC VNFs of Gc¢. Similarly, V5 = {k,!}
(k,1 € Vp) holds the respective VNFs of Gp. Note that, in the
second case, it could be that [= k, corresponding to CSC type
1. We also model the set of CSC links by Ecsc ={(i,k),(l,j)}
(i,j € V&, k,1 €Vp). The service model augments the modeling
of the expanded consuming service (ECS), which is as follows:

Expanded Consuming Service (ECS) Model. ECS encom-
passes the vertices of the initial consuming service, plus the
CSC VNFs of the providing service. Furthermore, ECS extends
its edge set by adding the Ecsc edges, i.e., ECS is modelled
as a directed graph G = (V/,E(), where V/. =Vc UV}, and
E[. = EcUEcsc. Each element of G- is associated with certain
resource demands, similar to the case of the typical NS model.

B. NSE-CSC Heuristic

Towards the design of a heuristic algorithm, capable of
coping with the complexity of NSE-CSC, we encounter a
crucial issue, which stems from the ambiguity of VNF com-
munication dependencies. That is, the CSC VNFs €V} of
an ECS will communicate with both their adjacent VNFs
included in V¢, as well as with the assigned CSC VNF's of the
providing service. From an algorithmic design perspective, if
we prioritize these dependencies based only on communication
requirements (e.g., bandwidth demands), we will neglect a key
problem aspect, i.e., that we can capitalize on the mapping
flexibility of unassigned VNFs. For instance, in Fig. 4a,
VNF B should be placed in proximity to VNF A, VNF F, and
VNF C, which are its adjacent nodes. While its most intense
communication occurs with VNF A, prioritizing the placement
of VNF B closer to VNF F (which is fixed), and then trying
to map VNF A and VNF C close to VNF B, seems a viable
approach to NSE-CSC.

Following this approach for all VNFs of a consuming
service, we face a critical challenge of NSE-CSC, i.e., how
to determine the VNF embedding sequence. This term refers

[cPu = 26Hz| cPu = 16H7] [cPu = 26Hz| fcPu = 36Hz| [cPu =161z
A 30 Mbps: B 25 Mbps: [o3 -40 Mbps- D 30 Mbps- E

20 Mbps 10 Nllbps

¥

(a) VNF dependency ambiguity in G.

(b) VNF embedding tree.

(c) VNF embedding sequence derived from the tree of Fig. 4b.

Fig. 4: Graphs and structures employed by our heuristic
approach for deriving a greedy NSE-CSC policy.

to the sequence, according to which, the embedding algorithm
will seek to map the VNFs of the consuming service. Appar-
ently, the VNF embedding sequence comprises a fundamental
aspect of the overall embedding policy, since constructive
heuristics, by definition, have no means of stepping back to
modify the (partial) solution (although this feature obviously
accelerates the solution computation). This means that, if the
global embedding policy does not sufficiently address the
problem at hand, the generated embeddings will be inefficient.
Back in Fig. 4a, let us assume that the embedding commences
with VNF A, which is therefore placed first within the substrate
network. This placement, being oblivious of the need for
VNF B and VNF F co-location, in conjunction with the fact
that VNF F is already fixed in the network, restricts the
optimization possibilities.

VNF Embedding Tree. We introduce a new structure, namely
the VNF embedding tree, which is used to generate the VNF
embedding sequence. The construction of a VNF embedding
tree adheres to the following principles:

1) The root is the CSC VNF of the consuming service with
the lowest CPU requirements.

2) The children of a node are its adjacent VNFs € V¢ that
are not yet inserted in the tree.

3) Nodes are, each time, examined for further branching
with a depth-first strategy, prioritizing left edges.

4) Left children have higher communication requirements
with their parent, compared to their rightmost siblings.

5) A node is leaf if its parent is its only adjacent node, or
if its potential children are already in the tree.

For instance, given the G'C shown in Fig. 4a, VNF B will be
designated as the root, since d® = 1GHz < 3GHz = dP. This
design decision (i.e., principle 1) stems from our intuition that,
keeping a node X with low CPU requirements at higher levels
of the tree, increases the probability of co-locating the nodes of
entire sub-trees rooted at X. The next step is to obtain VNF B’s
adjacent VNFs (that belong to the consuming service). These
are VNF A and VNF C and, thereby, these are added in the
tree as VNF B’s children. Given that d48 = 30 > 25 = d5¢,
VNF A will be VNF B’s left child, whereas VNF C will be its
right child. No further branching occurs below VNF A, since
its only adjacent node is its parent, i.e., VNF B. On the other
hand, there is a link between VNF C and VNF D; therefore,
the latter is a child of the former. Similarly, VNF E is placed
below VNF D, and this completes the tree depicted in Fig. 4b.
Note that the proposed tree structure can be applied on non-
linear consuming service graphs, as well.

Inferring the VNF embedding sequence. The embedding
sequence is derived through the following logic: the root of
the tree will always be placed towards the already embedded
node € V; that it communicates with, while the rest of the
nodes will be placed towards their parent.

The VNF embedding sequence is dictated by the visiting
order of the tree’s nodes, when these are traversed with a
depth-first strategy, prioritizing left sub-trees. This, in con-
junction with the core logic described above, will result in
the embedding sequence illustrated in Fig. 4c for the tree of
Fig. 4b. In particular, the heuristic will initially seek to place
VNF B as proximate to VNF F as possible. Subsequently, it
will try to co-locate VNF A with VNF B, and then VNF C
with VNF B. Likewise, VNF D will be sought to be mapped
close to VNF C. Finally, VNF E’s mapping will depend on the
placement of VNF D.

VNF co-location policy. The proposed embedding heuristic
strives to co-locate VNF X towards an already placed VNF Y,
meaning that it will first attempt to place X in the same server
that Y resides. If this is not possible, the heuristic will attempt
to embed X in a server belonging to the same rack; otherwise,
it will place X in a server within the rack with the least
outbound inter-rack traffic. The candidate servers of a rack are
selected with a Worst Fit logic, if X is not a leaf node, since
additional VNFs will pursue their co-location with X (i.e., X’s
children). If X is leaf, a Best Fit approach is followed, since
no additional VNFs will seek to communicate with X, thus,
the algorithm should allocate CPU as efficiently as possible.

C. Baseline Heuristic

The baseline heuristic maps a NS into a datacenter as
follows. Initially, it sorts the racks of the datacenter in
descending order, according to their average available ToR-
to-core switch link bandwidth. Commencing with the first
ordered rack, it ranks its servers in descending order, according
to their available CPU capacity, and strives to place VNFs

TABLE I: Substrate Network Parameters

Number of core switches 5
Number of racks 10
Number of servers / rack 20
Server CPU capacity 7.2 GHz
Intra-rack link capacity 1 Gbps
Inter-rack link capacity 10 Gbps
TABLE II: NS Request Parameters
Number of VNFs / NS U[3,8]

VNF CPU requirements
Link bandwidth requirements

U(1,2,3,4,5) * 7.2 GHz
U[10,100] Mpbs

TABLE III: Evaluation Environment Parameters

NSE requests / time interval Poisson(20)

NS type expiring
NS lifespan U[3,10] time intervals
Number of time intervals 600

sequentially, starting from the first VNF of the chain. The
VNF co-location policy is exercised in the same way with the
NSE-CSC heuristic.

V. EVALUATION

In this section, we perform a comparison between the
proposed NSE-CSC heuristic and the baseline variant, using
simulations. Initially, we present our evaluation environment
and metrics (Section V-A), and, subsequently, we proceed with
the discussion of our evaluation results (Section V-B).

A. Evaluation Environment

We have developed a simulation environment for NSE
evaluations in Python [20]. All evaluations are carried out on a
two-layer fat-tree datacenter network topology. The datacenter
consists of 200 servers, which are evenly arranged into ten
racks. The corresponding ten ToR switches are interconnected
through five core switches. The intra-rack and inter-rack links
have capacity of 1 Gbps and 10 Gbps, respectively. The CPU
capacity of each server is set to 7.2 GHz (see Table I).

In order to evaluate the NSE-CSC efficiency, we pre-embed
ten providing services into the datacenter, with each one placed
within a single rack. In this way, we do not preclude the
existence of efficient solutions (which would be the case, if the
VNFs of a providing service spanned multiple racks). In this
respect, we generate consuming services that comprise three to
eight, sequentially connected, VNFs. Each VNF requires 10,
20, 30, 40 or 50% of a server’s CPU in order to process its
inbound traffic. We assume that bandwidth requirements vary
for each virtual link in the range of 10 Mbps to 100 Mbps.
Furthermore, each consuming service requires communication
with a single providing service, which can be of either fype
1, 2 or 3, as described in Section II. The aforementioned pa-
rameters, summarized in Table II, are obtained from uniformly
random distributions.

Towards a more realistic simulation environment, we ac-
count for a set of n discrete time intervals 7 = {1,2,...,n}.
At each time interval, a number N of consuming services
request placement sequentially, where N ~ Poisson(20). Each

NS comes with a lifespan k. Therefore, if a NS is embedded
at time ¢t € T, it will expire at time t +k € T. During our
simulations, k lies within [3,10] (randomly), and n = 600.

We compare the two heuristic variants based on the follow-
ing criteria: (i) co-location efficiency of adjacent VNF pairs
(i.e., how proximate two communicating VNFs are placed),
(i) embedding efficiency of CSC and non-CSC links, (iii)
amount of inter- and intra-rack generated traffic, (iv) request
acceptance rate (ratio of successfully embedded NSes over the
total number of embedding requests), and (v) CPU utilization,
which corresponds to the amount of the total CPU allocated
to all embedded NSes.

B. Evaluation Results

Initially, we examine the proximity of each pair of adjacent
VNFs (i.e., VNFs connected with a virtual edge), after their
placement within the substrate network. According to Fig. 5,
the NSE-CSC heuristic maps ~ 30% of such VNF pairs into
the same server, whereas the respective percentage for the
baseline method is slightly above 20%. Regarding the VNF
pairs mapped into the same rack (but not in the same server),
the NSE-CSC heuristic outperforms the baseline variant, since
the corresponding percentages exhibit a difference greater than
10%. We further examine the mappings of communicating
VNFs in different racks. It becomes apparent that the baseline
method unfavourably maps nearly half of such VNFs into dif-
ferent racks, while only a quarter falls into the same category
for the proposed heuristic. Apparently, this phenomenon is
- partially or fully - attributed to the superior capability of
the NSE-CSC algorithm to handle the optimized placement
of CSC links, as opposed to the baseline method that merely
optimizes the placement of the consuming service graph.

In order to gain more insights and identify whether the
proposed algorithm skews in favour of the embedding opti-
mization of the CSC links to the detriment of the embedding
optimization of non-CSC links, we present Figs. 6 and 7. In
particular, Fig. 6 illustrates the CDF of the hop count of non-
CSC links, i.e., the edges solely pertaining to the consuming
service graph. We note that the two-layer hierarchical topology
used throughout our simulations implies three possible hop
count values for an edge connecting two VNFs, i.e., 0 (same
server), 2 (different servers in the same rack), and 4 (different
racks). Fig. 6 indicates a similar behavior of the two methods,
with respect to the placement efficiency of non-CSC links.
This is very important, since the embedding efficiency of the
consuming service part of the ECS graph is similar for both
methods, as most of the time (i.e., ~ 80%) the virtual links
are confined within a single rack.

However, according to Fig. 7, the heuristic variants perform
differently on the mapping of CSC links. More specifically,
with the NSE-CSC method, ~ 75% of these links are mapped
on paths comprising at most two physical links, meaning
that the respective VNF pairs are placed either on the same
server or on different servers within the same rack. The cor-
responding percentage resulting from the baseline algorithm
is roughly 10%, i.e., 9 out of 10 pairs that comprise both

100 1.0

I NSE-CSC
B baseline

—— NSE-CSC
== baseline

o)

probability
S
&

°

——— NSE-CSC
== baseline
08

°
s

probability

adjacent VNF pairs (%

°

same server same rack different racks

Fig. 5: Distribution of adjacent
VNF pairs into same server, same
rack, and different racks.

2
hop count for non CSC adjacent VNFs

Fig. 6: CDF of the hop count for
non-CSC adjacent VNFs.

2
hop count for CSC adjacent VNFs

Fig. 7: CDF of the hop count for
CSC adjacent VNFs.

100 100
—— NSE-CSC
== baseline

80 90

60

ST

100

L I ket o=d

acceptance rate (%)

inter-rack relative to total traffic (%)

—— NSE-CSC
== baseline

0 50

CPU utilization (%)

® —— NSE-CSC
== baseline

0 100 200 300 400 500 600 0
time intervals

Fig. 8: Ratio of inter-rack traffic
to total traffic (total = inter-rack +
intra-rack traffic).

consuming and providing VNFs are placed across different
racks. This alone confirms the insights gained from Fig. 5
about the baseline method, regarding the high percentage of
VNF pair distribution into different racks.

The previous results indicate that NSE-CSC exhibits a
higher degree of intra-rack consolidation, compared to the
baseline. This is also corroborated by Fig. 8, where the
ratio of inter-rack to total traffic across all time intervals
is depicted, for both methods. The main insight here is the
considerable gap (i.e., = 10%) in terms of generated inter-
rack traffic (relative to the total traffic) between the NSE-
CSC and the baseline. Such inter-rack bandwidth conservation
by NSE-CSC allows for higher levels of datacenter network
oversubscription and, in turn, cheaper switching hardware at
the core level of the datacenter topology. Besides the cost
reduction, confining traffic within a rack can lead to lower
response time and more predictable performance.

Last, we investigate the efficiency of the two heuristics in
terms of acceptance rate and CPU allocation. Figs. 9 and 10
indicate that both methods exhibit similar levels of efficiency
with respect to these criteria, with only marginal differences
that slightly favour the NSE-CSC. The small gain of the NSE-
CSC potentially stems from the way it alters the ranking
strategy of servers (Worst / Best Fit), since the baseline method
does not incorporate any such feature.

According to our evaluation results and the aforementioned
discussions, the proposed NSE-CSC heuristic manages to
optimize the placement of ECSes, without any penalty on the
embedding efficiency of the consuming service part of the
graph, or the resource allocation efficiency of the substrate

number of requests

Fig. 9: Acceptance rate of the NSE-
CSC and the baseline heuristic.

0
12000 0 100 200 300 400 500 600
time intervals

6000 8000 10000

Fig. 10: CPU allocation for the
NSE-CSC and the baseline heuris-
tic.

network. Considering also the achievable optimization of the
embedding of CSC links, we deem NSE-CSC as a viable and
efficient solution to the NSE-CSC problem.

VI. CONCLUSIONS

In this paper, we tackled the challenging problem of NSE-
CSC, i.e., the optimization of NS embedding, subject to
CSC requirements. To this end, we designed a new heuristic
that introduces a new policy dimension to generalized NS
embeddings, i.e., the co-location of the pair of providing and
consuming service. In order to tailor embedding optimization
to both CSC and resource demands, we introduced the VNF
embedding tree in order to derive the most suitable VNF
embedding sequence for optimized NSE-CSC. Our evaluation
results uncover significant gains for the proposed heuristic, in
terms of service co-location. The proposed heuristic, most of
the times, achieves the co-location of the CSC pair within a
single rack (and sometimes within the same server), ensuring
lower service response times, without any perceptible embed-
ding efficiency penalty. Future work will be focused on the
investigation of NSE-CSC using an experimental setup (e.g.,
OpenStack and OSM).

VII. ACKNOWLEDGMENTS

This work is supported by the MESON (Optimized Edge
Slice Orchestration) project, co-financed by the European
Union and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship and Innovation,
under the call RESEARCH - CREATE - INNOVATE (project
code: TIEDK-02947).

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[10]

REFERENCES

“ETSI Network Function Virtualization,”
http://www.etsi.org/technologies-clusters/technologies/nfv.

“OPNFV,” https://www.opnfv.org/.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13-24, 2012.

M.-A. Kourtis, M. J. McGrath, G. Gardikis, G. Xilouris, V. Riccobene,
P. Papadimitriou, E. Trouva, F. Liberati, M. Trubian, J. Batallé et al.,
“T-nova: An open-source mano stack for nfv infrastructures,” IEEE
Transactions on Network and Service Management, vol. 14, no. 3, pp.
586-602, 2017.

D. Dietrich, C. Papagianni, P. Papadimitriou, and J. S. Baras, “Net-
work function placement on virtualized cellular cores,” in 2017 9th
International Conference on Communication Systems and Networks
(COMSNETS). 1EEE, 2017, pp. 259-266.

C. Papagianni, P. Papadimitriou, and J. S. Baras, “Rethinking service
chain embedding for cellular network slicing,” in 2018 IFIP Networking
Conference (IFIP Networking) and Workshops. 1EEE, 2018, pp. 1-9.
G. Papathanail, I. Fotoglou, C. Demertzis, A. Pentelas, K. Sgouromitis,
P. Papadimitriou, D. Spatharakis, I. Dimolitsas, D. Dechouniotis, and
S. Papavassiliou, “Cosmos: An orchestration framework for smart com-
putation offloading in edge clouds,” in NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium. 1EEE, 2020, pp.
1-6.

K. Papadopoulos and P. Papadimitriou, “Leveraging on source routing
for scalability and robustness in datacenters,” in 2019 IEEE 2nd 5G
World Forum (SGWF), 2019, pp. 148-153.

M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing together the nfv provisioning puzzle: Efficient place-
ment and chaining of virtual network functions,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM).
IEEE, 2015, pp. 98-106.

G. Papathanail, A. Pentelas, I. Fotoglou, P. Papadimitriou, K. V.Katsaros,
V. Theodorou, S. Soursos, D. Spatharakis, I. Dimolitsas, M. Avgeris,
D. Dechouniotis, and S. Papavassiliou, “Meson: Optimized cross-slice
communication for edge computing,” IEEE Communications Magazine,
vol. 58, no. 10, 2020.

(1]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

F. S. D. Silva, M. O. Lemos, A. Medeiros, A. V. Neto, R. Pasquini,
D. Moura, C. Rothenberg, L. Mamatas, S. L. Correa, K. V. Cardoso
et al., “Necos project: Towards lightweight slicing of cloud federated
infrastructures,” in 2018 4th IEEE Conference on Network Softwariza-
tion and Workshops (NetSoft). 1EEE, 2018, pp. 406-414.

F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalosub, “Reduc-
ing service deployment cost through vnf sharing,” IEEE/ACM Transac-
tions on Networking, vol. 27, no. 6, pp. 2363-2376, 2019.

T. Benson, A. Akella, A. Shaikh, and S. Sahu, “Cloudnaas: a cloud
networking platform for enterprise applications,” in Proceedings of the
2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 8.

A. Gember, A. Akella, A. Anand, T. Benson, and R. Grandl, “Stratos:
Virtual middleboxes as first-class entities,” 2012.

D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, “Multi-provider
service chain embedding with nestor,” IEEE Transactions on Network
and Service Management, vol. 14, no. 1, pp. 91-105, 2017.

A. Abujoda and P. Papadimitriou, “Distnse: Distributed network service
embedding across multiple providers,” in 2016 8th International Confer-
ence on Communication Systems and Networks (COMSNETS). 1EEE,
2016, pp. 1-8.

A. Pentelas, G. Papathanail, I. Fotoglou, and P. Papadimitriou, “Net-
work service embedding across multiple resource dimensions,” IEEE
Transactions on Network and Service Management, 2020.

E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves, “On the computa-
tional complexity of the virtual network embedding problem,” Electronic
Notes in Discrete Mathematics, vol. 52, pp. 213-220, 2016.

M. Rost and S. Schmid, “On the hardness and inapproximability of
virtual network embeddings,” IEEE/ACM Transactions on Networking,
vol. 28, no. 2, pp. 791-803, 2020.

[Online]. Available: https://github.com/Peniac/NSE-CSC

RERR @ EPAnEK201.-2020 = EXMA
* * HELLENIC REPUBLIC OPERATIONAL PROGRAMME o
* * MINISTRY OF COMPETITIVENESS =m 2014-2020
>k ECONOMY & DEVELOPMENT ENTREPRENEURSHIP = 3 :
SPECIAL SECRETARY FOR ERDF & CF INNOVATION

European Union MANAGING AUTHORITY OF EPANEK Partnership Agreement
European Regional 2014 -2020
Development Fund

Co-financed by Greece and the European Union

