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Abstract—Traffic Classification System (TCS) allows inferring
the application that is generating given network traffic. Other
systems can use this information to enforce specific network
policies on the analyzed traffic. In recent years, Traffic Classifier
(TC) based on Deep Learning (DL) have outperformed traditional
methods such as port-based and statistical Machine Learning
(ML). Although these TC can achieve high accuracy on raw
data, most of those works do not provide any reasoning or
interpretation about how the trained model could achieve such
performance. This lack of interpretability may lead to unpre-
dicted behaviour of the systems that consume such information.
To understand what the DL models are learning, we conduct a
set of experiments reveal what the DL models are learning and
we validate our reasoning by building and training simpler ML
models that use the revealed features and could even outperform
the DL models in some evaluations.

Index Terms—Traffic Classification, Machine Learning, Deep
Learning, Network Management

I. INTRODUCTION

Data networks keep increasing their capacity to support
the ever-increasing number of devices and applications. As
the networks grow, managing and optimizing their resources
become even more challenging [1]. A Traffic Classification
System (TCS) is used to identify and classify among different
types of traffic and provide a service to other systems to
perform tasks such as Quality of Service (QoS) provisioning,
billing, anomaly detection, resource usage planning, among
others. Traditionally, behind a TCS there is a Traffic Classifier
(TC) which task is given an input data, e.g., a set of features
from a single packet or a flow of packets, discriminate among
a set of traffic classes.

In the recent years, TC based on Deep Learning (DL) have
outperformed the ones that are empowered by traditional meth-
ods such as port-based, Deep Packet Inspection (DPI), and
flow-based traffic analysis using statistical Machine Learning
(ML), and this result is more evident on traffic that is encrypted
[2]. One of the reasons for such success is that DL models can
automatically extract the features required to solve the given
classification task with high accuracy from a large amount of
raw data [3]. In other words, DL models offer the possibility
of creating black-boxes of learning parameters, which can be

978-3-903176-32-4 © 2021 IFIP

trained to make the association between raw input data and
target outputs on their own.

However, even though many proposed DL-based TCs
achieve high accuracy on raw packets, traditionally above
90%, most of those works do not provide any reasoning
or interpretation about how the trained model was able to
achieve such performance [4]. In this paper, interpretability
of a model, a term that can be used interchangeably with
explainability, is defined as the degree to which an observer
can understand the cause of a decision [5]. As a consequence,
if a ML model has higher interpretability, then the easier to
humans to understand why some decisions or predictions have
been made. We believe that this lack of interpretability of a
ML-based TC may lead to several risks for the systems that
consume such information, e.g., billing, when deployed in real
environments as it would be hard to identify the root cause of
poor performance in such systems. Moreover, as DL models
are computationally expensive, using them as “one size fits
all” may leave them useless due to poor response time.

Motivate for the impact of using DL models for packet-
based TC on raw input data, we conduct a set of experiments
to measure the performance of the DL-based TCs when the
input representation of the packet uses different combinations
of the IP and transport protocol headers and payloads. As a
dataset, we use the non-VPN part of the ISCX dataset [6], i.e.,
traffic with non-encrypted packets. These combinations allow
us to understand the effects of given raw input representations
on the DL model’s performance. As a result, we can reveal
the features that the DL model is learning. By combining
data analysis techniques with experimental validations, we can
build simpler ML models that use the revealed features and
outperform the DL models in some evaluations.

The remainder of this paper is structured as follows. Related
works are presented in Section II. The baseline DL-based TC
system and the different modifications on the raw packet rep-
resentation used for performance evaluations are presented in
Section III. We show the DL model’s performance evaluation
results on both Traffic Characterization (coarse-grained) and
Application Identification (fine-grained) tasks in Section IV.
Conclusions and future work are presented in Section V.



II. RELATED WORKS

Lotfollahi et al. [2] present Deep Packet, a DL approach
that can classify traffic with high accuracy. Their method can
identify encrypted traffic and does not need any handcrafted
features. The authors proposed two DL architectures, one
based on Convolutional Neural Networks (CNNs) and one
based on AutoEncoders (AEs). Both architectures are trained
on the ISCX VPN-nonVPN dataset (captures on the data-
link layer). After a pre-processing step, each IP packet are
truncated/zero-padded to a fixed length of 1500 bytes, which
is required by the selected DL architectures. The results show
that Deep Packet can achieve an average score of more than
90% on two traffic classification tasks (traffic characterization
and application identification. However, they do not provide
conclusive evidence of what the DL models are learning to
explain why their approach performs well.

Wang et al. [7] present a DL-based TC that uses one-
dimensional CNN as learning architecture. The ISCX VPN-
nonVPN dataset is used for validation. Four combinations of
packet representation are considered: layer 7 of the ISO/OSI
model (L7) or all protocol layers (ALL) (only the first 784
bytes), biflows, i.e., a 5-tuple composed by source IP, source
port, destination IP, destination port, and transport-level pro-
tocol, and flows, i.e., the same 5-tuple but the source and
destination IP / port are not interchangeable. Although the
results show a very high accuracy, some experiments even
with scores above 99%, the authors do not explain about what
the model is being learned to justify the results. Moreover,
the authors in [2] indicate that the packets in the ISCX VPN-
nonVPN dataset contain unique source and destination IP
addresses for each application. As a result, the proposed model
may be simply learning this feature to classify the traffic.

Moreira et al. [8] introduce Packet Vision, a DL-based TCS
capable of classifying traffic from packets raw-data. Their
method considers both header and payload and consists of
6 steps: data acquisition, raw data to matrix transformation,
matrix transformation, data shuffle, image generation, and
classification. The first three steps are used to transform raw
packets, usually in hexa or binary representation, to an n X 8
decimal matrix. The fourth step provides change decimal
information regarding packet header to enduring the security
and privacy based on the Poisson probability distribution over
the decimal matrix. Finally, the fifth step creates an RGB
image of the shuffled matrix, which can be easily used for
CNN-based classifiers (last step). Although the results show
a very high accuracy, above 99%, on the datasets used for
experimentation, the paper lacks interpretability of the model.

Aceto et al. [4] perform an experimental evaluation of
different DL architectures applied to mobile encrypted TC.
Mobile TC has extra challenges since there many apps to
discriminate from, which are also subject to frequent updates
(that may distort the previously configured models). The DL
architectures are evaluated on three datasets collected by
human users and labelled by the generating app and with
biflows as traffic objects. Aligned with our work’s motiva-

tion, one of the authors’ conclusions is that when DL-based
classifiers are fed with all the data contained in a packet,
there is a high probability of misleading performance results
and DL models can be reduced to statistical IP/port-based
architectures. Moreover, the black-box nature of most of the
DL-based classifiers makes difficult or not-at-all possible to
predict the performance of the system, requiring to find the
right balance between naive application and expertise-driven
effort. In this paper, we go a step further and demonstrate via
experimentation that packet-based TC algorithms such as [2]
are reduced to statistical ML models and how a simpler state-
of-the-art ML approach such as gradient boost can outperform
a DL-based model.

III. DATASET AND BASELINE DL MODEL FOR
EXPERIMENTATION

To demonstrate the interpretability problem in packet-based
TCS that uses DL for performing the classification task, we
will describe the dataset and DL approach used as the baseline
for experimentation.

A. Dataset and Classification Tasks

For this research, we use ISCX VPN-nonVPN traffic
dataset. This dataset contains real traffic from different ap-
plications which are stored in pcap format files [6]. The
complete dataset comprises 14 traffic categories, 7 for a regular
session (non VPN) and 7 over VPN. The traffic categories
are Web Browsing, Email, Chat, Streaming, File Transfer,
VoIP, and P2P. The subset of this dataset that was used for
experimentation is that non-VPN traffic. This decision was
taken to demonstrate how a DL model can be reduced to a
simpler statistical IP/port-based/Packet Length ML model.

For simplicity and without loss of generality, we do not
include the Web Browsing traffic class into the subset as
different generated streams would belong to two categories
(ex. video watched via web browsing). Each traffic category
is composed of one or more categories of applications. The 16
applications used to label the data are: aim, email, Facebook,
FTPS, Gmail, Hangout, ICQ, Netflix, SCP, SFTP, Skype,
Spotify, Torrent, Vimeo, Voipbuster, Youtube. As a result of
these two types of labels, the following traffic classification
tasks are defined as in [2]:

« Traffic characterization: This task aims to discriminate

between protocol families (e.g. chat or video).

« Application identification: This task aims to discrimi-

nate specific applications (e.g. Spotify or Skype).

Once the dataset ISCX VPN-nonVPN was obtained, we
built a new dataset for our experiments as follows. We
randomly select a maximum of 30K packets from each of the
110 pcap files (where possible). As the dataset is highly unbal-
anced, the next step was performing random under sampling.
The resulting dataset has 24K packets per traffic category
or 2.6K packets for each application category. The balanced
dataset is then split into two subsets, 80% of the packets are
used for training and validation, and 20% for testing. The
unified training and validation dataset is further split to get
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Fig. 1: Implemented CNN model to replicate the results of Deep Packet [2]

the individual training (85% of packets) and validation (15%
of packets) datasets.

B. DL architecture and Packet Pre-processing

Depending on the type of DL architecture used to build
the TC, several pre-processing steps can be implemented. For
this paper, we perform the pre-processing steps proposed by
Lotfollahi et al. [2]. Also, the DL models that we implement
are inspired by their 1D-CNN architecture. Following the Deep
Packet approach, we apply the following pre-processing steps
to all packets in the dataset built for the experiments:

1) The Ethernet header is removed
2) All non-IPv4 or non-IPv6 packets are discarded
3) All non-TCP or non-UDP packets are discarded
4) All packets with no payload are discarded
5) The source and destination IP addresses are set to 0.0.0.0
(masked)
6) The IP header is padded to 40 bytes (IPv4 and IPv6 have
different lengths)
7) The transport layer header is padded to 20 bytes (TCP
and UPD have different lengths)
8) The payload is truncated or padded (with Os) at 1440
bytes
9) The payload bytes are divided by 255 to produce a value
in the range of [0,1] (normalization)
10) The whole processed packet is reassembled to a total size
of 1500 bytes.

Figure 1 shows the implemented 1D-CNN architecture. This
architecture is composed of two convolutional layers, followed
by four dense ones. All the layers have rectifier activation
functions (ReLU) except the last one with a soft-max function
for classification. Max-poling is used in convolutional layers
for down-sampling the input, while dropout and batch nor-
malization layers were used in convolutional and dense layers
to improve generalization and accelerate training. Two models

TABLE I: 1D-CNN Model parameters

Convolutional 1 ~ Convolutional 2 Output Layer

Task
K F S K F S C
App Ident. 4 200 3 5 200 1 16
Traffic. Char. 5 200 3 4 200 3 6

TABLE II: Performance of implemented 1D-CNN model for
traffic classification vs Deep Packet

This paper Deep Packet

traffic precision recall fl-score precision recall fl-score
chat 0.78 0.92 0.85 0.84 0.71 0.77
email 0.63 0.95 0.76 0.96 0.87 0.91
ftp 0.99 0.97 0.98 0.98 1.00 0.99
p2p 0.72 0.99 0.84 1.00 1.00 1.00
streaming 0.96 0.93 0.95 0.92 0.87 0.90
voip 0.94 0.93 0.94 0.63 0.88 0.74

TABLE III: Performance of implemented 1D-CNN model for
Application Identification vs Deep Packet

This paper Deep Packet

App precision recall fl-score precision recall fl-score
aim 0.28 0.93 0.43 0.87 0.76 0.81
email 0.37 0.90 0.52 0.97 0.82 0.89
facebook 0.93 0.93 0.93 0.96 0.95 0.96
ftps 0.99 0.98 0.99 1.00 1.00 1.00
gmail 0.32 0.95 0.48 0.97 0.95 0.96
hangout 0.99 0.89 0.94 0.96 0.98 0.97
icq 0.34 0.71 0.46 0.72 0.80 0.76
netflix 0.99 0.97 0.98 1.00 1.00 1.00
scp 0.97 0.97 0.97 0.97 0.99 0.98
sftp 0.98 0.99 0.99 1.00 1.00 1.00
skype 0.98 0.81 0.89 0.94 0.99 0.97
spotify 0.80 0.92 0.86 0.98 0.98 0.98
torrent 0.65 0.97 0.78 1.00 1.00 1.00
vimeo 0.94 0.98 0.96 0.99 0.99 0.99
voipbuster 0.98 0.99 0.98 0.99 1.00 0.99
youtube 0.93 0.96 0.95 0.99 0.99 0.99

were trained, one for traffic characterization and one for traffic
identification, with the unique difference being the number of
neurons in the last softmax layer (6 vs 16 classes). Table I
presents the configuration of each Convolutional Layer. For
training, a batch size of 128 was used, along with Adam
as optimizer and categorical cross-entropy loss function. We
implemented and trained the model using TensorFlow'.

The results of the implemented model and the ones from
Deep Packet [2] are compared in Tables II and III for Traffic
Characterization and Application Identification, respectively.
In general, the results of the implemented model are aligned
to the results of Deep Packet except for the email class in the

Uhttps://www.tensorflow.org



Traffic Characterization task and the email, gmail, aim, and icq
classes in the Application Identification task. We argue that the
differences in the results may be due to 1) the datasets used
for training/validation/testing (ours is more limited in size and
there is a random component while selecting the packets to
create the balanced dataset), 2) minor differences between the
implemented model and Deep Packet, and 3) the stochastic
nature of DL model optimizer. However, these differences do
not have effects on the interpretability of the model.

C. Packet Assembly variations

To identify the effects of the raw input packets on the
DL model is by modifying the pre-processing procedure and
measuring the performance of the model trained with the
new input format. As we described before, Deep Packet pre-
processing is composed of 10 steps. In the last step, the
processed IP Header (IPH), Transport Protocol Header
(TH), and Transport Protocol Payload (TPL), which carries
the application data, are put back together to assemble the raw
packet for classification. Each of these pieces of information
carries on important information to discriminate between dif-
ferent classes of traffic. By modifying this assembling step, we
target to provide some level of interpretability of the model
and answers to questions such as: what is the model learning?
How important is the header for learning from raw packets? Is
the TPL important? What features are impacting the model?

In order to change the raw input data, We first define the
following five strategies to assembly the packet:

« DeepPacket: No modifications to the approach followed
by Deep Packet were applied. This is our baseline for the
experiments.

« nolP: The input packet is only composed of the transport
protocol data (header and payload). This modification will
provide useful information about the usefulness of the
IPH in the classification task.

« payloadOnly: Only the raw application data is used
as input data. This modification will provide insights
about the impact of the application data in the model’s
performance.

« smallPayload: Similar to DeepPacket but the TPL is
shortened to 500 bytes. This experiment will complement
the previous results.

« headerOnly: The IPH and TH are used. This experiment
will show us if the model is being reduced to statistical
IP/port-based architectures.

For each experiment, a DL model following the architecture
showed in Figure 1 was created, trained, and their performance
was evaluated in terms of Fl-score.

IV. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we will present the main results of this paper.
We first analyse the performance impact of the different packet
assembly variations described in the previous section. A data
analysis process on the dataset is used to explain the results,
and we further extend our experiments to demonstrate that
simpler classifier can outperform the DL models. Finally, we

complement the experiments by analysing the impact of the
payload pre-processing on the results.

A. Packet assembly performance

Figure 2 shows the F1-Score achieved by the DL models
trained with the raw input provided by the different packet
assembly strategies on both traffic classification tasks. In both
tasks, the headerOnly strategy, which uses the processed IPH
and TH only, achieved similar or even better performance than
the DeepPacket strategy. These results may indicate that the
DL models are automatically extracting the features from the
packet headers and that the payload information is not used
to discriminate between classes.

By analysing the source and destination transport protocol
pairs for Facebook and Vimeo traffic in Figure 3a, we can
notice that they have different patterns, facilitating discrimina-
tion among different classes. Moreover, if we compare these
patterns with the same traffic but from the TOR dataset, as
shown in Figure 3b, we can see that this feature is useless for
discriminating such traffic. This result may also explain the
poor performance of Deep Packet on the TOR dataset. Finally,
we can see that the performance is negatively impacted when
less information from the header is used but we keep the TPL.
We analyse the effects of the TPL in the next subsection.

With these results, it seems that the DL models are reduced
to a statistical IP/port-based architecture. To confirm this, we
built and trained a simpler ML model based on Gradient
Boost (GB) ensemble method, where we use as features the
Transport Protocol pairs source-destination ports and its type
(UDP/TCP). The results are presented in Figure 4. We imple-
mented the GB algorithm using the LightGBM? framework.

In the Traffic Characterization task, the ML approach is
outperformed by the DL ones, but their differences are always
lower than 13 percentage points. Even in classes like email
and p2p, the ML model performs better. On the contrary, the
ML outperforms the DL approaches in most of the classes
in the Application Identification task. The differences are
even higher in the email classes, where the DL models were
struggling. This result confirms the DL models are in fact a
statistical transport protocol type and port-based architecture,
which features are automatically extracted from raw (byte)
representation of the packet headers.

Zhttps://lightgbm.readthedocs.io/

TABLE IV: Description of the different packet assembly
strategies for different experiments

Experiment Packet Total Packet

Label Assembly Size (Bytes)
DeepPacket Deep Packet 1500

Transport Header

nolP and Payload 1460

payloadOnly Transport Payload only 1440
IP and Transport Headers

smallPayload with small Payload (500 bytes) 360
headerOnly IP and Transport Headers only 60
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Fig. 2: Comparison of the F1-Score achieved by the DL models in the different packet assembly variations. In both cases,
headerOnly achieves similar or better performance than DeepPacket. On the contrary, payloadOnly had the worst performance.
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Fig. 3: Comparison of source-destination Transport Protocol Port used by the Facebook and Vimeo traffic in the non-VPN and
TOR datasets. While non-VPN traffic has a evident source-destination port pair patterns, this is not the case for TOR traffic.

B. Payload impact

One interesting aspect of the previous results is that the
TPLs are not providing features to improve the DL models’
performance, and it may be even negatively impacting it.
We performed some additional experiments to identify the
importance of the TPL in DL models. In the first experiment,
we changed the eight step of the packet pre-processing by
padding the packets with a length shorter than 1440 bytes with
random sequences. With this experiment, we want to identify
if the DL models are automatically extracting the length of
the payload as a feature. Due to paper length constraints, we
only present the Traffic Characterization task results, but we
found similar results for the other task.

Figure 5a shows the payloadOnly experiment’s performance
when using the zero padding, as in the previous experiments,
and random padding. Notice that when the padding is random,
the DL approach cannot perform the classification task cor-
rectly, as in p2p classification where the performance drops up
to 90%. This can be explained as the packet length can quickly
emerge from the zero padding pattern. Of course, this feature
will only help when the different traffics have different packet

lengths. In the used dataset, a data analysis process showed
us that each traffic packet length distribution is a distinctive
feature among several classes.

To enforce our understanding of the packet length’s impact,
we built an ML model using LightGBM and trained it using
the original packet length as a feature. Figure 5b shows the
comparison between headerOnly, onlyPayload and the model
using LightGBM using only packet length as the only feature.
Although headerOnly DL model still outperforms the other
two models, payloadOnly and LightGBM are having similar
performance. This may also explain why DeepPacket still has
a little advantage over headerOnly in the previous results.
In general, we can see how a combination of data analysis,
feature engineering and domain knowledge allow building ML
models with high interpretability, high accuracy, and low com-
putational complexity for non-encrypted packets. Features like
packet lengths, transport protocol type and source-destination
port pairs are enough to solve the traffic classification tasks.

V. CONCLUSIONS AND FUTURE WORK

Motivate by the lack of interpretability of Deep Learning
(DL) models for packet-based Traffic Classifier (TC) on raw
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Fig. 5: Interpreting the impact of packet length in the DL models. By comparing the result of padding strategies during packet
pre-processing, we see that this feature is being learned and we validate it via a simpler ML model.

input data, this paper presented a set of experiments to
measure the prediction accuracy of the DL-based TCs when
different combinations of headers and payloads from the byte
representation of the packet are used to train them. Based on
the evaluation results, we were able to reveal what features
the DL models are automatically extracting and learning and
validate it by building a simpler Machine Learning (ML)-based
TC that could outperform the DL approach. As future work,
we plan to apply more advanced techniques for analyzing
model interpretability on more complex datasets, e.g., on VPN
traffic, and use other DLML models to generalize the results.
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