
Fog Orchestration meets Proactive Caching
Francescomaria Faticanti∗†, Lorenzo Maggi‡, Francesco De Pellegrini§, Daniele Santoro∗, Domenico Siracusa∗

∗Fondazione Bruno Kessler, Trento, Italy
†University of Trento, Trento, Italy
‡Nokia Bell Labs, Paris, France

§University of Avignon, Avignon, France

Abstract—Running fog computing applications on edge servers
requires to match activation of applications containers to time
varying demands. In this paper we study the dynamic orches-
tration of a batch of applications over a network infrastructure
including fog servers and a cloud. Cloud application deployment
faces higher cost and high latency, but unlimited computational
capacity. Fog servers, conversely, have limited computational
resources, but ensure low latency at low cost. In this context
we propose a new scheme for joint caching and placement in
fog: the aim is to minimize the deployment cost while satisfying
the applications’ constraints. In fact, image caching appears
mandatory to reduce the containers’ activation time. On the other
hand, proactively caching images on target servers is effective
to match the expected activation pattern while optimizing load
balancing via container replication. Using two-stage stochastic
programming we derive a one-step-ahead policy to minimize the
total running cost and satisfy applications’ requirements. Exten-
sive numerical results demonstrate the potential for this novel
approach over traditional caching and placement algorithms.

Index Terms—fog computing, proactive image caching, orches-
tration, two-stage stochastic programming

I. INTRODUCTION

The IoT technology is meant to connect a massive number
of smart objects and devices to the Internet to serve their data
to services and applications. In order to process the resulting
IoT data streams at the edge of the network, the fog computing
paradigm has extended cloud computing to support local
computation on edge servers. Proximity to data sources [1]
improves user experience for IoT services reducing round-trip
delays whereas information extraction at the network’s edge
prevents massive, diffused and continuous raw data injection
into the communication infrastructure [2].

Virtualization is key for the flexible installation of services
onto fog servers in the proximity of IoT objects [3]. In
fact, heterogeneity of IoT technologies [4] is mitigated by
packaging fog service modules in advance, e.g., in the form
of Docker images adapted to the host OS system. Container-
based orchestrators such as, e.g., Kubernetes [5], support
availability and load balancing by means of container repli-
cation. Replicas of the image of a tagged fog application can
be displaced on different target fog servers: once replicated
among different servers, requests towards a tagged application

This work has received funding from the EU H2020 R&I Programme under
Grant Agreement no. 815141 (DECENTER: Decentralised technologies for
orchestrated Cloud-to-Edge intelligence).

are dispatched by applying a load balancing procedure (e.g,
round-robin) among the servers. On the other hand, for a fog
server to offload some container, it has to query the controller
for the network topology in order to check which servers
executing same application can take over. The Kubernetes
monitoring ensures service availability, by removing stalled
containers and activating replicas on different servers.

Typically, containerized services can not be migrated in
a stateful manner with a proper infrastructure. Rather, the
practice is to replicate and switch on a container at the new
location and to turn off the old one. Clearly, this process
introduces some delay which can be broken down into a
start up time, a platform-dependent orchestration overhead
delay, and the image transfer delay. The last component is
critical because it involves unpredictable network delays and
depends on the image size. Thus, caching containers’ images
on fog servers is key to reduce the total delay experienced
by fog applications. For instance, under Kubernetes, every
node, as a Docker host, can perform image caching operations.
A cache hit means that the container image is available on
a target fog server and, if not active, the start-up time can
be performed within some milliseconds [6]. A cache miss,
conversely, requires either to wait the image download onto the
fog server – a delay usually unacceptable for most applications
– or to redirect the request on other available instances, e.g.,
in cloud. Further, every new image download involves several
operations, such as the image decompression, with an overhead
on the server’s CPU usage much higher than image activation.

This paper studies the joint optimization of application
image caching and orchestration in fog. We consider single
container fog applications, and we leave the extension to
more complex microservice architectures for later works. The
system infrastructure includes a central cloud and a fog region
with a cluster of fog servers. Fog servers have limited CPU,
memory and storage capacity but are cost free. In cloud,
unlimited computational resources are available at a cost. The
aim is to optimally orchestrate applications running on the
described infrastructure. I.e., minimize deployment costs while
complying with applications’ delay figures.

Inspired by proactive caching systems, we study an optimal
joint orchestration and caching policy. Proactive caching is
aimed at preventing the download of containers from a central
repository to avoid large image transfer delay. The control
is the proactive placement of the applications’ images stored
in the container registries across the network infrastructure,978-3-903176-32-4 © 2021 IFIP

mapping applications’ containers to the fog servers or to the
cloud. Each application’s container can be either cached or
not on a fog server. Also, it can be available in two forms
on each server: it can be either active, i.e., the container is
running on the server, or it can be disabled, i.e., the image of
the container is cached but not yet running.

State-of-the-art solutions for images caching, such as Kuber-
netes’ caching for instance, are reactive and thus not suitable
for delay-constrained fog computing applications. In fact, a
container not present on a target host is fetched from the
central repository (e.g., a Docker hub). Proactive edge caching
has become popular in 5G networks [7] and has appeared
recently in the literature [8].

However, fog proactive caching appears fundamentally dif-
ferent compared to standard multimedia edge caching. First,
it maybe tempting leveraging on standard caching policies as
done in proactive multimedia edge caching. Most frequently
used (MFU), for instance, is provably optimal under stationary
content popularity [9]. In fog computing such analogy is
misleading because the more requests a container receives,
the more the processing resources consumed in terms of CPU,
storage and communications on the servers it is installed on.
Thus, the server “occupation” depends on the fog application’s
“popularity” and a fog application’s performance depends by
the presence of other active containers on the same host. As
proved by our numerical experiments, traditional caching tech-
niques are suboptimal for the considered problem, especially
under variable demand patterns.

Main contribution: we propose a one-step-ahead joint
caching and orchestration scheme accounting simultaneously
for caching, load-balancing, and replication of fog containers’
images. One application may be cached in advance on several
servers and may be activated or not depending on the current
application’s load. In our model, the CPU load generated at
a specific server depends on the number of replicas installed
elsewhere and made run in parallel precisely to smooth the
peak processing delay per instance. Our work is, to the best of
the authors’ knowledge, the first one to study jointly proactive
containers’ image caching and orchestration.

The paper is structured as follows. Section II introduces
the system model, and in Section III the joint caching and
orchestration problem is presented in the form of a two-stage
stochastic optimization problem. Section IV describes the main
methods adopted for the problem resolution, and Section V
reports on numerical results. A concluding section ends the
paper.

II. SYSTEM MODEL

We consider a network infrastructure consisting of a fog
cluster and a cloud. The fog cluster is composed by S
fog servers. Each server s has a limited amount of CPU,
memory and disk storage available, denoted by the triple
Cs = (CPs , C

M
s , CDs). On the other hand, in cloud there are

unlimited but expensive resources.
Applications. We consider a batch of N different applications
to be run on the infrastructure; they can be deployed either in
cloud or on the fog cluster. Each application consists of a

TABLE I
MAIN NOTATION USED THROUGHOUT THE PAPER

Symbol Meaning
N number of applications
S number of fog servers
λt
i arrival rate at time t for application i
δi maximum processing delay tolerable by application i
r resource type: processing (P), memory (M) and stor-

age (D).
Cr

s available resource in server s, with r ∈ {P,M,D}
cri resource occupation of a container of application i

container to be replicated across several fog servers and/or
in cloud. Each container of application i has requirements in
terms of CPU, memory and storage, described by the triple
(cPi , c

M
i , c

D
i).

Cache. We assume that each fog server has the ability to store
containers in a cache, and possibly to disable cached contain-
ers when not needed. This allows to predict future application
requests and reduce startup delays for new applications, that is
to download the respective containers if not cached locally. We
consider that each container may consist of successive layers,
corresponding to incremental software updates. Yet, out of all
layers downloadable from a central repository, a container of
application i only needs a portion ηi ∈ (0, 1] of them to run
properly.
Control. The orchestrator decides at each period t: i) which
new containers should be downloaded to the fog servers’
caches and ii) which containers, among those who are are
present in the respective caches, should be activated. We
remark that the activation policy is constrained by the delay
requirements of each application, and we shall provide some
constraints on the churn rate of cached images in order to
disincentive disruptive reconfigurations.

Let xti,s be the binary variable indicating whether a con-
tainer of the application i is active on server s at time t
(s = 0 denotes the cloud for the notation’s sake). The caching
control is represented by continuous variable yti,s ∈ [0, 1]: it
describes the fraction of container’s layers cached on server s
at time t for application i. In fact, containerized applications
may be operational even when some features are missing. But,
if yti,s < ηi, i.e., the portion of cached layers is insufficient,
then xti,s = 0, hence the application can not be activated. We
denote A(yt) = {(i, s)|yti,s < ηi} the set of containers that
can not be activated: xti,s = 0, for all pairs (i, s) ∈ A(yt).
Requests. For the sake of model tractability we divide the
time into slots. During slot t, application i receives data to
be processed at a rate of λti – that can be thought of as a
measure of application’s popularity – and we denote by λ̄t the
vector of all arrival (or demand) rates. Although theoretically
a time-slot can be defined at one’s will, in practice we
suggest to define a new slot whenever the arrival rates change
considerably. This assumption is aligned with the majority of
monitoring systems. Indeed, in most of the existing systems as
Kubernetes [5], a new orchestrating decision is taken whenever
a change in the applications arrival rates is detected and a
potential inconsistency between the required and guaranteed
requirements is detected. We remark that demand rates λ at

future slots t′ > t are not know, but can only be predicted; a
discussion on models for IoT data traffic is beyond the scope
of this work [10].
Latency. The presence of several active applications on the
same fog servers impacts the processing time of each of them.
The processing delay dti,s experienced by a tagged application
i on a server s can be modelled as a convex function of
the application’s demand rate, and of the the number of
applications active on the server and processing capacity of
the server:

dti,s(x̄
t
s, λ

t+1
i) =

(
cPi∑N

i=1 x
t+1
i,s

− λti∑S
s=0 x

t
i,s

)−1
(1)

By (1) over-exploiting fog servers by increasing container
replicas reduces the CPU share each receives thus increasing
the processing delay. Conversely, a uniform load balancing
policy can split the demand rate per application evenly across
all servers on which the application is active. On the other
hand, in cloud there is no computational bottleneck, so that
a container of application i activated in cloud has constant
processing time di0. However, we assume a fixed latency ∆0

between the fog cluster and cloud.
Cache churn rate. The cache storage occupation can not
exceed the cache capacity CDs , i.e.,

∑N
i=1 y

t
i,s c

D
i ≤ CDs ,

for each fog server s. Also, due to limited download speed,
we fix an upper bound ε on how much cache content can
vary between consecutive slots: a fair resource share imposes
|yt+1
i,s − yti,s| ≤ ε for each application i and server s.

Orchestration constraints. We assume application i to toler-
ate a maximum processing delay of δi seconds. When active
in fog, this is described by constraint dti,s(x̄

t
s, λ

t
i)x

t
i,s ≤ δi for

any fog server s. In cloud, the fog-to-cloud latency is factored
in as (di0 + ∆0)xti,0 ≤ δi.

Furthermore, CPU and memory occupation of all containers
activated on a given server s can not exceed the total CPU and
memory available at time slot t, i.e.,

∑N
i=1 x

t
i,s c

r
i ≤ Crs for

every request r ∈ {P,M}.
Finally, every application i for which λti > 0 must be served

at time slot t, so that at least one active container is needed,
i.e.,

∑S
s=0 x

t
i,s ≥ 1.

Objective. In order to minimizing the financial cost of running
the overall infrastructure, we aim at minimizing the number
of containers

∑N
i=1 x

t+1
i,0 deployed in cloud over an horizon

of T slots. We do so by jointly controlling caching and acti-
vation of containers, while fulfilling caching and orchestration
constraints, per server and per application as described above.

III. SOLUTION: ONE-STEP AHEAD PROGRAMMING

Our goal is to devise an orchestration policy that jointly
decides the caching and the activation of containers for the
requested applications with the aim of minimizing the number
of containers deployed in the cloud. This allows to eventually
minimize the overall deployment cost.

The frequency at which new requests arrive and (already
cached) containers are activated is much higher than the
frequency at which new containers can be downloaded and
cached at fog servers [6]. For this reason, we decide to articu-
late the decisions on caching and activation in hierarchical and

Fig. 1. Two-stage optimization and its one-step ahead (OSA) solution

sequential fashion. Caching decision are planned in advance
in stage 1, to anticipate the scenario that may materialize in
stage 2 once the container download is terminated. Finally, at
stage 2, new containers are cached in the servers and they are
activated in accordance with the actual requests.

We remark that the two stages are interleaved in time:
at time t, the caching decisions are made (stage 1), while
containers are activated given the caching decisions taken at
previous time t− 1 and materialized at time t (stage 2).

Technically speaking, our solution approach follows the
classic paradigm of two-stage stochastic programming [11]
and its natural one-step ahead (OSA) associated solution,
illustrated in Figure 1 and described formally below. We will
describe the two stages in backward fashion, since stage 1
relies on the solution of the problem solved by stage 2.
OSA - Stage 2: Activation of cached containers. By time
t+ 1, the new arrival rates λ̄t+1 are observed. Moreover, we
assume that stage 1 has already taken place at time step t,
producing caching decision ȳt+1; hence, by time t + 1 new
containers are downloaded accordingly. Then, as the second
stage of our optimization, cached containers are activated
so as to minimize the number of them in cloud, while
fulfilling all the orchestration constraints. The corresponding
mathematical program writes as follows.

Input: Actual arrival rates λ̄t+1, container caching ȳt+1

Output: Container activation x̄t+1(ȳt+1, λ̄t+1)
Compute at time t+ 1:

x̄t+1(ȳt+1, λ̄t+1) = argmin
xt+1

N∑
i=1

xt+1
i,0 := F (2)(xt+1) (OPT2)

subject to:

dt+1
i,s (xt+1

s , λ̄t+1
i,s)xt+1

i,s ≤ δi,
∀i ∈ {1, . . . , N}, ∀s ∈ {1, . . . , S}
(di0 + ∆0)xt+1

i,0 ≤ δi, ∀i ∈ {1, . . . , N}

xt+1
i,s = 0, ∀(i, s) ∈ A(ȳt+1) (2)
S∑

s=0

xt+1
i,s ≥ 1, ∀i : λ̄t+1

i > 0

N∑
i=1

xti,s c
r
i ≤ Cr

s , ∀s ∈ {1, . . . , S},∀r ∈ {P,M}

xt+1
i,s ∈ {0, 1}, ∀i ∈ {1, . . . , N}, ∀s ∈ {1, . . . , S}.

OSA - Stage 1: Container caching. At time t, one has
to devise a caching policy ȳt+1 deciding the percentage1 of

1relative to the most recent container version present in the main repository

container layers to be cached in each server. Future arrival
rates at time t + 1 are unknown and can only be predicted,
hence ȳt+1 is computed by minimizing the expected number
of containers deployed on the cloud at time t + 1. Yet,
for each possible arrival rate scenario λt+1 and for each
caching ȳt+1 one can compute the optimal container activation
x̄t+1(ȳt+1, λt+1) through the analogous version of (OPT2).

Hence, we define the objective function F (1) of the first
stage optimization as the expected value of the objective real-
ized of stage 2, i.e., Efλ [F (2)]. Here, fλ is the predicted arrival
rate distribution at time t+1, i.e., fλ(a) = Pr(λt+1 = a). We
can also account for the fact that more up-to-date containers
will generally provide better performance by introducing an
increasing function R(.) of the number of cached container
layers, which results in the following objective function

F (1)(yt+1, x̄t+1) := Efλ
[
F (2)(x̄t+1)

]
−
∑
i,s

R(yt+1
i,s) (3)

where x̄t+1 := x̄t+1(ȳt+1, λt+1). The optimization problem
solved at stage 1 is described below.

Input: Predicted arrival rates distribution fλ for time t+ 1

Output: Caching policy ȳt+1

Compute at time t:
ȳt+1 = argmin

yt+1

F (1)(yt+1, x̄t+1(yt+1, λt+1)) (OPT1)

subject to:
N∑
i=1

yti,s c
D
i ≤ CD

s , ∀s ∈ {1, . . . , S} (4)

|yt+1
i,s − y

t
i,s| ≤ ε, ∀i ∈ {1, . . . , N}, ∀s ∈ {1, . . . , S} (5)

yt+1
i,s ∈ [0, 1], ∀i ∈ {1, . . . , N}, ∀s ∈ {1, . . . , S}

We highlight that at this stage one optimizes over both
container caching yt+1 and activation x̄t+1(yt+1, λt+1) for
each possible scenario λt+1. However, only caching decisions
ȳt+1 are deployed in the system. In fact, container activation
for time t + 1 is performed only once the true requests
λ̄t+1 materialize at time t + 1, since activation is almost
instantaneous in practice. Hence, at stage 1 the activation
variables x are only auxiliary, as they have the sole purpose
of evaluating the quality of caching.

IV. SOLVING STAGE 1: DERIVATIVE-FREE METHODS

As described above, the caching problem (OPT1) requires
to solve (OPT2) for each possible demand rate scenario λt+1.
This entails two major technical difficulties: i) (OPT2) is com-
putationally hard (being formulated as an Integer Program) and
ii) the objective function F (2) is not in closed-form. Regarding
i), we describe below a simple heuristic for (OPT2). To tackle
ii) we resort to derivative-free optimization techniques, that
only need to sample the value of the function, without needing
to resort to their derivative. The general paradigm we employ
is coordinate-descent [12], which at each iteration selects one
coordinate yi,s, keeps the others fixed, and optimizes function
F (1) over yi,s via a univariate, derivative-free line search
method such as Bayesian Optimization (BO) [13] or Golden
Section Search (GSS) [14].

Algorithm 1: Coordinate-Descent-Caching(CDC)
Input: arrival distribution fλ, ε > 0
Output: Caching decisions ȳt+1

1 ȳ ← ȳt;
2 for k = 1, . . . ,K do
3 (i, s)← coord select(N,S);
4 l← max{yti,s − ε, 0};
5 u← min{yti,s + ε,

CSs −
∑
j 6=i c

S
j yj,s

cSi
};

6 yi,s ← search(F (1)(ȳ, x̄t+1(ȳ, ¯λt+1)), fλ, [l, u], η̄);

7 ȳt+1 ← ȳ;
8 return ȳt+1

We dub this procedure Coordinate-Descent-Caching (CDC)
and we describe it in Algorithm 1. There, K is number of
iterations; coord select and search are the procedures for the
coordinate variable selection and the derivative-free line search
method, respectively. Each time a new coordinate (i, s) is
selected, a lower and an upper bound for yi,s are computed in
lines 4 and 5 to confine the search, respectively. Specifically,
the upper bound u for variable yi,s is the maximum between
the value for the cache churn rate and the residual storage
capacity of server s with all yj,ss, j 6= i, fixed. This allows
CDC to output a feasible solution.

Proposition 1: At each iteration of CDC it holds that
ȳt+1 ∈ Yt+1 :=

{
yt+1 ∈ [0, 1]N×S |(4), (5) hold

}
. Hence, the

caching solution computed by CDC is feasible for (OPT1).
Heuristic for (OPT2). As mentioned, optimizing stage 1
requires to solve the container activation problem (OPT2)
as a sub-routine, for each possible demand rate λt+1. This
clearly calls for a heuristic approach to solve (OPT2) which
is originally formulated as an Integer Program. We propose a
greedy placement algorithm which selects, for each application
i, an admissible set of fog servers where a container can
be activated. Hence, the server with minimum memory and
CPU occupation is chosen. Once this applications-servers
mapping is obtained, if all the applications delay constraints
are met then the mapping is considered as a valid activation.
Otherwise, the applications violating constraint are moved to
the cloud if their fog-to-cloud latency permits. We note that
(OPT2) performs also load balancing by containers replication
among the fog servers whereas our heuristic does not; this will
be studied in future work.
Coordinate Selection and Search methods. The coord select
procedure can have several variants; we choose a method
where coordinates are randomly permuted and selected se-
quentially. Other methods can be envisioned, e.g., coordinate
selection on the basis of the real arrival rates of the previous
time-slot t. In this way, applications with highest arrival rates
in the previous time-slot would be prioritized for the caching
in the fog servers. We leave such variants for future works.

For the derivative-free line search procedure we evaluated
Bayesian Optimization (BO) [13] and Golden Section Search
(GSS) [14]. GSS is a classic dichotomy procedure that samples
the function at two middle points of the current search interval
and then restricts the interval. It returns the global optimum of

TABLE II
APPLICATIONS’ CONTAINERS REQUIREMENTS [15].

Requirement Mean Value Range
CPU 1250 MIPS [500, 2000] MIPS
Memory 1.2 Gbytes [0.5, 2] Gbytes
Storage 3.5 Gbytes [1, 8] Gbytes

a univariate unimodal function, otherwise – which is our case
– it returns a local optimum. The BO method is usually applied
when the utility function is expensive to evaluate because it has
high sample efficiency. Indeed, the term related to the caching
computation (xt+1

i,0 (ȳt+1, λ̄)) is inherently computationally ex-
pensive to evaluate, even by using a heuristic activation as
we do. By inferring the function at unknown points via a
Gaussian Process, BO selects points having high probability
of achieving low cost.
Computational Complexity. The computational complexity
of CDC is mainly dominated by the computation of the
placement function x̄t+1(yt+1, λt+1), the size |fλ| of the
support of fλ (determining the number of possible demand rate
scenarios λt+1), and the search method. The computational
complexity of the greedy heuristic for container activation
is O(NS). Under sequential coordinate selection and with
a fixed number of iterations K, the total complexity is
O(|fλ|KNS log(τ−1)). The logarithmic factor appears due to
the convergence rate of iterative methods such as the Golden
Section Search method [14] where τ is a tolerance parameter.
Hence, remarkably, the total complexity remains polynomial
in the size of the input.

V. NUMERICAL RESULTS

In this section we evaluate our solution in a specific fog
computing scenario where we test our joint caching and
orchestration scheme. Three main goals are in order: (i) select
the best method to perform the proactive caching optimization,
i.e., select the most suitable coordinate descent algorithm using
two candidate search methods, namely Golden Section Search
(GSS) and Bayesian Optimization (BO); (ii) compare our
approach with standard placement algorithms used to drive the
activation step; (iii) demonstrate that our approach outperforms
baseline schemes in terms of cloud deployment cost.
Simulation Settings. In our simulation experiments we con-
sider one input batch of applications to be deployed on a
system composed of one fog region with 3 servers and a cloud.
Resources and applications requests per server are represented
by triples of CPU, memory and storage units. Servers’ ca-
pacity triples are C1 = (15000, 8, 50) and C2 = C3 =
(44000, 16, 60), where CPU is measured in MIPS and memory
in Gbytes. The applications’ requirements per container are
listed in Table II. In our tests, we have assumed different sizes
of the applications’ batch, namely N = 10, 15, 20, 25. The
demand rates and the maximum tolerable processing delay of
each application are generated uniformly at random in [0, 300]
jobs/s and in [5, 6] sec, respectively. Fog-to-cloud latency has
been set to 500 ms, and the cloud processing delay is generated
uniformly at random in [1, 5] sec, for each application.

Fig. 2. Expected cost of GSS and BO derivative-free line-search methods for
N = 25, averaged across 10 instances.

a) b)

Fig. 3. a) Evaluation of placement methods for N = 10; b) Evaluation of
placement methods for N = 15.

Search Methods. In stage 1, the orchestrator computes the
caching policy by the coordinate descent Algorithm 1 (CDC)
described in Section IV. As a sub-routine, CDC computes
the minimum of the objective function F (1) on a line via a
derivative-free method. We hence compared Golden Section
Search (GSS) and Bayesian Optimization (BO) on Gaussian
Processes. Figure 2 shows the expected cost of deployment
achieved by the two methods for N = 25. Each point is
the average of ten instances where the infrastructure is fixed
and the application arrival rates’ distribution changes. We
implemented two variants for the coordinate selection method.
The sequential (SEQ) approach applies each method to each
coordinate of the caching matrix ȳt in sequential manner. The
random (RANDOM) approach selects a random coordinate at
each iteration. The figure highlights the capability of GSS to
obtain a better value of the expected cost with respect to the
BO method. BO is sensitive to input hyper-parameters, and it
is generally no easy task to select the most suitable ones.

Given its better performance, in the next experiments we
adopt GSS as our preferred search algorithm as a sub-routine
in CDC, to solve stage 1.
Container activation algorithms for Stage 2. We now
discuss how to solve the container activation problem (OPT2)
in stage 2. Due to the lack of suitable benchmarks in the
literature, we devised two reasonable baseline heuristics for
the joint caching and orchestration problem. We call Delays-
first and Rates-first our baseline activation algorithms: they
give priority to applications with the lowest delay constraints
and highest demand rates, respectively. These two heuristics
apply both to the activation function xt+1

i,0 (ȳt+1, λ̄) used in
the first stage of our approach, i.e, to cache containers, and
to the activation phase of the second stage; yet, the baseline
heuristics do not perform proactive container replication. The
caching policies are standard proactive edge caching ones as

a) b)

Fig. 4. a) Cost incurred by each caching policy; b) Average number of hits
per fog server.

described later on.
Figure 3 shows the overall performance comparison among

the proposed methods, averaged over 10 instances along with
their 95% confidence interval. We set ε = 0.6 for the cache
churn rate constraint, meaning that at most 60% of cached
containers can be changed at each step. We can observe from
the figure that heuristics are far from the optimal one, which
in turn is attained by our approach (OSA). In fact, prioritizing
containers’ activation on the basis of their delay constraints
would lead to deploying applications with strict constraints
in fog; this will cause an increase of the delay experienced
per application due to CPU sharing on fog servers. Lack of
replication of same containers on different servers increases
the delay as well. Thus, all the remaining applications will be
deployed in cloud, hence incurring a larger cost. A similar
argument applies to the Rates-first heuristics since in that
case applications with higher demand rates will be deployed
together on the fog servers; but this is possible as long as
their delay constraints are satisfied, while other applications
with lower arrival rates must be deployed in cloud.
Caching. The performance gain of our one-step-ahead (OSA)
approach over the two heuristics can be ascribed to its efficient
caching strategy. Hence, we now highlight the key differences
between standard proactive edge caching and our optimized
proactive fog caching. As mentioned, classical caching strate-
gies are used by the two heuristics: (i) the Most-Popular (MP)
which, at each time-slot t, for each server, prioritizes appli-
cations with highest popularity, i.e., applications presenting
the highest arrival rate at the previous time-slot t; (ii) Least
Recently Used (LRU) strategy, evicting the least recently re-
quested containers on each server; (iii) Least Frequently Used
(LFU) strategy which discards the least frequently requested
container since the first time-slot. MP, LRU and LFU track
demand rates and epochs by updating a table of file requests.

We imposed the cache churn rate constraint, with ε = 0.3,
for all caching strategies. Also, each file is cached at the
minimum level required for its activation. LRU, LFU and MP
refer to the plain memory occupation as the reference metric
to evaluate cache space on fog servers. Figure 4 reports on
the performance of each fog caching policy for N = 20.
Data points represent an average over ten instances. For each
instance a distribution over the applications’ demand rates is
generated and, at each time-slot, a vector of arrival rates is cho-
sen with probability defined by the initial distribution. In these
experiments all the vectors of demand rates are sampled with

uniform probability. In Figure 4a) the comparison in terms
of deployment cost is showed. All classical caching policies
have same cost due to the low percentage of discarded files
during the sampled period, whilst approach (OSA) performs
significant savings. Furthermore, Figure 4b) shows the average
number of hits per fog server. The highest rate is achieved
by OSA with respect to baseline approaches, as expected.
These results prove that in a fog environment joint caching
and orchestration of applications is key in order to reduce
expensive costs of deployment in cloud.

VI. CONCLUSIONS

In this paper we have developed a framework to perform
the orchestration of fog applications and minimize their de-
ployment cost. We have proved that proactive caching greatly
improves the performance of fog orchestration by matching
in advance the expected demand rates of applications and the
available resources on fog servers. Actually, fundamental dif-
ferences exist between fog caching and edge caching due to the
multidimensionality of resources per deployed container, the
impact of fog-to-cloud delay and the effect of resource sharing
on fog servers. Our scheme performs a two-stage stochastic
optimization by forecasting the impact of containers’ activa-
tion onto servers capacity and applications computing delays.
Several novel aspects deserve further study to this respect, e.g.,
exploring new lightweight heuristic solutions to approximate
the behaviour of the optimal one.

REFERENCES

[1] M. Chiang and T. Zhang, “Fog and IoT: an overview of research
opportunities,” IEEE IoT Journal, vol. 3, no. 6, pp. 854–864, Dec 2016.

[2] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497 – 1516, 2012.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of things,” in Proc. of ACM MCC, Helsinki, Finland,
August 13–17 2012.

[4] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, “Service popularity-based smart
resources partitioning for fog computing-enabled industrial Internet of
Things,” IEEE Trans. on Industrial Informatics, vol. 14, no. 10, pp. 1–1,
Oct. 2018.

[5] Kubernetes. http://kubernetes.io/.
[6] R.-S. Schmoll, T. Fischer, H. Salah, and F. H. Fitzek, “Comparing and

evaluating application-specific boot times of virtualized instances,” in
2019 IEEE 2nd 5G World Forum (5GWF). IEEE, 2019, pp. 602–606.

[7] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, Aug 2014.

[8] X. Gao, X. Huang, Y. Tang, Z. Shao, and Y. Yang, “Proactive cache
placement with bandit learning in fog-assisted IoT systems,” in Proc. of
IEEE ICC, 2020, pp. 1–6.

[9] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. of IEEE INFOCOM, 04 2016, pp. 1–9.

[10] F. Metzger, T. Hossfeld, A. Bauer, S. Kounev, and P. Heegaard, “Mod-
eling of aggregated IoT traffic and its application to an IoT cloud,”
Proceedings of the IEEE, vol. 107, pp. 679 – 694, 03 2019.

[11] J. R. Birge and F. Louveaux, Introduction to stochastic programming.
Springer Science & Business Media, 2011.

[12] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear
equations in several variables. SIAM, 2000.

[13] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[14] J. Kiefer, “Sequential minimax search for a maximum,” Proceedings of
the American mathematical society, vol. 4, no. 3, pp. 502–506, 1953.

[15] A. Brogi, S. Forti, and A. Ibrahim, “How to best deploy your fog
applications, probably,” in 2017 IEEE 1st International Conference on
Fog and Edge Computing (ICFEC). IEEE, 2017, pp. 105–114.

