Exploring the Adaptability of Word Embeddings to
Log Message Classification

Yusufu Shehu
Moogsoft Ltd
River Reach, 31-35 High Street
Kingston-Upon-Thames, UK
yusufu.shehu@moogsoft.com

Abstract—Minimizing the resolution time of service-impacting
incidents is a fundamental objective of IT operations. Enriching
the meta-data of the events and logs ingested by such systems
using Al-based classifiers greatly increases the efficacy of features
such as root cause analysis and workflow automation, and hence
reduces incident remediation time.

The use of word embeddings in text classification tasks is
well-established, however, the general English corpora used
to generate off-the-shelf embeddings lack the domain-specific
lexicon required for accurate classification of event and log
data. In the current contribution, we investigate multiple ways
in which this deficiency can be addressed. In addition to aug-
menting the training-corpus with a domain-specific lexicon, we
increase the granularity of our embedding using character n-
gram decompositions and sub-word level representations. All
implementations improved classification accuracy over the base
case. Further, we explore the performance of a sequence classifier
with embeddings of varying domain specificity. We observe that
the performance of high-specificity models reduces as the volume
of previously unseen words in the test data increases. We conclude
that for a multi-input use case, and by leveraging sub-word level
information, a high-specificity model can be outperformed by a
model trained on a low-specificity corpus.

I. INTRODUCTION

The primary objective of IT operations is to minimize the
time required to resolve service-impacting incidents. Fault
localization, [[1], [2] is the process of deducing the source of a
failure from a set of indicators and is fundamental to achieving
this objective. In turn, an important enabler of efficient fault
localization is data enrichment, a process whereby inbound
events and log messages are augmented with meta-data that
can further facilitate the remediation process.

Traditionally, configuration management databases have
been the primary source of enrichment data, however, these
systems are costly to create, costly to maintain, and can
quickly become outdated. Al-based text-classification tech-
niques offer a new approach to data enrichment. By analyzing
inbound events and log messages, pre-defined labels from
multiple categories can be automatically assigned to provide
additional indicators for root cause analysis, or task assignment
for example.

State-of-the-art text-classification techniques rely heavily on
concepts such as sequence modelling and word-embeddings.

978-3-903176-32-4 (© 2021 IFIP

Robert Harper
Moogsoft Ltd
River Reach, 31-35 High Street
Kingston-Upon-Thames, UK
rob@moogsoft.com

Word embeddings, [3], [4], [S]] are typically used as an input
to text-classification tasks because they provide semantically
rich representations in low-dimensional feature spaces. They
are operational applications of the distributional hypothesis in
linguistics, which states that semantically similar words occur
in similar contexts. An embedding for a word is a vector of
real-numbers derived from the internal weights of a neural
network that implicitly learns word co-occurrences in a body
of training text. Natural language processing (NLP) tasks have
benefited hugely from these techniques, thanks largely to pre-
trained embeddings learned from general-language corpora
comprising billions of words. In applications that rely upon a
domain-specific lexicon, general-language word embeddings
suffer from a large number of missing representations. Un-
known word vectors offer no useful information and conse-
quently the performance of pre-trained embeddings is reduced
in these cases. The application of NLP techniques to manag-
ing compute and communication infrastructures is one such
scenario.

In previous work [6], we described the process of incremen-
tally enriching word embeddings with domain-specific words
and described the topology of clusters of domain-specific
word vectors as a function of increasing corpus enrichment.
We explore the success of word embedding enrichment for
log message classification and explore multiple approaches to
improve word-level representations for machine learning.

We have two aims in this paper, firstly to explore if
there is a performance benefit for log message classification
by enhancing word-level features. The enhancement can be
produced by using sub-word level representations through
either the feature hashing of character n-grams, increasing
the number of domain-specific word vectors in the word
embedding, or combining the word embedding with character-
level encodings. Secondly, we aim to explore the impact
of varying the training corpus domain-specificity on the log
message classification performance accuracy. We use three
ablation experiments to determine how the varying levels of
domain-specific word-level information impact the robustness
of the internal weights learned from the word and character-
level inputs.

This paper begins in Section [l by outlining the previous
work and recent developments in word embeddings and text-

based feature extraction for sequence classification. Section
describes the multi-modal sequence classifier model used in
the analysis. We present the first analysis deriving alternatives
to word embeddings together with the results in Section
The second analysis, investigating word embedding coverage
and classifier performance is presented in Section|[V] We make
our concluding points and present the next steps for further
research in Section [VII

II. PREVIOUS WORK

To overcome the problem of missing domain-specific words
in embeddings, steps have been made to fine-tune pre-trained
embeddings. A word annotation embedding algorithm was
proposed [7]] to augment word embeddings of input texts from
specialized domains. The method was evaluated on two cyber-
security text corpora and was effective in learning domain-
specific word embeddings. We explored [6] the fine-tuning of
general English word embeddings with network infrastructure
specific text. We modeled the evolution of specificity in word
vectors by observing clusters of domain-specific words at
incremental stages of word embedding enrichment. Using a
combination of affinity propagation and principal component
analysis, we observe domain-specific words of similar context
group together, and their clusters become increasingly well
separated as the training corpus is enriched incrementally with
domain-specific sequences.

Recent innovations in embedding development have focused
on bi-directionality and the attention mechanism to enhance
learning context from text. Examples of these developments
include ULMFiT [8], BERT [9], and ELMo [10], which
are used for general domain text. BioBERT [11], a domain-
adapted BERT model outperformed the current embedding
state-of-the-art BERT for domain-specific tasks by including
domain-specific documents in the pre-training phase.

There have been recent developments in providing alterna-
tives to common word embeddings. A hash embedding [12],
represents a word by several n-dimensional embedding vectors
and a weight vector, selected by the hashing trick. Hash em-
beddings can efficiently deal with corpora containing millions
of words, and do not require a dictionary before training. These
embeddings demonstrate at least the same performance level
as regular word embeddings across a wide range of tasks.

Leveraging sub-word level information is a powerful so-
lution to unknown words in embeddings. FastText [13] is
an embedding method exploiting sub-word level information.
Representations are learned for character n-grams, and words
represented as the sum of the n-gram vectors. Encoding char-
acter level information reduces the dependency on word-level
features and helps models understand suffixes and prefixes.
This method achieves state-of-the-art performance on word
similarity and analogy tasks. [14] proposed a novel neural
network architecture that automatically combines word em-
beddings and character-level features to derive a concatenated
representation of language data for named entity recognition.

Word

Character Word

Embedding

Feature

Neural Concatenation
Network
Probabilities
EEEEEN For Class
Labels

Fig. 1: Simplified diagram for multi-modal sequence classifier.

III. MODEL DESCRIPTION

Sequences of words have distinct levels of feature granular-
ity that we can incorporate during model training. Log mes-
sages contain high proportions of words that do not commonly
occur in natural language but have distinct arrangements of
characters. For example, IPv4 addresses have a consistent,
internal structure of numerical and special characters (dots).
If we rely solely on word-level features, the model is unable
to exploit these character-level morphologies. We encode word
syntax and semantics using a word embedding, character-level
syntax using a character embedding, and one-hot vectors to
encode character contents in a word. We use an adaptation of
the hybrid bidirectional LSTM and CNN architecture, which
has been previously used for named entity recognition [14].
This model takes the three representations as input, with a
convolution operation performed on the character embedding
before concatenation. After feature concatenation, the vector
is fed into a bidirectional LSTM and a dense layer to produce
probabilities across the training labels. We show a simplified
diagram of the information flow through the model from input
sequence to class label probabilities in Figure

IV. ANALYSIS I: ALTERNATIVES TO WORD EMBEDDINGS

The model defined in Section |III] is trained on log mes-
sages, which contain words not typically found in generic
English word embeddings. Furthermore, the log messages are
generally sparse, with domain and environment-specific words
occurring only a small number of times. An example of a
log message is shown in Figure 2] we can see the important
words for classification are mostly domain specific: router2,
Ul DBASE LOGIN_EVENT. The other words are identifiers
and time-specific words (date, time) whose variations do not
introduce any further information to learn from, e.g., “joe”.
A general word embedding will have low representation for
already feature sparse sequences.

user@host> show log messages May 20 19:30:25 router2 mgd[8097]:
UI_DBASE_LOGIN_EVENT: User ’joe’ entering configuration mode.

Fig. 2: Example of a log message.

TABLE I: Model performance, word embedding included.

Label Prec. | Rec. | F1 Accuracy (%)
Application | 0.97 0.85 | 0.90

Network 1.00 0.99 | 0.99

oS 0.97 0.94 | 0.96 0.98
Server 0.99 1.00 0.99 ’
Storage 0.97 093 | 0.95

Unknown 0.87 0.98 | 0.92

TABLE II: Model performance, word embedding not included.

Label Prec. | Rec. | F1 Accuracy (%)
Application | 0.83 0.68 | 0.75

Network 0.99 0.96 | 0.98

oS 0.78 0.73 | 0.75 0.89
Server 0.97 0.87 0.92 ’
Storage 0.60 049 | 0.54

Unknown 0.53 0.90 | 0.67

In this analysis, we ablate the word embedding from the
model and explore embedding alternatives that minimize or
remove the occurrences of unknown words. We postulate that
the observations from this analysis will give us insight into
how useful general word embeddings can be, the impact of
enriching them with domain-specific words, and the availabil-
ity and usefulness of word embedding alternatives.

A. Performance with Word Embedding Removed

The ablation study involves removing the word embedding
from the classifier while keeping the character embedding and
word characteristics. The labels used categorize six types of
activity commonly logged by IT infrastructure. We compared
the original model’s log message classification performance
with the ablated model, as shown in Table [and Table
respectively. The ablation of the word embedding results in
a drop in accuracy from 0.98 (Table [) to 0.89 (Table [I).
This 9% drop in performance is significant and indicates the
importance of having a word-level feature for the classifier to
learn optimally.

B. Performance with Alternative Word-level Representations

Exploring alternative word-level representations can mini-
mize or avoid unknown words during training, which can im-
prove model performance. We define and test two approaches,
a hash embedding method and a composite n-gram vector
method. The hash embedding prescription is described as
follows. For every word, decompose the word into a set of
character n-grams. We define a vector for each character n-
gram get hash(n — gram) mod k where k is the size of the
collection of character n-grams. The result is a look-up index
with the key being the character n-gram and value is the hash
value.

The composite n-gram vector method involves summing the
one-hot vectors with values indexed by character n-gram hash
values. For every word in a tokenized log message, we obtain
a set of character n-grams. We obtain the hash as a sequence of
bytes for each character n-gram and calculate the modulo with
hash size to get the hash index. Each character n-gram has a
one-hot vector, and the hash index specifies which element to

TABLE III: Model performance for different word features.

Model Accuracy (%)
Word Embedding 97.7
Hash Embedding 98.3
Shingle Hash Trick 96.0

set to 1. Consequently, each word has a vector, which is the
sum of the character n-gram one-hot vectors. For this analysis,
we set n to equal 3.

1) Results: Referring to Table we find that using the
hash embedding as word-level input to the classifier produces
better performance than the original word embedding.

The hash embedding approach introduces a shared pool
of embedding vectors for n-grams selected by the hashing
trick. By providing n-gram vectors, the feature granularity
during training increases, and the model has exposure to
more representations of words in the training corpora. The
vectors extracted also belong to denser feature space (lower di-
mensionality) compared to regular word embeddings. Sparser
features are generally more challenging to learn. However,
with the hash embedding, there can still be instances of
unknown n-grams.

The composite n-gram method can eliminate the occurrence
of unknown words or character n-grams. During the analysis,
we observed that the classification performance increased as
the length of the composite n-gram vectors increased. While
hash-based techniques minimize or avoid unknown words, the
resulting features are based more on lexical similarity than
semantic. In contrast, common word embeddings are based on
semantic and syntactic similarity. Encoding of semantic and
syntactic information generally produces richer feature sets to
learn from, enabling models to be more adaptable and maintain
high performance for long sequences [10].

V. ANALYSIS II: VARYING WORD EMBEDDING COVERAGE
A. Enriching Word Embeddings with Domain-Specific Words

In this analysis, we define the metric coverage to quantify
unknown words concerning the word embedding. Coverage,
(Covglobal), is defined as:

Covgiobal = 100 5 —X

(Wi +wy)’ M
where wy, is the number of known words and w,, is the number
of unknown words. Note that the word counts used are not
the number of unique words but a count across all training
data. We use global coverage to understand how many domain-
specific words, in all contexts, that the model is exposed to
during training. Multiple instances of domain-specific words
will improve the learning of semantics by the model; by
counting unique words, we ignore the importance of multiple
contexts. However, we recognize counting domain-specific
words as they occur once and only once can give a simplified
representation of the specificity of a word embedding. We
define Coviog as the coverage of a given log message during
testing. Coviog is dependent on Covglopal as the embedding
used during training is used to count how many known and

TABLE IV: Model performance with varying embedding
coverage.

Corpus Coverage (%) | Accuracy (%)
GloVe 54.7 97.7
WT-103 41.4 96.8
WT-103 + Stack-Ex 54.5 97.3
WT-103 + Stack-Ex + Cis 54.6 98.2
WT-103 + Stack-Ex + Cis + Service Environment Logs | 89.6 98.7

unknown words there are in an individual log message during
testing. These definitions reflect the possibility of different
coverage values at training and testing.

1) Dataset Description: We use the same datasets con-
sidered in [6]: Wikitext-103 (WT-103) [15], Stack Exchange
(Stack-Ex) [16], and Cisco (Cis) [17] to demonstrate an
increasing gradient of lexicon specificity. We consider WT-103
as a general English embedding, Stack-Ex as a general infor-
mation technology embedding, and Cis as a highly specific in-
formation technology embedding. Each dataset is a truncation
of an original corpus to 10,000,000 words to represent most
words available while minimizing computing resources during
experimentation. We also include the GloVe 6B-word embed-
ding as a second example of a general English embedding
that is widely used for NLP tasks. To maximize specificity,
we created a corpus consisting of log messages extracted
from multiple computing service environments. We refer to
this corpus as Service Environment Logs. The corpus was
built using log messages from six distinct environments giving
approximately 1,200,000 additional domain-specific words.
We combine the considered corpora to increase the number
of domain-specific words available in the word embedding.

2) Results: We refer to Table [[V|to compare the coverage
and accuracy of the models trained with the two general
English corpora, GloVe and WT-103. We observe that GloVe
has the highest coverage with 54.7%. Despite the difference in
coverage of 13.3% between GloVe and WT-103, the difference
in accuracy is 0.9%. We observe an incremental improvement
in classification accuracy with increasing coverage, with an
overall accuracy increase of 0.5% between the three corpora
model (WT-103 + Stack-Ex + Cis), and the model trained with
the three corpora plus Service Environment Logs. We state that
the best-case scenario for sequence classification is to pre-train
a word embedding with a corpus containing relevant service
environment language to maximize coverage during training.
However, we observe diminishing returns in classification
accuracy by increasing our coverage from approximately 50%
to 90%. Referring back to Section the model takes sub-
word level information to learn how to classify log messages
correctly. The performance of the model is shared across
all inputs rather than the word embedding exclusively. As
a result, the performance increase with increasing coverage
is attenuated. For a word-embedding only model, we may
observe more linear increases in performance.

B. Varying Coverage with Feature Ablation

The classifier model takes three inputs to classify log
messages: word embedding, character embedding and word

characteristics one-hot vectors. We assess the impact of in-
put feature ablation on classifier performance under different
training coverage, Covglobal, conditions. We have two corpus
configurations that give us two variations of coverage:

o High coverage (Covgobal) - Consisting of WT-103,
Stack-Ex, Cis, and Service Environment Logs give 89%
coverage.

« Low coverage (Covf]global) - Consisting of WTI103 trun-
cated to 10% of its original size with the word frequency

in the corpus increased from >0 to >1000.
The three ablations of the classifier model is:

« No word embedding (no_word_emb).
« No character embedding (no_char_emb).
« No word characteristics (no_word_char).

We aim to assess which ablation of the model is most
affected by the training coverage. We varied the learning rate
to test the hypothesis that different inputs to the model are
learned at different rates either due to the complexity or length
of the feature.

1) Results: We show the overall accuracy for the dif-
ferent model ablations in Fig. [3] Overall, the best model
performance is exhibited with all three inputs. Removing a
high coverage word embedding leads to the most significant
drop in performance, and the variation of learning rate has
minimal impact on the drop. If the word embedding coverage
is low, removing the character embedding produces the most
significant reduction in performance, particularly when the
learning rate is 1x1073. The low coverage during training
has the effect of “turning on” the weights for the character-
level features. The model benefits from learning the character
embedding and word characteristics with a high learning rate
than the word embedding. However, during the analysis, we
observed that the gradient descent was less stable for the
word embedding ablated model. The inclusion of the word
embedding reduces the occurrence of vanishing or exploding
gradients. This observation could be an artifact of the word
vector’s richness as a feature, which could improve the gradi-
ent descent path to local minima.

C. Impact of Varying Coverage on Classifier Performance

In operation, we can encounter log messages in a new
service environment with a lexicon that has not been given
representation by a previously trained embedding. We aim to
quantify how well such a model performs on an unseen corpus
of log messages and whether training a model with a low
level of representation forces the model to rely on character-
level representation during learning. This section explores the
impact on performance for models with varying levels of
Covgobal On the classification of test log messages with varying
levels of Covioe. It is important to reiterate that Covieg is
dependent on Covglopal, €.8., if the training coverage is low,
then the number of words in the test log message for which
the trained model has a representation will be low on average.
We explored three training coverage environments Cov®’

global’
C ov;llobal, and Covzlobal, where the superscript numbers are the

100

80

60

40
] all_inputs

20 4 no_word_emb
I 1no_char_emb

0 I'nno_word_char
- I

L,le—4 H,le—4 L,le-3 Hle3
Cov global Cov global Cov global Cov global

Overall Accuracy (%)

Model Configuration

Fig. 3 Classiﬁcation Performance with Feature Ablation under

CovH and Covk conditions.

global global

training coverages as percentages. These shorthand descriptors
also refer to the model used for testing. CovgllObal is an
adapted high coverage model, used to represent the condition
where an embedding has been enriched with domain-specific
words but has low coverage for an unseen dataset. To create
this, we excluded from the training dataset the single most
populous service environment in terms of log message volume.
However, we kept the log messages belonging to the excluded
environment in the test dataset. By doing this, we ensure the
model is still trained with an embedding that contains a broad
range of domain-specific language but without removing any
of the language unique to that environment.

This exclusion dropped the Covggpar from 89% to 71%,
which we still consider to be high but increased the number
for low coverage log messages during testing to a suitable level
for analysis. We counted the number of correct and incorrect
predictions for each description sequence and labeled each se-
quence by their Covog value. There are five ranges of coverage
for the log messages during testing, which are considered in
Table [V] The Zero to Low bins are defined shorthand by as
Cov"E and Medium to High are with Cov{(‘)’{g‘H , as shown in
Table

We define four coverage environments, which are each a
combination of one training and one testing coverage environ-
ment. This is shown in Fig.[d] The 89% coverage model is used
in the top-right quadrant of Fig. [as this model has both high
training coverage and high coverage on the test log messages.
The 71% coverage model is used in the bottom-right quadrant
as this model has high training coverage and low coverage

TABLE V: Ranges of test coverage from 0 to 100%.

Shorthand

Coverage Range (%) | Coverage Range Label

Cnvh,g ==0 Zero
0 < Covg < 10 Very Low Covmg
10 < Covppg < 33.3 Low

33.3 < Covieg < 66.6
66.6 < Covigg < 100

Medium
High C ovlﬁ’; H

COVL[g%)g]ubal
CovM-Hy,,

COVH(B"%)gIobal
CovM-Hy,,

COVL[g%)g]ubal
Covi-ly,,

CovH1 %)y
Covi-ly,,

Log Message Coverage at Test

Global Coverage on Training Data

Fig. 4: Quadrant defining the four coverage conditions ex-
plored for classification performance analysis.

on the test log messages. The 9% coverage model is used in
both the bottom-left and top-left quadrants as this model has
low training coverage but has medium to high coverage on a
sufficient number of the test log messages.

For this part of the analysis, we kept the learning rate fixed
at 1x107*, as we have demonstrated the impact of learning
rate variation on each feature in Section [V-B] A learning rate
of 1x10~* favors the word embedding, which is the most
important input to the model.

1) Results: Referring to Table [VI, we observe that for the
C ng]obal model, the test coverage is significantly reduced, with
no log messages classified in the High bin. Most of the correct
predictions are made on low Covi,, sequences, including those
with O coverage, which reinforces the need for the character
embedding and word characteristics input during prediction.
With both high global coverage models Cov® elobal and Cov’] alobal’
we observe significantly large statistics in the Medium to Hzgh
bins. Based on the ablation experiments in Section [V-B] we
postulate that the character embedding and word characteris-
tics weights are “tuned down”, with most of the classification
performance driven by the word embedding. Comparing the
Cov!l. . with Cov® Slopa» W see the Cov;lloba] model produces
significantly more statistics (the sum of both correct and
incorrect classifications) to assess performance in the low test
coverage region than the Cov®’ — model, e.g., two orders

lobal
of magnitude greater in the Lgow bin. The Covglobal model
correctly classifies the majority of low Covieg sequences,
particularly in the Low bin. The Cov’} alobal model correctly
classifies almost all of the alerts in the Zero bin. Comparing the

Cov!! . and Cov), . models, we observe the Covgllobal model

global g]obal
has fewer statistics in C ovO gL slobal’ but has
71

sufficient statistics to make valid comparisons. The Covglobal

coverage model has similar performance to the Cov? elobal model
but is less consistent in classifying sequences in the Very Low
bin. We expect this, as the Covgloba1 model has its character
embedding and word characteristic weights “tuned up”, and

region than the Cov’

TABLE VI: Comparison of model performance with different
pre-trained word embeddings.

Covglobal () | Covieg (%) | Incorrect Classification | Correct Classification
Zero 7007 20983
Very Low 8162 97857
9 Low 12490 81924
Medium 87 736
High 0 0
Zero 14 208
Very Low 166 331
71 Low 185 3595
Medium 2764 56512
High 4405 161066
Zero 1 23
Very Low 0 0
89 Low 10 29
Medium 201 4238
High 2870 221874

so will be more consistent in performance when word-level
information (coverage) is low in the test data. The Cov]}

model is more consistent in the Very Low bin than the Covglobal
model, getting only 5% of the sequences incorrectly labeled
compared to 15%, although there are comparatively lower
statistics. This result highlights that the C(Jv;]lO Lo Model can
make use of low to medium coverage and consistently classify.

Overall, the results indicate that using a low training cov-
erage forces the model to use character-level information to
correctly classify log messages. A low coverage model can
be more adaptable to unseen service environments. It does
not rely heavily on the domain-specific word-level information
encountered during training, which is lost during testing on a
new corpus of logs.

VI. CONCLUSIONS

This paper explored several methods of improving the
application of word embeddings for domain-specific sequence
classification using a multi-input neural network. We conclude
there are alternatives to word embeddings, achieving com-
parable performance, either increasing the granularity of the
key-value extraction or replacing it using a hash-trick gener-
ation of vectors. However, these embedding alternatives rely
more on lexical than semantic similarity. As such, there is a
compromise between avoiding unknown words and extracting
features that encode context. For domain-specific log message
classification, if there is a training corpus enriched with a
significant amount of domain-specific text, enrichment is the
optimal approach.

We introduced increasing levels of specificity to our training
corpora and quantified this with the coverage metric. Increas-
ing the coverage beyond 50% does improve performance, but
with diminishing returns. Fine-tuning with a corpus unique to
a specific user can yield some benefit but could be marginal
if the embedding already has a decent level of specificity.

We quantify a multi-input model’s behavior by construct-
ing training and testing environments with varying domain-
specificity or coverage levels. We conclude that a low coverage
environment model is less reliant on word-level information
and is more consistent in correctly classifying log messages
containing unknown words. A model trained in a high cov-
erage environment relies more on word-level information and

so will have consistently high performance on log messages
with a high proportion of previously seen words. However,
in a low coverage test environment, this model will be less
consistent in classifying low coverage alerts than the low
training coverage model. From these conclusions, we can train
a generic model with an embedding enriched with as much
domain-specific language as available at the time of training
to produce good results across previously seen and newly
introduced service environments. We can train a specific model
trained with an embedding that includes language relevant to
a particular set of service environments. The latter model can
serve as a “worst-case scenario” model. It has some level of
domain-specificity but will inevitably have low coverage for
unseen service environments. It can leverage the character-
level learning to classify with greater confidence.

We aim to investigate the state-of-the-art deep bidirectional
embeddings and their efficacy for log message classification.
We postulate that we can benefit from additional context when
there is overlap in log messages and label definitions. We
aim to test the “worst-case scenario” model on more unique
service environments and gain a broader understanding of its
adaptability to bespoke, unseen log messages.

REFERENCES

[1] M. L Steinder and A. S. Sethi, “A survey of fault localization techniques
in computer networks,” Sci. Comput. Program., 2004.

[2] A. Dusia and A. S. Sethi, “Recent advances in fault Localization in
computer networks,” JEEE Communications Surveys & Tutorials, 2016.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” 2003.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[5] H. Schwenk, “Continuous space language models,” pp. 492-518, 2007.

[6] Y. Shehu and R. Harper, “Towards Improved Fault Localization using
Transfer Learning and Language Modeling,” IEEE/IFIP Network Oper-
ations and Management Symposium, 2020.

[71 A. Roy, Y. Park, and S. Pan, “Learning domain-specific word embed-
dings from sparse cybersecurity texts,” 2017.

[8] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” 2018.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” 2019.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,

and L. Zettlemoyer, “Deep contextualized word representations,” 2018.

[11] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang,

“Biobert: a pre-trained biomedical language representation model for

biomedical text mining,” Bioinformatics, Sep 2019. [Online]. Available:

http://dx.doi.org/10.1093/bioinformatics/btz682

D. Svenstrup, J. M. Hansen, and O. Winther, “Hash Embeddings for

Efficient Word Representations,” NIPS 2017, 2017.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word

vectors with subword information,” 2017.

[14] J. P. C. Chiu and E. Nichols, “Named entity recognition with bidirec-

tional Istm-cnns,” 2016.

S. Merity et al., “Pointer Sentinel Mixture Models,” Int. Conf. on

Learning Representations, 2016.

“Stack Exchange XML Data Resource,” 2019. [Online]. Available:

https://ia600107.us.archive.org/27/items/stackexchange/

Cisco, “Cisco I0OS XR System Error Messages Reference Guide.”

[Online]. Available: https://www.cisco.com/c/en/us/td/docs/ios_xr_sw/

error/message/ios- xr-sem- guide.html

[10]

[12]

[13]

[15]
[16]

(17]

http://dx.doi.org/10.1093/bioinformatics/btz682
https://ia600107.us.archive.org/27/items/stackexchange/
https://www.cisco.com/c/en/us/td/docs/ios_xr_sw/error/message/ios-xr-sem-guide.html
https://www.cisco.com/c/en/us/td/docs/ios_xr_sw/error/message/ios-xr-sem-guide.html

