Predicting cloud-native application failures based on
monitoring data of cloud infrastructure

Laszlo Toka
MTA-BME Network Softwarization Research Group
Budapest University of Technology and Economics
Budapest, Hungary
toka.laszlo@vik.bme.hu

Abstract—The quality of service provided by cloud-deployed
online applications is often affected by faults in the underlying
cloud platform and infrastructure. In order to discover the cause
and effect at application failures, a cloud monitoring system
must be in place. The sheer amount of the produced monitoring
data calls for smart and automatic handling in order to find
the patterns that can be used for fault management. In this
paper we present an open source, cloud-native, lightweight cloud
monitoring system, and a data analytics pipeline that efficiently
processes the gathered data and is able to discover useful
inference between infrastructure-, and application-level metrics.
We apply time series clustering steps within the pipeline to
compress the collected data for fast and lightweight data mining.
We show the capabilities of our proposed system in a reactive and
a proactive use case. The results prove that the proposed system
brings precious insights for root-cause analysis and proactive
fault management frameworks of cloud applications.

Index Terms—cloud-native, monitoring, fault management,
artificial intelligence, proactive, Kubernetes

I. INTRODUCTION

The third millennium has brought the rise of cloud com-
puting; online applications are now mostly provisioned in
data centers, either in private, or in public clouds. Along
the transition to cloud, the programming paradigm has also
changed significantly, monolithic, then 2-, or 3-tier application
designs have been swept away by the microservice approach
of continuously developing and rolling out sub-components
of complex applications [1]. The current way of working, i.e.,
design, implementation and operation, of cloud-based appli-
cations enables the application providers to deliver services
without huge capital expenditures into infrastructure, offers
adaptive and fast scaling to the current customer base, and
high reliability and availability, all thanks to the cloud context.

Deploying applications into the cloud has also the benefit
of low operating expenses. The reason behind the effective
operation is the economy of scale of compute infrastructure
in data centers, and the shared resources among many tenants.
The downside of the co-location and the relatively complex
infrastructure though is that fault management has become
even more challenging than before. Top cloud providers offer

The authors are members of HSNLab (hsnlab.hu) and their research project
was funded by Ericsson.

978-3-903176-32-4 © 2021 IFIP

Gergely Dobreff, David Haja, Mark Szalay
Faculty of Electrical Engineering and Informatics
Budapest University of Technology and Economics

Budapest, Hungary

{dobreff.gergely, david.haja, szalaymarkpeter} @edu.bme.hu

comprehensive monitoring services, e.g., Amazon CloudWatch
[2], but in smaller public clouds and particularly in private
clouds, the fault management of the deployed applications
require the monitoring of the infrastructure too.

Fortunately many open source tools are available for this
purpose. The selection of the appropriate monitoring apparatus
is governed by the fault management goal: the set of metrics
and the frequency of data collection determine the capability of
failure detection, and potentially its prediction. Obviously the
larger the monitoring target set and the higher the collection
frequency are, the more resources the monitoring system
takes away from the deployed applications. When there is
no pinpointed goal of the monitoring data collection, it is
best not to limit the scope of the monitored metrics, and
also to allow the highest possible frequency. Then artificial
intelligence (Al)-based methods can be used to tackle the data
set, and to derive observations useful to uncover the causes of,
and/or to completely avoid application failures.

Our contribution is two-fold. First, we present a monitoring
system, built on open source components, to be applied with
Kubernetes [3], the most widely used cloud management plat-
form today. We show that the system is cloud native, and it is
lightweight enough for wide adoption. Second, we propose an
Al pipeline that takes the large amount of collected monitoring
data, and after important steps of compacting the data set for
fast and lightweight operation, highlights inference between
infrastructure and application metrics. This knowledge then
can be used in root-cause analysis of application failures, or
in the proactive management of quality of service.

This paper is organized as follows. In Sec. II we highlight
applied methods and related work in cloud monitoring, then
in Sec. III we present our monitoring solution. We describe
the Al process that we implement on the monitoring data for
fault management in Sec. IV. We show illustrative use cases
in Sec. V to reflect the power of the proposed framework. We
conclude the paper in Sec. VL.

II. RELATED WORK

In an ordinary cloud monitoring and fault management
system, infrastructure and application descriptive metrics are
continuously recorded, and the values are treated as vari-
ables in correlation and/or regression analysis. [4] presents

a lightweight anomaly detection tool for data centers, which
uses the rigorous correlation of system metrics without the
need for training or complex infrastructure set up. They hy-
pothesize that the infrastructure nodes’ metrics and the virtual
machines where the applications run are strongly correlated
in an anomaly-free system. Their tool detects a node-level
anomaly if the correlation drops below a threshold value. We
argue that such a correlation analysis does not consider the
time dimension of the measured metrics, and finding nonlinear
relationships can be challenging. In [5], [6] the authors use
Canonical Correlation Analysis (CCA) [7]-[9] to model the
correlation between workloads and the metrics of application
performance to detect anomalies by discovering the abrupt
change of the correlation coefficients. The advantage CCA
brings compared to a regular correlation analysis is the impact
weight calculation, however, CCA still does not consider the
measured metrics’ time dimension. In the anomaly detection
system designed by Farshchi et al. [10], [11], the authors
set the goal to find correlation between an application’s logs
and its activity’s effect on cloud resources by an approach
that adopts a regression-based analysis technique. In our work
we tackle the opposing direction of cause and effect: we
strive to predict application failures that are due to some
anomalies in the cloud infrastructure, possibly caused by other
applications running in the platform. The study in [12] states
that correlation-based methods are although widely used for
detecting root causes of failures in large-scale networks, they
often contain spurious correlations, which buries the truly
important information. To tackle this issue, the authors propose
a method combining a graph-based causal inference algorithm
and a pruning method based on domain knowledge.

Time Lagged Cross Correlation (TLCC) [13] is an ap-
plicable method to identify the leader-follower relationship,
calculate the correlation value of two time-series, and find
the delay between them. Another similar technique, Dynamic
Time Warping (DTW) [14] calculates the distance between
two time-series, which may have different lengths. By DTW
one might expose the delays between two metrics’ time-series,
measure how close the two metrics are to each other, and clus-
ter them according to their behavioral pattern. Consequently,
DTW is a suitable method to detect how an infrastructure
failure affects the application metrics in time.

Many research works have focused on monitoring enterprise
infrastructure systems and diagnosing their effects on the
applications’ health. It is often assumed that the KPI (Key
Performance Indicator) data of the examined systems are
available. Munawar and Ward [15] argue that in practice,
collecting such data is typically too expensive since it comes at
the cost of reduced system efficiency. To avoid this complexity,
they propose adaptive monitoring, i.e., their solution identifies
relationships in the monitored data, characterizes the normal
operation, and in the case of failure, it identifies the areas
that need to be monitored in more detail. However, not just
monitored KPIs, but network log messages can be valuable
and useful information to detect unexpected or anomalous
behavior. Kobayashi et al. [16] argue that it is challenging

to extract pinpoint system failures and identify their causes
from the extremely huge amount of system log data of a
distributed network. Thus, they propose a methodology relying
on causal inference which processes the network syslog data
and significantly reduces the number of pseudo correlated
events compared with the traditional methods.

Authors of [17] introduce the concept of functional con-
nectivity as an alternative approach to monitoring events
resulting from the interaction of various services operating on
complex, heterogeneous and evolving networks. They present
a novel inference approach whereby two nodes are defined
as forming a functional edge if they emit substantially more
coincident or short-lagged events than would be expected if
they were statistically independent. The output of their method
is an undirected weighted graph modeling the strength of the
statistical dependencies between the nodes.

In [18] the authors claim that analysis of the runtime
dependencies among infrastructure, platform, and application
layers of the cloud software stack is essential to performing
cloud resource management, detecting anomalous behavior
of cloud applications, and meeting customer Service Level
Agreements (SLAs). However, due to the non-linear nature
of microservices interactions, aberrant data measurements and
lack of domain knowledge, finding dependencies among the
data is challenging. They propose the use of Long-Short Term
Memory (LSTM) recurrent neural networks, which excel in
capturing temporal relationships in multi-variate time series
data and show resiliency to noisy pattern representations.
They consider three use-cases of their proposed technique:
finding the strongest performance predictors, discovering
lagged/temporal dependencies, and improving the accuracy of
forecasting for a given metric.

In this paper, we strive to predict application failures -
from non-stop application and infrastructure KPIs monitoring
- that are possibly caused by cloud infrastructure anomalies.
Our proposed method considers the time dimension of the
measure metrics (applies DTW), detects linear and nonlinear
relationships, operates with low system footprint and uses
classical statistical methods to discover inference between
infrastructure-, and application-level metrics.

III. CLOUD-NATIVE MONITORING SYSTEM

In this section we present our lightweight, cloud-native
monitoring system for Kubernetes. Our proposed solution is
able to collect and store sufficient amount of data from a Ku-
bernetes cluster used for advanced analysis in order to detect
different anomalies that can occur in cloud applications. This
monitoring system is capable of collecting tens of thousands of
infrastructure and application KPIs without consuming large
amounts of extra resources.

A. Goals and requirements

The goal of our solution is to correlate infrastructure mon-
itoring data with application failures. To this end, we set up
an advanced analytics pipeline that collects data, automati-
cally analyses inference between infrastructure and application

monitoring data and proposes actions based on the analysis.
To be successful in performing such an advanced analysis,
our system must monitor node metrics, like generic Linux
properties, e.g., CPU, memory, I/O, logs, daemons, etc., and
Kubernetes-related status properties and events.

Here are the requirements that our proposed solution must
fulfill. First, we wanted to keep the monitoring system as
lightweight as possible. It is important for such monitoring
solutions to prevent consuming the available cloud resources
from other applications. It is also expected from the monitoring
ecosystem to be cloud-native. Regarding this latter, the compo-
nents should have the following properties: i) easy deployment,
e.g., with Helm charts [19]; ii) scalability: monitor the dynami-
cally changing number of application instances and nodes with
adaptive apparatus; iii) resiliency: both for the collected data
and the monitoring system components. Fully compatible with
Kubernetes, we selected CNCF [20] compliant tools.

B. System components

Our monitoring solution is a 4-tier system with the fol-
lowing class of components: exporters, collectors, database,
visualization. Key parts are shown in Fig. 1.

Prometheus
netdoto g

y 111
@ o) (o)w)

Netdata Node
children exporter (((@

children exporter
@ Zookeeper
kubelet o
Node Node

& problem \
P detector Elastsearch Controller
manager

detector eted
@ @ LY)
-proxy
\ apt sched
Master

Grafana

JE E—

O

Kube-state-metrics

dmesg_exporter
\ dmesg_exporter / /
" aexportey))N\ o

Nodes Cordoned Node

Fig. 1. Architecture of monitoring system

Based on our findings of the capabilities of open source
monitoring tools, we learned that at least two collectors are
needed to cover all required metrics. Therefore, respecting
CNCF-compliance, we chose Netdata [21] and Prometheus
[22] as our data collectors. Netdata is an open source mon-
itoring tool that is able to dynamically monitor thousands
of metrics and turn monitoring data into live visualizations.
In our setup we used Netdata with its streaming feature:
Netdata instantiated children agents on each node and one
parent agent per cluster. Each child is running as a DaemonSet
and pushes its data to the Netdata parent instance, which
is then collected by our Prometheus instance. Prometheus
is the mainstream monitoring tool in Kubernetes clusters. It
scrapes standard Kubernetes components through the default
Kubernetes API. Beside the default metrics, with additional
collector extensions, Prometheus can monitor more, both
operating system and Kubernetes related KPIs. We used the

following extensions with Prometheus: i) Node exporter [23];
ii) Dmesg exporter [24]; iii) Node problem detector [25]; iv)
Kube-state-metrics [26].

In our proposed solution we rely on Prometheus’ time series
data storage capability not only because of its efficient store
mechanism, but also because of its advanced query language
and alerting rules. PromQL (Prometheus Query Language) is
the official functional query language of Prometheus. We also
take advantage of its potential during the pre-process phase
(see Sec. IV). We deployed Grafana [27] as our graphical
visualization tool.

C. Fine-tuning the resource footprint vs. data trade-off

We strived to find the balance between the necessary
resource consumption and the amount of collected data.
We have measured the resource footprint of the monitoring
system in our Kubernetes cluster with 3 master nodes and
16 worker nodes for a set of sampling rate settings. The
sampling rate (or scrape interval) vs. resource footprint is
the main trade-off to be addressed in the monitoring system:
the higher rate we apply, the more information on the cluster
status we gain, but the larger the footprint of data collection
is. The CPU and memory consumption of the exporters
(Dmesg-exporter, Kube-state-metrics, Node-problem-detector,
Prometheus-node-exporter, Netdata-child) are around a few
millicores and under 100MB, respectively, and they do not
significantly vary when applying different sampling rates. We
note that the variance of resource consumption of Netdata-
child is higher than the other components’, but it is still
negligible compared to that of the collectors. The computa-
tional resource consumption for both collectors (Netdata and
Prometheus) are decreasing as the scrape interval grows. How-
ever, our monitoring solution is lightweight: the Prometheus
exporters and the Netdata-children, which burden all cluster
nodes, consume little amount of computational resources,
while the collectors consume 0.5 vCPUs and 4GB of memory
altogether at a sampling rate of 15s.

IV. ANALYTICS PIPELINE

Our data analytics pipeline is depicted in Fig. 2, in this
section we describe the most important steps in details.

Infra. KPls
netdata : :}
{ W
§ Preprocess Resample Filter

Infra. & app KPIs

Reducing # of KPIs

Hierarchical

Clustering R

GMM AIC/BIC

)

Min-Max
scale

Derive

App vs Infra. correlation \Top 1%
using DTW

Fig. 2. Data analytics pipeline’s flow chart

Time lagged

cross correlation Anomaly Detection

Alarms

A. Data preparation

After preprocessing the measurements from the two collec-
tors (e.g., unifying naming schemes, handling modifiers), the
time series are resampled. As a result, the timestamp of the
data points in each time series will be uniform, they will have
the same frequency, and the same interval. This is necessary
because the two monitoring systems may not have sampled
the KPIs at exactly the same timestamps. Additionally, we can
set arbitrary sampling frequency. Resampling is performed by
linear interpolation.

Then a filtering is performed to greatly reduce the amount
of data to be processed without losing valuable information.
During this filtering, we discard the measurements that had
zero variance during the measured period.

B. Time series clustering for dimension reduction

In the data analytics process we want to compare application
and infrastructure KPIs. Due to the high number of KPIs
collected, we need to reduce their number in order to reach
an acceptable runtime of the pipeline. The size of KPI sets is
reduced by eliminating redundancy, we use clustering for this
purpose. The KPI set reduction method is performed separately
for application and infrastructure KPIs. The first step in the
KPI set reduction process, as shown in Fig. 2, is a Min-Max
scaling: each time series is mapped to the 0-1 interval. This
is necessary because in the following we are only interested
in the shape of the time series, i.e., their characteristics, but
not in the absolute value of the measurements. After scaling,
these time series become comparable.

As a next step, Hierarchical Agglomerative Clustering is
used to cluster the time series. This algorithm scales well
with the number of KPIs, which makes it efficient for large
number of KPIs. To use this algorithm, we need to utilize a
distance function to describe the similarity of two time series.
The distance between two time series was calculated using
Dynamic Time Warping (DTW). This algorithm examines the
distance between each data point in the time series, taking
into account that there may be time delay between them or
they might be changing at different pace. To cluster the time
series, we need to determine how many clusters we want to
create. There are several algorithms for determining this value,
e.g., Silhouette-score, Elbow-method. The fewer clusters we
choose, the more likely we group two time series that are not
similar. We used the Silhouette-score, which in our experience,
shows well the ideal number of clusters. In our case, we prefer
to create a little bit more clusters, thus KPI set reduction is
less effective, but we lose less information.

The clustering step results in many small clusters and one
large cluster. This large cluster contains all KPIs that are
monotonically increasing, such as KPIs that calculate the time
elapsed since a particular event, or KPIs that aggregate or
count events. There are several similar ones among these KPIs,
but it is not practical to cluster them together. Therefore, the
next step is to separate this larger cluster and break it down
into further smaller clusters using another method. We derive
all time series in the cluster (e.g., with the PromQL function

rate()) so that we can compare them based on their slope. Then
the first derivative of these time series are further clustered
using the Gaussian Mixture Model. Although this algorithm
does not scale well, it is a smaller cluster than the original, so
it does not slow the pipeline. This algorithm has the advantage
over simpler (e.g. K-means) algorithms that clusters can have
more complex shapes. The number of clusters is determined
by the AIC/BIC method.

The result of this second clustering and the result of the
first clustering (except for the largest cluster) are merged. The
time series in each cluster are reduced to one time series by
averaging the data points of the time series, i.e., by calculating
the cluster centers. Our KPI-reducing clustering method takes
into account delays between measurements, and separately
addresses monotonically increasing metrics that often occur
in cloud infrastructure monitoring systems. The only hyperpa-
rameter of the clustering methods, i.e., the number of clusters,
is determined using a heuristic approach, thus the process does
not require the involvement of an expert at this point.

C. Correlation analysis

Next, we seek similar pairs between application and infras-
tructure KPI clusters. To this end, we calculated the distance
between each application and infrastructure cluster pair using
DTW, which allows for a delay between the two time series.
Our ultimate goal is to look for causal cases where a change
in the infrastructure metrics implies a change in an application
KPI, possibly after some delay. After calculating the distance
between each cluster pair, the closest 1% of all pairs were
examined. Among the selected top 1% of discovered simi-
larity cases there are many pairs that move together for an
evident reason, e.g., reflecting the same performance metrics.
Therefore, a domain expert must examine each of the most
promising set of pairs to find the correlation cases that are
of interest, and can drop correlated, but inexplicable ones.
Moreover, clusters provide additional information about which
KPIs describe the same behavior. With this method, the expert
can also test hypotheses by comparing the values obtained.

We calculated a Time-Lagged Cross Correlation between
the found and validated pairs, which is used to determine the
amount of delay between the two KPI clusters and the degree
of correlation between them in the case of this delay. Based on
this knowledge, we can create predicting alerts for application
failures triggered by an anomaly detection system that signals
faults in the infrastructure.

V. USE CASES AND RESULTS

In our measurement scenarios we generated test traffic
to a selected application, i..e., Elasticsearch, and emulated
various infrastructure failures to find correlations between
the behavior of application and infrastructure KPIs. In this
section we present our infrastructure performance deterioration
implementation, the selected application and our results.

A. Data collection during performance deterioration

We emulated four performance deterioration scenarios,
where we consumed or spoiled some of the infrastructure

capabilities. We observed that in the case of deterioration
of certain physical properties, which quality of service KPIs
deteriorate on the application side. The emulated performance
deterioration scenarios consisted of: network latency and
packet loss increase; CPU and memory resource consumption
with an emulated “noisy neighbor”.

The application’s hosting node had 8 CPU cores, 32GB
memory as computational resources. We increased the latency
and packet loss percentage using the fc command. We em-
ulated increasing latency and also packet loss on a particu-
lar network interface on the application’s node, resulting in
degraded performance of all applications on that node. A
noisy neighbor application was also simulated on the same
node as the monitored application. The purpose of this noisy
application was to consume the node’s available CPU and
memory resources. Both the CPU and memory consumption
were realized with the application stress-ng.

We performed measurements with the deterioration of the
previously described infrastructural properties, during which
our monitoring system collected infrastructure and application
data. Each measurement began with a short period of data
collection when the system was operating in “normal” state,
i.e., without any deterioration. This was followed by longer
periods of data collection with deteriorating values of a
given infrastructural property. At the end of the measurement,
another shorter period of data collection followed, in which
case the system returned to its “normal” state.

B. Load generation for the selected application

In order to experience a decrease in application performance
during an infrastructure property deterioration, we generated
load for the chosen application. Elasticsearch [28] is a dis-
tributed, search and analytics engine. We generated tens of
thousands of objects that were submitted to the application
in just a few seconds. Elasticsearch stores and indexes these
objects in its database. During the measurements, after some
time we deleted all the stored objects from Elasticsearch,
then started to submit them again. With this generated load
Elasticsearch performed some internal work, which we could
observe with the monitored application data.

C. Results

In this section we present two cases that were yield by our
monitoring system and analytics pipeline. In order to validate
the real correlations between infrastructure and application
data, we examined whether the discovered correlations existed
in several measurements, so we present the results of 3
experiments for each case.

In the first case, network latency was deteriorated period-
ically. We set the latencies on the node’s network interfaces
to 50ms, 100ms, 250ms, 500ms and let the system run for
5 minutes with each latency value. In the meantime, we
examined whether this error shows in any infrastructure KPI
and whether that infrastructure KPI correlates with an appli-
cation KPI. We present the most promising pair of potentially

correlated KPIs resulting from our data analysis pipeline. From
the infrastructure side, we found two KPIs:

1) ‘scrape_duration_seconds’: Prometheus’ own KPI,
which measures how long it takes to scrape the pod
metrics;

2) ‘netdata.execution_time_of _coredns_time’: reported by
Netdata that tells us how long the execution of the
CoreDNS resolve queries take.

From the application side, we found the following KPI
reported about the search-engine-data pod:

1) ‘http_requests_duration_microseconds’: shows the vari-
ous percentiles of time duration of ElasticSearch queries:
the 99th, 90th and 50th percentiles.

Fig. 3 shows the results of 3 measurements. The values
of KPIs are shown normalized for easier comparison. The
value of infrastructure KPIs (dashed lines) increase with the
value of application KPIs, sometimes a little earlier. However,
it can be observed that the purple dashed line breaks at the
highest latency deterioration and only reappears at the end of
the measurement when the system returns to normal operation:
Netdata was unable to retrieve system metrics due to a timeout,
so it did not report any data. In the meantime, Prometheus
kept reporting the selected metrics. An important lesson can
be drawn from this: it is worth using several monitoring data
collectors in parallel, because by doing so, we have higher
chance to get information about the state of the system during
critical conditions.

In the second case the phenomenon of noisy neighbors was
tested where we consumed the resources under the running
pods. In this scenario we periodically increased the memory
consumption on a cluster node: 15G, 16G, 17G and 18G
for 5 minute periods each. During these tests we observed
that containers shut down due to memory starvation. In each
of the 3 tests we performed, the search-engine-ingest and
the search-engine-master pod shut down simultaneously. On
the infrastructure side we examined the memory failures
reported by other pods. To this end, we examined the ‘con-
tainer_memory_failures_total’ KPI reported by Prometheus.
On the application side we examined the following KPIs:

1) ‘elasticsearch_cluster_health_status’: shows the health
status of each node in the Elasticsearch cluster (not the
Kubernetes cluster). It has 3 colors: red, yellow, green:
if the red status flag is raised, it means that the container
is shut down.

2) ‘elasticsearch_cluster_health_unassigned_shards’:
shows the number of unassigned shards in the
Elasticsearch cluster.

As it can be seen in Fig. 4, in each measurement short
before the Elasticsearch pods shut down, other containers in
the cluster reported memory errors.

In summary, we see in the two cases that our data analysis
method can be used for both reactive and proactive fault
management. In the first case, the results can be used in
a root-cause analysis framework. This solution is reactive
fault management, as we can only obtain information about

10 1.01 — petp_request_duration_ms@q=0

—— http_request_duration_ms@q=0

0.8 4 0.8+ !
N —— http_request_duration_ms@q=0.
0.6 RN 0.64 ~-- scrape_duration_seconds
N | netdata.execution_time_
0.4 0.44 ~77 of coredns.time
02{ K 0.24
0.0 2 0.0 e

00:10:00

00:20:00 00:30:00 00:40:00 00:50:00 01:00:00
Time

00:10:00

.5
9
99

00:20:00 00:30:00 00:40:00 00:50:00 01:00:00

Time

00:30:00 00:40:00 00:50:00 01:00:00

Time

00:10:00 00:20:00

Fig. 3. Latency deterioration measurements

1.0
elasticsearch_cluster_health_status@color=red
0.8 elasticsearch_cluster_health_unassigned_shards
elasticsearch_cluster_health_status@color=red
0.6 elasticsearch_cluster_health_unassigned_shards
___ container_memory_failures_total (pod1)
0.4 container_memory_failures_total (pod2)
—== container_memory_failures_total (pod3)
021l container_memory_failures_total (pod4)
0.0
00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00
Time
1.0 P
elasticsearch_cluster_health_status@color=red H
0.8 elasticsearch_cluster_health_unassigned_shards i
elasticsearch_cluster_health_status@color=red H
0.6 elasticsearch_cluster_health_unassigned_shards !
___ container_memory_failures_total (pod5) !
0.4 container_memory_rss (pod5) I
1
0.2 l‘
1
1
0.0
00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00
Time
1.0 e e
elasticsearch_cluster_health_status@color=red i
0.8 elasticsearch_cluster_health_unassigned_shards H
elasticsearch_cluster_health_status@color=red H
0.6 elasticsearch_cluster_health_unassigned_shards !
container_cpu_cfs_throttled_periods_total (pod2) I
0.4 container_cpu_cfs_throttled_seconds_total (pod2) !
- -~ container_fs_reads_total (pod2)]
0.2 container_fs_writes_total (pod2) ,'
container_memory_failures_total (pod2) !
0.0
00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00
Time

Fig. 4. Memory surge measurements

the error from the examination of the infrastructure KPIs
when it already has a critical impact on the applications.
However, in the second case, by monitoring memory errors
of other containers, we can build a proactive system, in which
the system tells the application pods to be aware that other
containers report errors, thus it will most likely be affected,
too. Then the application can prepare accordingly, e.g., save
its state, before shutting down due to memory starvation.

VI. CONCLUSION

In this paper we presented a low footprint cloud monitor-
ing framework to be deployed in Kubernetes managed data
centers. Our goal was to cover as many infrastructure and
cloud platform-related metrics as possible, while keeping the
resource footprint of the monitoring apparatus low. Hindered
by the large amount of collected data, we turned to machine
learning for discovering patterns of interest: we sought in-
ference between infrastructure-, and application-level metrics
especially in times of distress. To this end we trained Al mod-
els for the most frequent failure events in the cloud: network
issues and noisy neighbors. Via the showcased experiments,
we propose this monitoring system and data analytics pipeline
root-cause analysis frameworks, and for real-time, proactive

failure avoidance of applications, e.g., the learned models can
trigger Prometheus alerts for the application provider.

[1]
[2]
[3]
[4]
[5]

[6]

[7

—

[8]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

(171

(18]

[19]
[20]
(21]
[22]
[23]
[24]
[25]

[26]

[27]
(28]

REFERENCES

D. Haja et al., “Location, Proximity, Affinity — The key factors in FaaS,”
Infocommunications Journal, vol. 12, no. 4, pp. 14-21, 2020.
“Amazon CloudWatch,” https://aws.amazon.com/cloudwatch/.
“Kubernetes,” https://kubernetes.io/.

S. Barbhuiya et al., “A lightweight tool for anomaly detection in cloud
data centres.” in CLOSER, 2015.

T. Wang et al., “Fault detection for cloud computing systems with
correlation analysis,” in IFIP/IEEE IM, 2015.

——, “FD4C: Automatic fault diagnosis framework for web applica-
tions in cloud computing,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 46, no. 1, pp. 61-75, 2015.

H. Hotelling, “Relations between two sets of variates,” in Breakthroughs
in statistics. Springer, 1992, pp. 162-190.

R. P. Bagozzi et al., “Canonical correlation analysis as a special case of
a structural relations model,” Multivariate Behavioral Research, vol. 16,
no. 4, pp. 437-454, 1981.

D. R. Hardoon et al., “Canonical correlation analysis: An overview with
application to learning methods,” Neural computation, vol. 16, no. 12,
pp- 2639-2664, 2004.

M. Farshchi et al., “Experience report: Anomaly detection of cloud
application operations using log and cloud metric correlation analysis,”
in IEEE ISSRE, 2015.

——, “Metric selection and anomaly detection for cloud operations
using log and metric correlation analysis,” Journal of Systems and
Software, vol. 137, pp. 531-549, 2018.

S. Kobayashi et al., “Causal analysis of network logs with layered pro-
tocols and topology knowledge,” in 2019 15th International Conference
on Network and Service Management (CNSM). 1EEE, 2019, pp. 1-9.
C. Shen, “Analysis of detrended time-lagged cross-correlation between
two nonstationary time series,” Physics Letters A, vol. 379, no. 7, pp.
680-687, 2015.

D. J. Berndt et al., “Using dynamic time warping to find patterns in
time series.” in ACM KDD workshop, 1994.

M. A. Munawar et al., “Adaptive monitoring in enterprise software
systems,” SysML, 2006.

S. Kobayashi et al., “Mining causality of network events in log data,”
IEEE Transactions on Network and Service Management, vol. 15, no. 1,
pp. 53-67, 2017.

A. Messager et al., “Inferring functional connectivity from time-series
of events in large scale network deployments,” IEEE Transactions on
Network and Service Management, vol. 16, no. 3, pp. 857-870, 2019.
S. Y. Shah er al., “Dependency analysis of cloud applications for
performance monitoring using recurrent neural networks,” in /EEE Big
Data, 2017.

“Helm: The package manager for Kubernetes,” https://helm.sh/.
“Cloud Native Computing Foundation,” https://www.cncf.io/.
“Netdata,” https://www.netdata.cloud/.

“Prometheus,” https://prometheus.io/.

“Prometheus Node exporter,” https://github.com/prometheus/node_exporter.
“Dmesg exporter,” https://github.com/cirocosta/dmesg_exporter.
“Kubernetes Node-problem-detector,” https://github.com/kubernetes/node-
problem-detector.

“Kubernetes Kube-state-metrics,” https://github.com/kubernetes/kube-
state-metrics.

“Grafana,” https://grafana.com/.

“Elasticsearch,” https://www.elastic.co/elasticsearch/.

