Utilizing Deep Learning for Mobile
Telecommunications Network Management

Balint Gyires-T6th, P4l Varga

Dept. of Telecommunications and Media Informatics
Budapest University of Technology and Economics
2 Magyar Tudésok krt., Budapest, Hungary, H-1117

Email: {toth.b,pvarga} @tmit.bme.hu

Abstract—Traditional network and service management meth-
ods were based on counters, data records, and derived key
indicators, whereas decision were mostly made in a rule-based
manner. Advanced techniques have not yet got into the everyday
life of operators, mostly due to complexity and scalability issues.
Recent progress in computing architectures, however, allows to
re-visit some of these techniques — nowadays, especially artificial
neural networks —, and apply those in the network management.
There are two aims of this paper. First, to briefly describe the
possible network and service management tasks within the mobile
core, where utilizing deep learning techniques can be beneficial.
Secondly, to provide a living example of predicting certain fault-
types based on historical events, and to project further, similar
examples to be executed on the same architecture. The real-life
example presented here aims to predict the occurrence of certain
errors during the VoLTE (Voice over LTE) call establishment
procedure. The methods and techniques presented in this paper
has been validated through live network monitoring data.

I. INTRODUCTION

ETWORK and service management is such an applied
N research domain, where new methods and techniques get
quickly utilized when some instrumentation becomes avail-
able. There are some basic questions keep popping up that
have not yet been completely answered and solved — this
may explain the origin of the word: re-search. The original
question in this domain would be how to manage networks
and services in an optimal way”? The requirements include
continuous and error-free availability, flexibility to satisfy the
users needs, prompt and precise accounting, minimal resource
usage (i.e. operating efficiency), and secure, fraud-free op-
eration. These requirements later got structured by FCAPS
functions: Fault, Configuration, Accounting, Performance, and
Security Management, respectively. Issues raised within these
areas have been tackled by the methods and technologies avail-
able at the given time — e.g., post-mortem with screwdrivers
(then), or predictively with Artificial Neural Networks, ANNs
(nowadays).

Deep Learning (DL) generally utilizes ANNs with many
hidden layers, complex connections and novel algorithms,
thus, these architectures can effectively learn representations.
Furthermore, representation learning is jointly performed with
model training, which often makes the approach more efficient,

978-3-903176-15-7 (© 2019 IFIP

575

Tamas Toéthfalusi
AITIA International Inc.
Telecommunication Division
Budapest, Hungary
Email: tothfalusi @aitia.ai

than other Machine Learning (ML) methods trained with
extracted — and not learned — features. The instrumentation
for their effective application has become available in recent
years, in the form of high-performance GPUs. The other
main ingredient for DL application is the vast amount of
data to ”learn” from. This traditionally gets generated during
network operations, although, the practical access to such data
is another issue, even after the advent of Big Data.

The motivation of this paper is to suggest DL methods as a
possible solution for some re-appearing issues of the network
and service management domain. The paper describes a prac-
tical, real-life example for this, in the area of mobile telco’
network management. Our use-case is predicting future error
occurrence based on statistical features of preceding message
processing delays (also referred to as time differences).

The supervised model is trained on data gathered from a
nationwide network. The training dataset consists of messages
with their time stamps and nodes IDs. The input features
are statistical features of message processing times at certain
nodes and the outputs are the number of occurring errors. The
training set was captured by a live network monitoring system;
and the data for validation and testing are also provided by
the same system, but at a different time-window.

II. APPLICATION AREAS OF DEEP LEARNING IN THE
MANAGEMENT OF THE MOBILE CORE

A. Related Work

Application suggestions for ML as well as DL techniques
in the telecoms field may be categorized into many clusters. A
comprehensive survey on ML for networking is provided by
[1], whereas the authors of [2] present a more specific survey
on mobile and wireless networking. While both touch upon
network management and specifically on fault and security
management, they both miss the mapping with the FCAPS
model [3], which provides a complete coverage of the field in
theory. The authors of [4] structure some of the ML techniques
in the view of FCAPS, hence using the same approach as our
current paper. These, very recent surveys list another dozens
of earlier surveys in the area, making it somewhat superfluous
to overview the domain in here. Still, it is worth categorizing
actual live implementations at the telecommunication domain,
since there are a few application types come to sight.

The first application type is generic, with business-level
view and more focusing of having “Big Data” [5] than using
specific algorithms (such as ANNs). The second type of
applications are targeting network (resource) optimization —
such as optimal distribution of base stations, network nodes,
etc. —, with various ML techniques [6]. The third type of
applications target security areas, mostly zero day attacks with
anomaly detection [7], [8], and other frauds [9]. The fourth
type of application is related to traffic classification [1], for
further usage in improving QoE through resource optimization,
or for the identification of fraudulent traffic. While these
applications have broad representation within the industrial
forums, various other network and service management tasks
that can also gain from utilizing ANNSs, remain less visible.

B. TMN FCAPS functions

While it is a relatively old standard, the so called "logical
model” of the Telecommunications Management Network
(TMN) [3] is not at all obsolete. The elements of the FCAPS
model — summarized by Figure 1 — is able to serve as a generic
guideline aiming for covering various management areas of
current networked services.

C
® ° ¢
siness -

Business \
Management \ "

Service
Management

Network Management F’; >

Element Management

Network Elements

Fig. 1. The TMN FCAPS logical model [3]

Table I suggests further applications of DL in the network
and service management levels, structured by the FCAPS
model. Unlike described by [4], our novel table presented
here suggests prediction, anomaly detection and clustering /
classification tasks, rather than learning techniques.

III. APPLICATION EXAMPLE: PREDICTING ERRORS BASED
ON MESSAGE TRANSFER DELAYS

The application example described in this section serves
network management purposes for the Voice over LTE service.
Call establishment procedures often end up with various reject
codes that may or may not stem from actual network errors.
It takes human expertise to build a knowledge base on the
categorization of these cases related to VoLTE [10]. We
have used this experience to apply supervised learning in the
presented example. The data used in this study was captured
at a nationwide mobile network operator.

For a comprehensive description of the monitoring solution
of the LTE Evolved Packet Core and the IP Multimedia

576

Subsystem (IMS) — that provided the data for our analysis
—, please refer to our previous works [10], [11].

A. Data sources

According to a VoLTE call-setup procedure in the IMS
domain, the initial control message of a Session Initiation
Protocol (SIP) session is the INVITE method [12]. Generally,
this message is the largest in size, because it contains the
Session Description Protocol (SDP) as an embedded part.
The SDP part of the first initial-INVITE contains the most
information about the session preparation phase, since the
caller includes all capabilities about the user data properties.

The initial-INVITE message requires outstanding process-
ing at the IMS node side (e.g., the Session Call Session Control
Function, S-CSCF) to locate the callee’s IMS domain and bind
resources to the new session). Beside the resource allocation
and next-hop location, the given node often must parse the SIP
content or even the embedded XML or SDP protocol content,
as well. Altogether the processing time could get even 60-80
ms at specific nodes (e.g., Application Server, S-CSCF), which
is a significant network delay during a call-setup procedure. To
sum up the delays per node, it can often reach the magnitude
of several hundreds of milliseconds. That is the reason why
SIP protocol defines provisional response messages to inform
the nodes that the call-setup is under processing.

Due to lack of resources, the control messages can suffer
from congestion, which may increase the processing time and
start a domino effect. The increased network delay may result
packet retransmission events (i.e., further load), or may result
error responses to a call setup request. One of the management
targets here can be to predict such cases and intervene when
(or before) the first dominoes start to fall.

Since SIP INVITE method is the most crucial in the call-
setup sequence, we merely focused on it in our methodology.

The typical monitoring points for tracking SIP protocol
messages are within the IMS domain: the ingress and egress
ports of the Call-Session Control Function and Application
Servers. In order to have a comprehensive analysis, other
IMS entry points should be also monitored (e.g. Multi-service
Access Node - MSAN, Session Border Control - SBC, or other
gateway and border control functions of the operator).

Since the IMS domain has a distributed architecture and the
nodes often come from different manufacturers, some of the
SIP message fields are often changed during the processing
and forwarding phase. To follow the complex call-setup mes-
sage sequence hop-by-hop, we need extra information about
the field contents’ transformation. In our previous work [11]
we investigated various use-cases and their key parameters for
cross-correlation.

Based on the distributed mobile telecommunications net-
work monitoring solution at a nationwide operator, we cap-
tured a 24 hour sample of SIP traffic and analyzed it in
detail. Because the current system was not designed for ML
purposes, data exportation is very slow. Thus, the current work
is intended to be a proof of concept for future developments.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions

TABLE I
DEEP LEARNING APPLICATION EXAMPLES OF FCAPS TASKS IN THE MOBILE TELECOMMUNICATIONS DOMAIN

Management area H Prediction

Anomaly Detection Clustering or Classification

Fault Prediction;
Fault management L
Automated Mitigation

Fault Detection;
autt Defection: . Alarm Correlation
Root Cause Analysis

Resource Optimization
Configuration management

Cloud resource allocation)

(SDN, Base Station power adjustment,

Realizing similarities
Configuration pattern recognition or differences

in node configs

. Churn prediction;
Accounting management . L L
Service utilization prediction

Misuse or Fraud Traffic characteri.zation;
Usage profiling

Utilization prediction

Performance management (feeding Config. mgmt.)

Detecting under- or Resource Planning

over-utilization of segments QoS and QoE correlation

Security management Intrusion Prevention

Detection of suspicious activities
DDoS Detection

Intrusion Detection

During this time interval we captured about 66 million
INVITE messages. The captured file contained key parameters
about INVITE methods between different IP addresses.

Using the cross-correlation parameters (Call-ID and IMS-
Charging-ID) from our previous work [11], we generated an
own ID, namely Call-Summary-ID (CSID), for each INVITE
message. The CSID is used to follow the control traffic hop-
by-hop. In order to have clearly defined records to feed the DL
algorithms with, the next step was the creation of a comma
separated value (csv) file, with the following columns:

1) Timestamp,

2) Source IP,

3) Destination IP,

4) CSID,

5) Status code of the response message to the INVITE.

The status code of the response message is used to differen-
tiate the error events. We consider the 4xx, 5xx and 6xx status
code classes as an error response, except the following codes:

e 401 Unauthorized,

o 407 Proxy Authentication Required,
+ 486 Busy Here,

o 487 Request Terminated.

Codes 401 and 407 are often (re-)authentication requests
from the IMS. The 486 response means that the callee could
not accept the call, and the 487 status code ends a cancelled
session. This expert knowledge on practical categorization of
SIP reject codes have been further detailed in [10].

B. Data preparation

The first step was to sort the CSV file based on the CSID
and the timestamp information. As a result, we got INVITE
message groups, in which the INVITE methods belong to the
same call-setup procedure, ordered by time.

After gathering the data of one day from the described
sources, the features consisted of a timestamp, a session
identifier, status codes and two IP addresses, that are two nodes
in the signaling. There were altogether 64,538,731 entries and
38,051,225 sessions in the data. Sessions with only one entry
were dropped. There were 27,065,354 such sessions, and after

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions

dropping them 37,473,377 entries and 10,985,871 sessions
remained. The time difference between each communication
in every session was calculated, separately. As time difference
cannot be computed in the case of first elements of the
sessions, these were dropped, resulting in 26,487,506 entries.

To provide a view of the delays in this complex and dis-
tributed network architecture, we also grouped the IP addresses
into five node groups. Without such a node type grouping the
neural network would have been forced to cope with several
dozens of “different” nodes. Beside the calculations taking
superfluously long, such an approach would have suffered
from lack of data volume at many node-pairs, and noisy data
at many other pairs.

We used our own and the operators’ engineering expert
knowledge to group the node types for this given purpose.
Our node clustering method is based on the trusted and
untrusted domain definition from the operator’s viewpoint; the
typical entry points into the IMS domain and the architectural
positions. There were 1935 unique nodes with different IP
addresses, that resulted in 51 different node types based on
the IP address range. Then the node types were grouped into
the following five node categories:

1) NodeO: other operator’s node

2) Nodel: untrusted domain entry points (e.g.: MSAN,
IBCF - Interconnection Border Control Function)

3) Node2: trusted domain entry points (e.g.: SBC, PCSCF)

4) Node3: ICSCF, SCSCF nodes

5) Node4: Application servers

Message processing delays were then analyzed as Figure 2
suggests. This categorization may not be perfect, but helps
decreasing the problem space without introducing major mis-
understandings to the method.

Thus, IP pairs formed ten node category pairs: Nodel &
Nodel, Nodel & Node2, Nodel & Node3, Nodel & Node4,
Node2 & Node2, Node2 & Node3, Node2 & Node0O, Node3
& Node3, Node3 & Node4, NodeO & Node0.! From the status

lAccording to Figure 2 Nodel & Node3, Nodel & Node4, Node2 & NodeO
and NodeO & Node0 category pairs should not exist. However, in real-world
networks, signalling between such nodes also occurs.

577

t1

INVITE m INVITE.

Node0

>.z

INVITE

INVITE
INVITE /N;4\ INVITE >t4
loqe:

t5

Fig. 2. Simplified view of INVITE messages getting delayed at Nodes

codes, as discussed in subsection III-A, the error occurrences
were defined for each entry.

As a further step, the data was resampled, and the mean,
standard deviation, minimum, maximum and median of time
differences (called: features), as well as the sum of the errors
(called: output) were aggregated for each of the node category
pairs for every time step®. After examining the data, it typically
showed a different distribution than Gaussian. Therefore were
the minimum, maximum and median values included besides
mean and standard deviation, as [13] suggests. The resulting
data were used as the basis of inputs and outputs of the deep
neural network.

C. Methodology

The goal was to predict the number of errors in the next
time step for every node category pairs, based on the features
of the current and preceeding time steps. Consequently, the
inputs of the DL model are the calculated statistical features
of the current and preceeding time steps, whereas the outputs
are the number of errors in the next time step.

To model the temporal nature of the data, we applied two-
dimensional convolutional neural networks [14]. The network
was fed with three-dimensional input, derived from the pre-
processed data, with the following dimensions: (time steps,
features, category pairs). The corresponding output included
the number of errors in the next time step for the ten category
pairs. An example of the input with 60 time steps, five features,
and ten category pairs is shown in Figure 3. Inspecting the
image, in this 60 time steps interval Node2 & Node3 and
Node2 & NodeO had the highest (as these parts are *warmer’)
and Nodel & Node3 and Node2 & Node 2 had the lowest
time differences (which is denoted by darker colors). Please
also note that Nodel & Node4 had some significant changes
is time differences (warmer colors followed by darker colors,
and vice versa).

This visual representation is similar to a “weather report”
over a map, and we can see darker areas — cyclone storms —
moving over designated areas as time goes by.

The applied neural network is shown in Figure 4. As we did
not suppose correlation among the features, but the time steps

2The data is resampled in time steps. E.g., resampling at 1 second results
in 60 seconds X 60 minutes X 24 hours = 86400 time steps in one day data.

578

N
=)

]
()
°
o
z
<
—
@
°
o
z

Nodel & Nodel
&
Nodel & Node3
Nodel & Node4
Node2 & Node2
Node2 & Node3
Node2 & NodeO
Node3 & Node3
Node3 & Node4
Node0 & NodeO

N
o

Fig. 3. A sample input with 60 time steps, 5 features (mean, standard
deviation, minimum, maximum and median of time differences) and 10
category pairs. Warmer colors denote higher, darker colors denote lower
values.

and the category pairs, in the first convolutional layer after
the input a kernel with full-width (that was 5 in this case) was
applied. In subsequent layers, the kernel width was set to 1.

To catch multi-scale temporal correlations, three different
branches were used, with kernel height of 3, 5 and 7. In
this case the height refers to consecutive time steps, so, 3,
5 and 7 time steps were considered in the three branches,
respectively. In convolutional layers, stride was set to 1. The
number of filters was 8 in the first two, and 16 in the second
two convolutional layers. To help multi-scale event modeling,
skip connections from inner parts of the convolutional blocks
were introduced. Two maxpooling were also applied in each
branch. Thus, the output dimension of the three branches
were 12x1x16, 9x1x16 and 6x1x16. The dense layers had
128 neurons each, and the output dense layer had 10 neurons,
one for the number of errors in each category pair. To avoid
overfitting, dropout with 50% probability [15] in various parts
of the network, and L2 weight regularization with 0.0001
ratio to trainable layers were added. The number of trainable
parameters of the neural network was cca. 300k.

For training, the ADAM stochastic optimization method
[16] was used, that utilizes adaptive per-parameter learning
rate based on the first and second moments of the gradient.
The initial learning rate was set to 0.001. After the validation
loss was not decreasing for 100 epochs, training was stopped
and the model with the best validation loss was loaded. To find
a robust model architecture and near optimal hyperparameters,
random search and manual tuning was performed.

IV. EVALUATION AND RESULTS

The data preparation step was performed with one and ten
seconds resampling. In both cases a sliding window of 60
was used with step size 1. Thus, the input involved 60 and 600
seconds of previous, the output 1 and 10 seconds of subsequent
data. The number of training samples in the resulting database
was 86361 and 8637, respectively.

Some of the features (mean and standard deviation) along
the whole dataset for the category pairs are shown by Figure 5.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions

Conv2D

Dropout

MaxPooling2D MaxPooling2D MaxPooling2D

Conv2D
Dropout
MaxPooling2D

MaxPooling2D MaxPooling2D

o Concatenate)

Fig. 4. The applied deep convolutional neural architecture.

The corresponding outputs — the number of errors in the next
time step for all the category pairs within the given day — are
shown in Figure 6.

The output of all the node category pairs show similar
distribution, however, the number of errors differs in all node
categories. Node2 & Node2 had the highest, while Nodel &
Node4 had the lowest number of errors in average. The number
of errors is low during the night, it peaks in the morning, it
slowly decays until the late afternoon, and in the evening it
decreases rapidly to low values again. Inspecting the mean
and standard deviation (Figure 5) some nodes category pairs
show similar characteristics (e.g., Node2 & Node2, Node2 &
NodeO, Node3 & Node 4), while others has fast transients
(e.g., Nodel & Node 1, Node 1 & Node 4, Node 3 & Node
3).

The 50% of the data was used for training, 20% for
validation and 30% for testing. To preserve the temporal
nature, the splitting was done on the chronologically ordered
data.

The network learned the problem in both cases with mean
squared errors measured on test data shown in Table II. As

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions

Nodel & Nodel
15

Node3 & Node4

40

20

Nodel & Node2
60

40

20
0 eiah

Node2 & Node3
60

40

20
i
0

NodeO & NodeO
40

20

Nodel & Node3
30

20

10

o A

Node2 & Node0
30

20

10
ok

Nodel & Node4

10
5

0 MWM

Node3 & Node3
20

10

| i,

Fig. 5. Two input features of the ten node category pairs (1 second
resampling). Y axis (please note, that it has different scales): Mean (blue)
and standard deviation (green) of time differences. X axis: time, duration of
one day (from 0:00 to 23:59).

Nodel & Nodel

™
- JML W il

15Node2 & Node2

Nodel & Node2 Nodel & Node3 Nodel & Node4
4

Node2 & Node3 Node2 & NodeO

6

N! 4 “ . 10 - -
f"\\'\‘%‘\w\'f*“h, . /‘“‘WM) ﬁ\‘\'\\‘\'luw\ 0s
(R,

o \ e

10

2
0 0

Node3 & Node4 NodeO & NodeO

m
\

2

. /;':;\,MM X J\
0! N 0

Fig. 6. Outputs (number of errors in the next time step) for the node category
pairs (1 second resampling). Y axis (please note, it has different scales):
moving average of the number of errors in the next time step (window size:
100). X axis: time, duration of one day (from 0:00 to 23:59).

the table shows, in case of 10 seconds resampling the mean
squared error showed a similar pattern as in case of 1 second
resampling, however, the errors were higher, as the target
values had higher value range, indeed, over longer period.

The predictions and ground truth of the test database are
shown in Figure 7. The test set represents the last 30% of
the data chronologically, so it refers to cca. from 17h to
24h of the day. This part of the data was unseen by the
model. The figure shows that the convolutional neural network
successfully learned to predict the number of errors in the
next time step based on the statistical features of previous 60
time step. In some cases, e.g. Node2 & Node2 and Node2 &
NodeO faster transients were successfully modeled: the red
line partially follows the first three peaks of the blue line
(denoted by blue circles). In other cases, e.g., Node3 & Node4,
it couldn’t catch these variations (denoted by red circles).

579

Nodel & Nodel
0.6 \
"

W

0.0 INGA

Node2 & Node2

o

Nodel & Node2
1.5 |

1o I
"
0.5 %‘w
\ ’y“'/n"r\:

0.0

Node2 & Node3

3]
1
1 M\:*w
0 i

Nodel & Node3
Iy 11

“
W

s
Vit

0.0
Node2 & NodeO

2!

iy,
Mlh m::

o0.3Nodel & Node4

I

0.0

1.0 Node3 & Node3

o

N
M

0.0

Node3 & Node4 Node0 & NodeO

™

2.5 "“‘“&j“*wm 0.5 w"f‘ﬁ "
0.0 [Wiy 0.0 Wi
Fig. 7. Ground truth (blue) and predictions on test dataset (red) of the

number of errors in the next time step for each node category pairs (1 second
resampling). Y axis (please note, it has different scales): moving average of
the number of errors in the next time step (window size: 100). X axis: time,
duration of test data (from 16:48 to 23:59).

TABLE I
MEAN SQUARED ERROR OF THE NEURAL NETWORK’S PREDICTIONS ON
TEST DATA FOR THE NODE CATEGORY PAIRS.

Nodel&Nodel
Nodel&Node2
Nodel&Node3
Nodel&Node4
Node2&Node2
Node2&Node3
Node2&Node0
Node3&Node3
Node3&Node4
Node0&NodeO
Overall MSE

o
o
o
9
o
Q
o
—_
o)}
~
—_
)
)
w
o
~
~
w
o
=)
—
)

N
o0

10.41109|1.3]162.6|25.7|38.2|5.7|80.6|10.0|34.8

10 sec | 1 sec

V. CONCLUSION

Applying DL techniques at various areas of telecommuni-
cations network and service management is promising. There
are lots of space for improvement in terms of covering FCAPS
management areas, which this paper provided suggestions
for. As a specific example, we trained a deep convolutional
neural architecture for predicting the number of errors for
every node category pairs based on temporal features of
the signaling in different timescales. In case of some nodes
category pairs, the features were correlated to the output,
however, the prediction was acceptable in case of other node
category pairs. Based on these preliminary results by collecting
more data and increasing the receptive field the prediction
range is likely to be extensible and thus, errors on different
parts of the network will be able to be predicted. Future work
for this specific example will include training in greater data
sets, and predicting for longer time periods (several minutes).
Furthermore, other data sources of the VoLTE monitoring
architecture is going to be introduced in the described DL
infrastructure. This should allow the operator to act on the
predictions in a timely manner.

580

VI. ACKNOWLEDGEMENTS

Parts of this research presented has been founded by the Na-
tional Research, Development and Innovation Office, Hungary
(KFI_16-1-2017-0024).

Parts of the research presented in this paper has been
supported by the BME-Artificial Intelligence FIKP grant
of Ministry of Human Resources (BME FIKP-MI/SC),
by Doctoral Research Scholarship of Ministry of Human
Resources (UNKP-18-4-BME-394) in the scope of New
National Excellence Program, and by Janos Bolyai Research
Scholarship of the Hungarian Academy of Sciences. We
gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan Xp GPU used for this research.

We would like to thank Gédbor Sey for his valuable insights.

REFERENCES

[1] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: Evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 16.

[2] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile
and wireless networking: A survey,” arXiv preprint arXiv:1803.04311,
2018. [Online]. Available: https://arxiv.org/pdf/1803.04311.pdf

[3] ITU-T, “Principles for a telecommunications management network,”
Rec. M3010, Oct. 1992.

[4] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,
F. Estrada-Solano, and O. M. Caicedo, “Machine learning for cognitive
network management,” IEEE Communications Magazine, vol. 56, no. 1,
pp. 158-165, Jan 2018.

[5] O. Acker, A. Blockus, and F. Potscher, “Benefiting from big data: A
new approach for the telecom industry,” Strategy and PWC, April 2013.

[6] P.V.Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey of ma-
chine learning techniques applied to self-organizing cellular networks,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2392-2431,
Fourthquarter 2017.

[7]1 T. Shon and J. Moon, “A hybrid machine learning approach to network
anomaly detection,” Information Sciences, vol. 177, no. 18, pp. 3799 —
3821, 2007. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0020025507001648

[8] G. Kathareios, A. Anghel, A. Mate, R. Clauberg, and M. Gusat, “Catch
it if you can: Real-time network anomaly detection with low false
alarm rates,” in 2017 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), Dec 2017, pp. 924-929.

[9]1 R. Sommer and V. Paxson, “Outside the closed world: On using machine

learning for network intrusion detection,” in 2010 IEEE Symposium on

Security and Privacy, May 2010, pp. 305-316.

P. Varga, T. Tothfalusi, Z. Balogh, and G. Sey, “Complex solution for

volte monitoring and cross-protocol data analysis,” in 30th IEEE/IFIP

Network Operations and Management Symposium (NOMS), AnNet, Apr.

2018.

T. Tothfalusi and P. Varga, “Assembling sip-based volte call data records

based on network monitoring,” Telecommunications Systems, vol. 68,

no. 3, pp. 393407, 2018.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler, “Sip: Session initiation proto-

col,” RFC 3261, 2002.

F. M. E. David C. Hoaglin and J. W. Tukey, Understanding Robust and

Exploratory Data Analysis, 2000.

Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,

and time series,” The handbook of brain theory and neural networks,

vol. 3361, no. 10, p. 1995, 1995.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: a simple way to prevent neural networks from over-

fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.

1929-1958, 2014.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions

