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Abstract—Collection and analysis of IP flow records belong to a
class of data-intensive tasks, the class for which big data analytics
systems should be effective. Several Hadoop-based solutions for
network traffic processing exist but are generally suitable only for
truly big data, otherwise the disadvantages of Hadoop dominate.
In this work, we present a distributed platform for IP flow records
collection and analysis together with a reference implementation.
It focuses on smaller clusters, has low overhead, allows interactive
work, and exploits the prospects of distributed systems like high
throughput and scalability. Experiments show low query latency
and linear scalability with respect to the growth of both amount
of work and computer cluster. Extensions for data mining and
machine learning are easy to include and are already work in
progress. Moreover, the whole software stack is open-source.

Index Terms—NetFlow, IPFIX, IP flow collector, distributed
system, parallel computing, Hadoop, big data

I. INTRODUCTION

Both global and local internet protocol (IP) traffic grow
significantly every year and studies show that the growth is
expected to continue [1]. To monitor traffic on that scale,
data-reducing technologies such as IP flow records or sFlow
are necessary. Current solutions in the area of flow records
collection and analysis can be divided into two categories:
simple centralized and complex distributed. The former is
still used by the majority of network administrators, even
though it might form a bottleneck in the monitoring pipeline.
Flow records exported from large networks may generate
considerable volumes of data, but centralized computing is
limited by the processing power and I/O throughput of a
single node. Moreover, redundancy, high availability (HA), and
scalability are hard to achieve. On the other hand, centralized
systems usually provide lower overhead and are easier and
less costly to deploy and maintain. The latter, distributed
and parallel computing scheme, has also found a way to the
analysis of computer network traffic due to its notable fitness
for data-intensive tasks and much better scalability.

Our research in the area of existent flow-based collec-
tors results in the following conclusion: there are traditional
widespread centralized solutions (e.g., NfDump) and there
are less mature Hadoop-based distributed solutions (e.g., [2],
[3], [4], [5]). Centralized collection software may be a viable
option now, but the processing power deficiency of a single
server is inevitable. On the other hand, Hadoop will likely be

a good choice only for large organizations, otherwise it would
probably be overkill. For these reasons both available solutions
for flow-based systems are far from ideal.

The gap between the two described options is too wide.
Therefore, we propose a low overhead distributed IP flow
records collection and analysis system to address this gap
by combining the features of both mentioned paradigms.
It preserves interactivity, efficiency, and bare metal perfor-
mance of the centralized system while exploiting properties
of the parallel and distributed system (high I/O throughput,
redundancy, and scalability). Compared to the experimental
implementation of a Hadoop-based collector on a small cluster,
our solution utilizes the resources more effectively, has low
latency and linear scalability. Additionally, advanced flow
records analysis and intrusion detection methods unfeasible
for centralized collectors become achievable with the extra
processing resources, memory, and I/O throughput.

The rest of the paper is organized as follows. We discuss
related work and motivation for our work in Section II, in
Section III we propose the distributed collector. We evaluate
the reference implementation of the collector, compare it with
the Hadoop-based implementation, and discuss the results in
Section IV. We conclude in Section V.

II. RELATED WORK AND MOTIVATION

The research related to this article usually has the same
goal: to make it possible to handle the increasing amount of
exported flow records. Earlier there was an effort to obtain
the best performance out of the centralized collector [6],
[7], [8], but the research has eventually shifted on the flow
collectors implemented on top of the distributed system (DS).
With the advent of a MapReduce programming model also
came the idea of distributed NetFlow processing using the
same paradigm. Since it was introduced in 2010 [2], most
of the consecutive publications also focus their work on the
MapReduce programming model and applications belonging
to the Hadoop ecosystem. Such tools for network monitoring
([3], [4]), however, often require the whole dataset to be
stored in advance, aim at offline processing, and do not offer
capabilities to continuously receive and store the incoming
stream of flow records. There are also systems ([3], [5]) which
focus on the efficient joining of a large monitoring dataset
with external smaller datasets (e.g., IP address to autonomous978-3-903176-15-7 c© 2019 IFIP
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system number, IP address to domain name). Our work is
rather orthogonal as it operates with a dynamic monitoring
dataset, concentrates on efficient storage and analysis without
joins.

This work is motivated by a rather constrained problem,
that is also why the design has to be strongly targeted and
none of the existing systems we are aware of is suitable.
Nevertheless, this is a problem that many smaller organizations
face: the flow records data scale to terabytes at most, which
is far away from the big data problem addressed by the
complex big data analytics systems (this order of magnitude
is sometimes denoted by the term “medium data”, but there is
neither any well-established definition nor clear boundaries).
Widespread centralized collectors are sufficient only for small
data, anything bigger hits the scalability issue. Even with a
powerful machine and storage area network, ad hoc queries
can take several days to finish, which is very limiting for both
human users and algorithmic data mining. On the contrary,
Hadoop and MapReduce are not efficient in smaller collector
deployments. Its well known high latency is unacceptable here
because queries which cover only modest database subsets
are common and users expect the results promptly. For those
reasons, we propose a solution aimed at smaller clusters, which
fills the gap between the two described extremes by combining
their features. Moreover, our solution is tailored for IP flow
collection and analysis, thus avoids the performance penalty
which universal data-processing systems usually experience in
this domain.

III. THE DISTRIBUTED COLLECTOR

In this section, we introduce the distributed collector, a
tailored flow-records-processing DS.

A. Concepts and Ideas

This system is designed to run on commodity hardware,
which is susceptible to failures. Since nodes can fail at any
time, the collector has to deal with hardware or software
failures at the system level. Our attitude towards hardware
failure is relaxed compared to Hadoop distributed file system
(HDFS); to maintain full availability, only one node can
fail (temporarily or permanently) at the same time. Multiple
failures at the same time will not break the system but will
render certain parts of the data unavailable.

Data collection exhibits specific data access patterns (im-
mutability and write once read many), because it essentially
means appending incoming records into the database. How-
ever, reading operations can be both random and sequential.
A data coherency model is simplified by these characteristics,
which makes data replication much simpler. Another prin-
ciple that will be further discussed is “moving computation
is cheaper than moving data”. The requested information
retrieval operation is always executed on the node where the
data are stored, which reduces network utilization, decreases
response times, and improves throughput.

The collector globally honors the principles of a shared
nothing architecture. One of the advantages of this architecture

is its possibility to eliminate any single point of failure
(SPOF) at the system level. Their complete elimination is the
fundamental goal of every system targeted to HA, and so is
ours.

B. Architecture Overview

The physical architecture is composed of several indepen-
dent nodes interconnected by a computer network. The logical
architecture is formed by two types of nodes, a proxy and a
subcollector (for an example see Fig. 1). The decision about
the layout of logical nodes on top of physical nodes is made
by an administrator during cluster initialization.

The proxy node lies on the boundary of internal and external
networks. It is a front-end, an intermediary for clients seeking
resources on a private network, and a load balancer (LB).
The proxy makes the cluster fully transparent, clients making
requests may not be aware of the internal structure at all. The
subcollector node is a worker/slave and a data carrier. Both
the proxy and the subcollectors are fully replicated to maintain
HA, which is described later in Subsection III-F.

The minimal number of physical nodes in the collector is
two since that is the minimum required to provide redundancy.
The architecture also requires at least one proxy node and two
subcollector nodes. The minimal number of physical nodes
is two because it is possible to use a configuration where
an arbitrary node works as proxy and subcollector at the
same time. This is the cheapest option, but the load is not
balanced uniformly; for that reason, this configuration will not
be discussed further. In the rest of this paper, we will consider
the configuration shown in Fig. 1, where each node is either
a dedicated proxy or a subcollector, nothing is shared.

C. Data Collection

From the data collection point of view, clients are flow
exporters. Exporters are continuously transmitting a stream
of records towards the proxy, which operates as an LB: it
distributes the traffic uniformly across a pool of subcollec-
tors using a round-robin algorithm. The subcollector pool
is managed automatically; offline or overloaded nodes are
temporarily excluded, which eliminates the loss of incoming
data.

Each subcollector works in the same way as a centralized
collector does, except the reduced load: it only has to handle
1
N of the total volume, where N is the subcollector pool size.
Aside from writing the records on local drives, two types of
indexes are built. The first type is timestamp-based indexes
which are accomplished by simply creating a new data file
every five minutes (so-called file rotation). Each file is labeled
by a corresponding timestamp to allow skipping as many data
files as possible during time-constrained queries. The other
type uses a Bloom filter, where the elements of the set are
source and destination IP addresses. It is used in filtering
queries to quickly test whether the data file contains a certain
IP address or not.

The program responsible for the whole data collection
process in our reference collector implementation is called
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Fig. 1. General steps of information retrieval

IPFIXcol [9]. IPFIXcol is a framework for receiving, pro-
cessing and storing/forwarding flow information records. We
implement subcollectors using this framework and we also
extend IPFIXcol to work as an efficient application-protocol
aware LB on the proxy node.

D. Information Retrieval

The information retrieval process on the distributed collector
consists of the following steps (shown in Fig. 1): (1) The
query request is sent from a client to the proxy. (2) The
proxy forwards the request to all subcollectors. Each query
reads data from a certain time range, and since records are
uniformly distributed in a time domain, a uniform workload
distribution is achieved. (3) After the request is processed on
all subcollectors, partial results are sent back to the proxy
where a union of all partial results is made. (4) The outcome
is presented to the client.

We have identified three elemental operations for informa-
tion retrieval from flow records: listing, sorting, and aggrega-
tion. Another set of derived operations emerges by combining
these operations together, applying a record filter and/or a
record limit. For example, the combination of aggregation,
sorting, and record limit is known as Top-N query. These
operations are well known from sequential flow processing
tools so it is necessary to provide them also to the users of
the distributed collector. However, not all of them are easy to
implement on DS, especially when performance metrics like
bandwidth consumption and the number of round trips are
taken into account.

We have created a tool specifically for the purpose of
information retrieval in the distributed collector. It is called
fdistdump and implements all three mentioned elemental
operations:
Listing: Slave processes concurrently read records from local
databases, filter them, and immediately send them towards the
master. The master process receives and prints records as they
come.
Sorting: Similar to the listing, except for immediately send-
ing, slave processes store records into their memory at first.

Subcollector 1 Subcollector 2 Subcollector 3

Fig. 2. A ring topology data replication strategy

Records are then sorted and sent to the master in a preserved
order, where a merge algorithm produces a single sorted list.
Aggregation: Similar to the listing, but except for immediately
sending, slave processes store records in hash tables first,
where records are aggregated according to an aggregation
key. Afterward, records are sent to the master, where the
aggregation of pre-aggregated records from all subcollectors
takes place.
Combining these operations together is also possible. Empha-
sis has been laid on the algorithm for the Top-N queries, which
is similar to the three-phase uniform threshold (TPUT) algo-
rithm [10]. Apart from node-level parallelism, fdistdump
also offers thread-level parallelism to fully utilize multi-core
and multi-processor computers.

E. Storage

As well as the whole collector, the storage subsystem
also follows the shared nothing architecture, thus no physical
shared storage is used and each node uses its own local drives
instead. This is a cheap and scalable option because with
the addition of another node grows not only the processor
count and memory size but also the overall storage capacity
and throughput. However, without any additional measures,
each local drive would introduce SPOF; failure would mean
temporarily unavailable data at best, permanent data loss at
worst. The strategy used to overcome this problem is called
a ring topology replication. We logically arrange nodes into a
directed cycle graph, where vertices represent nodes and edges
represent where the nodes place their replicas. As can be seen
in Fig. 2, each subcollector stores all of “its own” records
and a read-only copy of all records belonging to its direct
predecessor – a fully replicated scheme. This means that each
subcollector stores 2

N of records in total, 2
N ∗N = 2 means that

every record is independently stored on two different nodes.

F. High Availability

The HA functionality is supported by the ClusterLabs
cluster stack [11], which provides interaction between nodes,
liveness detection, recovery of machine and application-level
failure, and more. They are fully configurable and the config-
uration is part of the proposed system. A substantial part for
the collector’s HA is a virtual IP address (VIP). The HA stack
ensures that it is always assigned to only one node at a time
and the VIP thus works as a unique cluster access point.

The proxy and all subcollectors have to be replicated in
order to eliminate the SPOFs. The proxy uses an active/passive
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redundancy model: the service is actively operating only on
one node at a time, but some other node is ready to take over
the role of the active proxy. The active proxy is in possession
of the VIP, running the IPFIXcol LB service and thus is
receiving and load balancing flow data. In case of the active
proxy failure, the VIP is moved to the passive proxy; this
node becomes a new active proxy and at the same time, a
new passive proxy is spawned.

Each subcollector runs an IPFIXcol storage service which
writes data to the local storage. Subcollectors use an ac-
tive/active redundancy model: the service is actively operating
on two or more nodes, which are sharing the load. In case of a
subcollector failure, no action has to be taken: the failed node
is excluded from the pool and the other nodes will take over
the failed node’s load. The collector’s database-management
system (DBMS) also uses the subcollector pool to construct
parameters for fdistdump. When a certain subcollector is
offline, the DBMS has to instruct fdistdump to omit that
node and use its replica instead. If the node carrying the replica
is also offline, the client is notified, but the query is executed
despite the fact that a certain part of the data is unavailable.
The DBMS is constantly monitoring the cluster’s health, and if
a failure is detected, the query is automatically restarted with
updated parameters.

IV. EVALUATION

Evaluations of a collector performance have been done
before, and in our experiments we use the same methodology
as in [7], [8]. The objective is to answer questions such as:
How fast can the collector retrieve flow records from the
storage? What is the latency of a no-op job? How large is
the overhead of the DS? What is the efficiency like compared
to a conventional centralized solution?

As mentioned above, we are particularly interested in
medium data, that is why we have chosen a relatively small
commodity cluster for our experiments: six x86-64 computers
equipped with four cores, 8 GB of RAM and two 600 GB
10000 RPM SATA hard drives in RAID 0. The nodes were
interconnected by a Gigabit Ethernet network.

We have experimented with three different datasets of IP
flow records from links between the CESNET2 network and
another network with a different type of traffic to create
diversity in the datasets. We have also used data from different
time periods, but all the combinations produced similar results.
Therefore, only one dataset is displayed in our evaluation:
it consists of records exported during a single day, that is
878 M of flow records, using approximately 85 GB of disk
space in the comma-separated values (CSV) format. We make
this dataset publicly available1.

We have selected three queries that represent typical in-
formation retrieval and operations utilized during flow data
analysis:

1) A number of records, a sum of packets and bytes.

1Anonymized dataset in the CSV format is available at https://www.
liberouter.org/pub/im_2019_dataset.csv.xz

2) List of source IP addresses with an associated number of
records, packets, and bytes, sorted by number of records
(aggregation and sorting).

3) List of top 10 source IP addresses with an associated
number of records, packets, and bytes, sorted by a
number of records.

In fact, we have tested several more types of queries (as
described in Subsection III-D) but the results were correlated
with one of the selected queries. Query 3 is the Top-N
version of query 2 and should demonstrate an advantage of
the implemented Top-N algorithm over the general aggregation
and sorting.

A. Hadoop as a Flow Analyzer

Before the development of the system presented in this
paper, we have performed measurements of several methods
and tools from the Hadoop ecosystem in order to evaluate their
suitability to serve as a flow analyzer. The goal was to compare
this big data analytics solution with a widespread centralized
solution.

The centralized NfDump [12] was chosen as a reference
collector. To measure Hadoop, we have implemented two
versions of the collector: MapReduce CSV (expects flow
records as comma-separated text strings) and MapReduce
binary (expects flow records in a custom binary format with
constant structure). We have also measured two high-level
tools from the Hadoop ecosystem: Apache Hive and Apache
Pig.

The measurement matrix, therefore, consists of three
queries, five collectors, and 25 distinct parameters determining
the amount of data. Each measurement was run three times and
the resulting job completion wall-clock times were averaged.
We were launching the jobs sequentially with an increasing
time span (i.e., increasing the amount of data the collector has
to process) and recording the completion times.

The results of queries 1 and 2 are depicted in Figures 3
and 4, respectively. Query 3 was strongly correlated with
query 2 and the graph is omitted. On the left vertical axes
are the job completion times in seconds, on the horizontal
axes appears the data amount measured in hours of flow
records (one hour step corresponds to approximately 36 M of
records). In most cases, the completion times rose linearly with
the growing time span. Surprisingly, the single-node NfDump
performed very well compared to the six-node Hadoop. The
best performing for short time spans was the NfDump, but
when the time span crossed the break-even point (the point
at which NfDump and MapReduce binary are equal), the
parallel processing power of Hadoop took over the overhead
and the MapReduce Binary was the fastest further along. It
is important to note the latency of Hadoop’s MapReduce:
in such a situation, when NfDump finished in a matter of
milliseconds, the Hadoop’s latency did not descend below 19
seconds. Moreover, the aggregation and sorting involved in
query 2 more than doubled the latency of those no-op jobs.

However, efficiency is more important than the absolute
numbers. Efficiency is a metric of the utilization of the
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Fig. 3. Completion times and efficiency of query 1 on Hadoop
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Fig. 4. Completion times and efficiency of query 2 on Hadoop

resources of the improved system defined as η = S
s , where

S is either a speedup in latency SL = Lold

Lnew
or a speedup in

throughput ST = Tnew

Told
. In our measurements, we have used

the speedup in latency, where Lold is the reference sequential
NfDump collector’s latency and Lnew is the improved MapRe-
duce binary collector’s latency. The s = 6 because we have
used six nodes. The values are depicted on the right vertical
axes of Figures 3 and 4. While the first query reaches the
efficiency of up to 0.35, the second query fluctuates around
0.2. This is probably due to a bigger overhead of aggregation
and sorting on distributed systems.

The latency of no-op jobs we experienced is unacceptable
because queries which span only modest database subsets are
common and users are used to getting results in the matter
of milliseconds. Even when it comes to the throughput, our
measurements have shown that Hadoop performs worse than
a native application (on a per-node basis). Although Hadoop
unsurprisingly scales better with respect to the increasing
amount of work, the performance was still poor for a six-
node cluster. This can be seen on efficiency, where the average
utilization of the cluster was at most 35 % for query 1. For
the sake of completeness, we have also performed the same
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Fig. 5. fdistdump’s completion times on constant number of nodes
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Fig. 6. fdistdump’s efficiency on constant number of nodes

measurements on a four times bigger cluster (24 DataNodes)
and we observed a single difference in results: execution times
rose at a much slower pace. The omnipresent delay lasting at
least 20 seconds was still there and the efficiency was even
worse.

B. Proposed flow collector

In this subsection, we present an evaluation of the proposed
flow collector and a comparison with the MapReduce binary
analyzer. The evaluation methodology remains the same to
produce comparable results.

Fig. 5 is analogous to Figures 3 and 4. It is obvious from the
plot that fdistdump performs better than MapReduce. For
instance, the latencies of the no-op jobs are ranging from 19 to
35 seconds with MapReduce but with fdistdump they are
negligible. fdistdump also outperforms MapReduce when
the amount of data grows.

Fig. 6 compares the efficiency of fdistdump and MapRe-
duce queries. In general, fdistdump is about two times
more efficient compared to MapReduce. Moreover, significant
improvement can be observed when the distributed Top-N
algorithm is in effect (query 3).
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Fig. 7. fdistdump’s completion times (solid lines) and efficiency (dashed
lines) on variable number of nodes

Fig. 7 demonstrates how fdistdump scales with respect
to the changing number of used nodes while processing a
constant amount of data (the complete dataset). MapReduce
results are not included because we could not modify the
tested Hadoop cluster to use a variable number of nodes, but
previous experiments with 6 and 24 nodes revealed a slight
efficiency drop. The figure plots both job completion times
and efficiency for all three queries. However, this time Lold

is the fdistdump’s latency on one node and Lnew is the
fdistdump’s latency on multiple nodes. Note the difference
in the efficiency of queries 2 and 3: on a single node the
latency is similar, but with an increasing number of nodes,
the lines diverge in behalf of query 3. This confirms that the
implemented Top-N algorithm is efficient for flow records.

Another experiment reveals how the throughput of the
data collection subsystem scales with respect to the changing
number of used nodes. Each node is individually able to handle
about 700 K records per second and the overall throughput of
the LB rises in this pace up to 2.3 M records, where it hits a
limit introduced by a saturated proxy’s network connection.

All of the measurements so far are performed on a healthy
cluster without any node failures. But since our system pro-
vides HA, we also measured how this failure affects the
performance. Theoretically, the query on a cluster with a
failed node should take about two times longer, since the
direct predecessor of the failed node has to process twice
as many records. If a failure is detected during the query,
it is automatically restarted with updated parameters. This can
take up to three times longer: the latency of the query on the
healthy cluster plus the latency of the same query after the
failure. Experiments confirmed these hypotheses with slight
variations, but graphs are omitted due to space constraints.

V. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of IP flow records
collection and analysis from the perspective of a smaller
organization, where the flow records scale to terabytes at most
(i.e., medium data). This order of magnitude is too big to be

adequately managed by a single node, but our experiments
prove that the Hadoop-based distributed solutions are not very
efficient in smaller collector deployments.

We created a distributed platform for IP flow records collec-
tion and analysis which focuses on smaller clusters, has low
overhead, and exploits the prospects of distributed systems. We
also developed a reference implementation as a set of open-
source software which we publicly provide2.

To support our statements, we evaluated the collector and
compared the results to the Hadoop-based implementation.
The information retrieval subsystems of our solution exhibited
linear scalability. In contrast to the MapReduce queries, the
efficiency was at least doubled.

Distributed computing is effective in data-intensive tasks,
and thus the DS collector opens new research directions, which
were not possible before. We are currently working on several
data mining and machine learning techniques, heading towards
an automated distributed flow-based intrusion detection.
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