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Abstract—Large-scale failures in communication networks due
to natural disasters or malicious attacks can severely affect crit-
ical communications and threaten lives of people in the affected
area. In the absence of a proper communication infrastructure,
rescue operation becomes extremely difficult. Progressive and
timely network recovery is, therefore, a key to minimizing losses
and facilitating rescue missions. To this end, we focus on network
recovery assuming partial and uncertain knowledge of the
failure locations. We proposed a progressive multi-stage recovery
approach that uses the incomplete knowledge of failure to find a
feasible recovery schedule. Next, we focused on failure recovery
of multiple interconnected networks. In particular, we focused
on the interaction between a power grid and a communication
network. Then, we focused on network monitoring techniques
that can be used for diagnosing the performance of individual
links for localizing soft failures (e.g. highly congested links) in
a communication network. We studied the optimal selection of
the monitoring paths to balance identifiability and probing cost.
Finally, we addressed, a minimum disruptive routing frame-
work in software defined networks. Extensive experimental and
simulation results show that our proposed recovery approaches
have a lower disruption cost compared to the state-of-the-art
while we can configure our choice of trade-off between the
identifiability, execution time, the repair/probing cost, congestion
and the demand loss.

Index Terms—Network Recovery, Massive Disruption, Opti-
mization, Uncertainty, Cascading Failures, Interdependent Net-
works, Power Grid, Software-Defined Networking

I. INTRODUCTION

Large-scale failures due to natural disasters or malicious
attacks can severely affect operation of critical infrastruc-
tures and cause catastrophic economic and social disruptions.
Communication networks and power grids are examples of
such critical infrastructures that are highly vulnerable to such
failures. In 2005, Hurricane Katrina led to outage of over
2.5 million lines in the BellSouth (now AT&T) network
[1]. In 2003, a large cascading blackout, in northeast of the
United States, led to over 50 million people losing power,
some for several days. The overall cascade propagation lasted
approximately four hours, during which a cascade prevention
mechanism could have stopped further propagation of the
failure and lowered cost of recovery.

The leading causes of these failures has been reported to
be inadequate training, planning and operations studies to
respond to the emergency situations [2, 3], which highlights
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the necessity for a holistic control and recovery approach
that has the ability to use the real-time data taken from a
monitoring network to predict and prevent possible failures.
Furthermore, it is crucial to have a strategic recovery plan that
effectively utilizes the available resources and maximizes the
total operation of the disrupted services during the recovery
time.

In this paper, we present the contribution of thesis [4]. We
first study large-scale failures in (i) communication networks
in Section II-A and (ii) an interdependent power grid and
it’s monitoring network in Section II-B. We then focus on
network monitoring techniques that can be used for diagnosing
individual links’ performance or localizing the failures. In
Section II-C, We study the optimal selection of the monitoring
paths to balance identifiability and cost. In Section II-D, we
study a minimum disruptive way of updating on flow rules for
software defined networks.

A. Motivation and Challenges

Despite considerable research in the past few decades lead-
ing to multi-fold improvements on large-scale failure detection
and mitigation approaches, the problem has become more
interesting and challenging for three main reasons: (1) Lack
of complete knowledge, (2) Interdependency between multiple
networks, and (3) Progressive recovery. In the following
subsections, we summarize the three reasons.

1) Lack of Complete Knowledge: Almost all failure recov-
ery and prevention algorithms assume complete information
about the failures and ignore the uncertainty caused by failure
of the dependent monitoring systems. In a real system, one
needs to assume that only incomplete data may arrive at
control centers due to failures in the underlying communi-
cation and monitoring network. Network recovery and failure
prevention is a challenging problem under uncertainty of the
exact location of the disrupted network components.

To clarify the discussion, consider Deltacom topology taken
from the Internet Topology Zoo shown in Figure 1 [5, 6]. After
a large-scale failure occurs in the network, the state of the
entire network is not visible to the network manager or control
centers. Instead, the network manager knows that some nodes
and links have failed, some continue to work and the fate of
others is uncertain. The working nodes and links are shown
with green color in Figure 1, the broken nodes and links are



Fig. 1: An example of a failure in a real network topology
from the internet topology zoo [6].

shown in red and the uncertain nodes and links are shown
in grey. The main challenge is that the status of grey nodes
and links is unknown to the network manager and therefore,
current recovery techniques that assume complete and accurate
information is accessible, might not work as they should. To
this end, we propose an itrative stochastic recovery approach
(ISR) in [7], that runs a multi-stage stochastic optimization
algorithm. At each iteration step, ISR finds a feasible solution
set and selects a candidate node to repair and exploits it as a
monitor to discover the surrounding network. The procedure
is repeated until all critical services are restored.

2) Inter-dependency between Multiple Networks: Most of
the research on large-scale failure management has con-
centrated on the recovery of a single network [8, 9, 10].
Many man-made or natural systems can be modeled as an
interconnection of multiple networks, where the nodes are
the system components and the edges show the interaction
or dependency between different components. Because of
the dependency between different components in multiple
networks, perturbations caused by physical attacks or natural
disasters in one node can cascade and affect other nodes in
the system. The cascaded failure can repeat multiple times,
feeding on itself and accelerating, eventually resulting in a
total failure of the whole system.

Today, critical infrastructures are becoming increasingly
correlated and interdependent. Therefore, modeling and un-
derstanding the interactions between multiple networks and
designing failure resilient infrastructures is crucial for the
reliability and availability of many applications and services.
In particular we study the inder-dependency between a power
grid and a communication network. The communication net-
work provides monitoring and controllability to the power
grid and the power grid provides power to the communication
network. We tackle the problem of mitigating the ongoing
cascading failure and providing a recovery strategy. We pro-
pose a failure mitigation strategy in two steps: 1) Once a
cascading failure is detected, we limit further propagation by
re-distributing the generator and load’s power. 2) We formulate
a recovery plan to maximize the total amount of power
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Fig. 2: Different steps of our progressive recovery approach.

delivered to the demand loads during the recovery intervention.

3) Progressive Recovery: Restoring critical services after
a large-scale disruption or a cascaded failure is not a one
shot operation. The amount of repair resources required to
restore damaged network elements may vary over time. Also,
each network element might require a different amount of
resources to be restored. Therefore, finding the optimal as-
signment of resources to maximize the recovery over time
is a challenging problem. To the best of our knowledge, the
proposed progressive recovery approach is the first work that
studies progressive recovery of a disrupted network under
uncertainty. Figure 2 shows different steps of the proposed
recovery approach. At each iteration step, based on the avail-
able resources, the proposed algorithm repairs some of the
damaged network elements, performs a monitoring step and
gains more information and iterates this procedure until all
critical services are restored.

II. OUR CONTRIBUTION

This paper aims to summarize the main contributions in
[4] where we provide comprehensive solutions for accurately
modeling, monitoring and scheduling the recovery of the
network from large-scale failures under uncertain knowledge
of failures. Specifically, we focus on four main goals: (1)
minimizing the number of repaired elements, (2) minimizing
the amount of demand loss, (3) minimizing the recovery time,
and (4) minimizing the cost of monitoring probes. We briefly
explain these goals in the following four subsections.

A. Network Recovery from Massive Failures under Uncertain
Knowledge of Damages

In [7, 11], we tackle for the first time, the problem of
network recovery after massive disruption under uncertainty of
the exact location of the disrupted nodes/links. we formulate
the minimum expected recovery (MINER) problem as a mixed
integer linear programming and show that it is NP-Hard.
MINER aims at satisfying the critical demand flows while
minimizing the proposed expected recovery cost (ERC) func-
tion under network capacity constraints. The proposed iterative
stochastic recovery (ISR) approach recovers the network in
a progressive manner while satisfying the critical service
demands [7]. ISR runs in three variants, namely, Iterative
shortest path (ISR-SRT), Iterative branch and bound (ISR-BB),
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and iterative multi-commodity (ISR-MULT). The skeleton of
these versions follow the same structure and only differ in
terms of the approximate algorithm they use. We summarize
ISR algorithm in six main steps shown in Figure 3.

Given an undirected graph G = (V, E) and a set of demand
pairs Eg = {(s1,t1), ..., (S, tx)}, where Eg C V x V and
each demand pair (sp,t) € Ep has a source sy, a destination
t, and a positive demand flow dj,, the goal is to minimize the
expected recovery cost (ERC) to satisfy the demands while
having capacity constraint c¢;; for every edge in the graph.
The nodes and edges in the graph G = (V, E) belong to three
different categories:

1) the sets Eg C E and Vg C V are the set of broken
edges and nodes in the red area which we know for sure
have failed,

2) the sets Ey C E and Viy C V are the sets of edges
and nodes in the gray area whose failure patterns is
unknown,

3) the sets By C E and Vi C V are the sets of nodes and
edges in the green area which are known to be working
correctly in the system.

Initially, ISR starts by estimating the probability distribution
of the network failure (Step 1). At each iteration, ISR uses
an approximate algorithm to build a partial solution set of
candidate network components to repair, S; = {(i € Vy U
Ve |(Sl = 1), ((Z,]) € EyUER |6ij = 1)} (Step 2). Where
the binary variables d;; and J; represent the decision to use
link (4,7) € E and node ¢ € V in the routing (when d;; = 1,
0; = 1) or not (when d;; = 0, §; = 0).

In our evaluation, we do not consider infeasible problems,
i.e., there exists at least one feasible solution which can satisfy
all critical services.

We use three different optimization techniques explained
in [7] to build the partial solution set. The partial solution
minimizes the MINER problem based on the current estimated
costs which can change as we gain more knowledge about the
gray area. In step 3, the nodes in the partial solution set S,
are ranked based on the amount of flow in critical services that
they are likely to route, and a node with the maximum value
is selected as a candidate node (Steps 3 and 4). We repair the
candidate node, and use it to monitor (Step 5) the surrounding
network and obtain more information about the status of the
network. In step 6, the algorithm updates the previous estimate
of the costs after the discovery. The procedure is repeated
until all the demands are satisfied or no more repairs are
possible although there is a demand loss. At each iteration
step, ISR makes a decision to repair a part of the network and
gathers more information by putting a monitor on the selected
node. we propose several algorithms to find a feasible solution
set at each iteration of the algorithm. Experimental results
show that ISR outperforms the state-of-the-art ISP algorithm
while having a configurable choice of trade-off between the
execution time, number of repairs and demand loss.
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Fig. 3: Different steps of our iterative stochastic recovery
(ISR).

B. Controlling Cascading Failures in Interdependent Net-
works under Incomplete Knowledge

In [12, 13], we show that the inter-connectivity and depen-
dency between different elements makes complex networks
more vulnerable to failure. we study the inter-dependency
between a power grid and a communication network. The
power and communication networks are modeled as undirected
graphs G, = (V,,, E,) and G, = (V,, E.), respectively. Each
node ¢ in the power grid is monitored by several sensors
deployed nearby. The monitoring data is then sent to the
node of the communication network which hosts the control
functionalities related to node ¢ of the power grid and is
responsible of sending its monitoring data to the control center
consisting SCADA/EMS and RAS/SPS. In addition, control
commands are sent to the dependent communication node for
generator re-dispatch or load shedding.

To clarify the interdependency model between the com-
munication network and the power grid, consider the ex-
ample shown in Figure 4. The figure shows the interdepen-
dency model between a communication network with 4 nodes
{c1, .., ¢4}, and a power grid with 8 nodes {p1, ..., ps }. The red
arrows show the interdependency between the two networks.
For example, ¢; controls three power nodes {pi,p2,ps} and
gets power from ps. Now consider a failure in one of the
communication nodes c;. In this case three power grid nodes
{p1,p2,p3} become uncontrollable as the controller cannot
send the power adjustment control commands to them. Next,
consider a failure in a node in the power grid pg. In this case,
the communication node c4 that gets power from ps loses
power and consequently the dependent power grid node p7
becomes uncontrollable.

We propose a failure mitigation strategy that first detects the
failure and limits further propagation of the disruption by re-
distributing the generator and load’s power. Figure 5 illustrates
our two-phase approach. As described in the figure, whenever
a new failure event shows up, a preliminary monitoring activity
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Fig. 5: Recovery Process: 1) Cascade mitigation phase, and
2) Recovery phase.

is performed to localize the failure sites. We propose a
consistent failure set algorithm (CFS) to locate the failures.
After the failure assessment it follows a first phase in which
further cascades are mitigated or prevented by means of a
combination of load shedding and adjustment of the generated
power. The cascade mitigation problem is formulated as a
linear programming optimization that minimizes the cost of
new flow assignment (Min-CFA) and aims at finding a DC
power flow setting that stops the cascading failure at minimum
cost. Once the cascade is stopped, a progressive recovery
activity follows. Since the recovery problem (Max-R) is NP-
Hard, we propose a greedy (Max-R-Greedy) and a backward
(Max-R-Backward) approach. We formulate the recovery plan
to maximize the total amount of power delivered to the demand
loads during the recovery intervention. Recovery is performed
in multiple stages according to resource availability. After the
system is recovered, the monitoring activity restarts, until new
failures occur.

We compare the recovery performance of the proposed
heuristics (Max-R-Greedy and Max-R-Backward). Figure 6
shows the total delivered power flow over different stages of
progressive recovery intervention, when using the two algo-
rithms. As shown, the greedy approach does not consider the
correlation between different steps of the recovery approach
and tries to maximize the added flow at each iteration step.
On the other hand, the backward algorithm solves the problem
using all repair resources in the beginning and removes the re-
pair edges with less profit from the schedule of previous stage
until all repair schedules are determined. Therefore, Max-R-
Backward performs better than the Max-R-Greedy approach
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Fig. 6: Total delivered power (pu) flow over time for Max-R-
Backward and Max-R-Greedy in the Italian power grid.

with larger total area behind the curve in Figure 6.

C. Optimizing Cost-ldentifiability Trade-off for Probing-based
Network Monitoring

In [14, 15], we study the optimal selection of monitoring
paths to balance identifiablity and cost. Given an undirected
graph G(V, L), where V represents the network nodes and
L is the set of communicating links connecting the nodes,
and a set of nodes M C V employed as monitors, the set P
of routing paths between all pairs of monitors specifies the
set of candidate probing paths that we can select from. Each
link j in L is associated with an additive metric z; (e.g.,
link delay). Given a set P of all possible probing paths (e.g.,
routing paths between all the monitors), let A be the routing
matrix of size |P|x|L|, such that if path r € P contains
link j, then A[r,j] = 1 and A[r,j] = 0 otherwise. We can
write a linear system of equations relating the link’s additive
metric (e.g. delay) to path metrics as Ax = y. The objective
of network tomography is to infer x from A and y.

The linear system of equations (Ax = y) may not be
invertible as the routing matrix A may not have a full column
rank. To quantify the extent to which this system can be
solved, we introduce two measures: identifiability and rank.
The rank of P is calculated by the rank of the routing matrix
A, denoted by rank(A), which is the cardinality of the
largest set of probing paths, such that each path in the set
contains “new information” about the links (every other path
is a linear combination of paths in the set and thus does not
provide new information).

An illustrative example: Figure 7 shows an example
of a network with 5 links and four candidate monitors
M = {my,..,ms}. Using all possible paths between
candidate monitors we have the following routing matrix.

1 2 3 14 15

1 1 0 0 0 I Tmq,mao

1 0 1 0 0 P Tmq,msg

1 0 0 1 1 DTy ,myg
A=1]0 1 1 0 0 :7mg,mg

0 1 0 1 1 I Ty, myg

0 0 1 1 1/ i rmgmy

ALy As L,y
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Fig. 7: A simple network example with 5 links and 4 monitors
{mq,...,mq}. Candidate paths: 7., m,> Tmyms> Tmi,mas

T'ma,ms> Tma,myg> Tmg,my-

The rank of this matrix is 4 while the null space shows only

3 identifiable links [1,72,13. If we only probe paths in R =
{Tm1,mas Tmi,mss Tma,ms }» the corresponding routing matrix
Ap can identify all 3 identifiable links.

11 2 3 14 15
1 1 0 0 0\ Trmg,mo
A <1 0 1 0 O) P Tmq,msg
R=1\0 1 1 0 0/ :Tmg,ms
AR,L,y AR,L\L,

Meanwhile, it is also clear that probing these paths suffices

to identify l1, I3 and I3. We considered four closely related
optimization problems: (1) Max-IL-Cost that maximizes the
number of identifiable links under a probing budget, (2)
Max-Rank-Cost that maximizes the rank of selected paths
under a probing budget, (3) Min-Cost-IL that minimizes the
probing cost while preserving identifiability, and (4) Min-
Cost-Rank that minimizes the probing cost while preserving
rank. We show that while (1) and (3) are hard to solve,
(2) and (4) posses desirable properties that allow efficient
computation while providing good approximation to (1) and
(3). We proposed an optimal greedy-based approach for (4)
and proposed a (1 — 1/e)-approximation algorithm for (2).
Experimental analysis reveals that, compared to several greedy
approaches, our rank-based optimization performs better in
terms of identifiability and probing cost.

D. A Minimally Disruptive Rule Update in Software Defined
Networking

In this section, we study the problem of re-routing existing
flows in a software defined network (SDN) to enable the
admission of new flows while minimizing the disruption of
existing flows under link capacity and Quality of Service
(QoS) constraints [4, 16].

Software Defined Networks (SDN), which decouple the
control plane and data plane, provide a powerful tool for
network management, traffic engineering, and network policy
enforcement. Decoupling the control functions and data plane
brings significant advantages, including routing flexibility, be-
ing vendor agnostic, and centralized control and programma-
bility [17, 18]. While SDN provides a rich framework for
packet forwarding, forwarding rules may change frequently
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Fig. 8: Disruption caused by re-routing the existing flow to
accommodate new flows.

due to new traffic demands, topology changes, network con-
gestion or failures. One of the important challenges in software
defined networking is the ability to quickly react to changing
network conditions, which requires fast and safe update of
the flow table entries, without causing major disruptions to
existing flows. Rule updates can disrupt the existing traffic by
causing packet losses, delays, and security holes in the system
[16, 19, 20, 21, 22].

Figure 8 shows a preliminary experiment that characterizes
the disruption due to flow rule updates in our SDN testbed
which is shown in Figure 8a. We first install rules on a 24-
port Brocade (ICX 6610) SDN switch to connect two hosts via
a (non-SDN) router using Route I. Then, we update the flow
table in the Brocade switch to use Route 2. During the update,
we send ICMP packets from Hostl to Host2 to measure the
round trip time (RTT). Figure 8b shows RTT measurements,
before, during and after the rerouting. The results show that
rerouting the Hostl — Host2 flow from Route 1 to Route 2
disrupts the flow for about 500 ms, i.e. ICMP packets are lost
during the 500 ms period.

In general, it is not always possible to find an update sched-
ule that (i) preserves policy consistency, (ii) avoids congestion
during the update, and (iii) satisfies all the demands. In [4, 16],
we use two existing approaches to perform concurrent updates
of multiple switch tables: (1) the two-phase update approach
[19], which we call the synchronous update approach, and
(2) the sequential update approach [23], which we call the
asynchronous update approach. In the synchronous update
approach, all updates need to wait for the slowest switch
to complete the update, while in the asynchronous update
approach, each flow gets an update independent of other flows,
which privileges update time at the expense of temporary
congestion and lack of consistency. We then show the trade-
off between (ii), (iii) and disruption cost.

We introduce a minimally disruptive rule update problem
(Min-touch) and show that it is NP-Hard. We propose two
randomized rounding algorithms RR-Cong and RR-Demand
with bounded approximation factors on congestion and de-
mand loss. We show that under RR-Cong, the probability of
violating the link capacity constraint for any link (7, ) by a
factor of 1+ 5log(|E|) is no greater than 1/|E|%, ie.,

Pr (H(i,j) €eE: Y fh>q +5!og<E|))-cij) <1/IEP (1)

heH
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Under RR-Demand, the probability of violating the link
capacity constraint for any link (7, §) is no greater than 1/|F |2,
ie.,

Pr|3G)eB: > fl>e;| <1/|E? @

heH

By reducing the amount of routed flow on a chosen path
by a factor of (6-log(| E|)), RR-Demand satisfies link capacity
constraints with high probability, and if the minimum link
capacity is greater than or equal to the maximum demand,
ie. ming jep(cij) > maxnen(dy), we can satisfy a total
demand of at least ), _,; d/(6 - log(|El)).

Experimental results on real network topologies demon-
strated the effectiveness of the proposed approaches in terms
of disruption cost, congestion and demand loss. The results
indicate that our approaches have a disruption cost close to
the optimal while having a low congestion factor and a low
demand loss.

III. CONCLUSION

In this paper, we presented the contributions of the thesis
[4] and provided comprehensive solutions to recover a net-
work after massive disruption. We proposed novel schemes
to monitor and recover a network under uncertain knowledge
of failure while targeting four main goals: (1) minimizing the
number of necessary repaired elements, (2) minimizing the
amount of demand loss, (3) minimizing the recovery time and
(4) minimizing the cost of monitoring probes. These critical
goals were in conflict with each other and we studied the
trade-off among them. The recovery approach and failure
detection mechanism with incomplete information is one of
the first steps towards understanding disruption management
techniques under uncertainty and opens up the area of design-
ing reliable systems under incomplete on noisy information.
We then studied the disruption caused by updating flow
rules in software defined networks. We then proposed two
randomized rounding algorithms with bounded approximation
on congestion and demand loss.
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