
Data-driven Resource Allocation in Virtualized
Environments

Lianjie Cao
Hewlett Packard Labs
lianjie.cao@hpe.com

Sonia Fahmy
Purdue University

fahmy@cs.purdue.edu

Puneet Sharma
Hewlett Packard Labs

puneet.sharma@hpe.com

Abstract—Modern advances in virtualization technologies have
revolutionized how we build and manage computer systems.
Virtualization technologies, however, adversely impact the pre-
dictability of system performance, which introduces several
challenges in balancing performance and resource utilization.

In this dissertation, we explore and address performance chal-
lenges by characterizing and modeling application performance
for resource allocation in two application scenarios: distributed
network emulation and network functions virtualization (NFV).
More specifically, we focus on preserving experiment fidelity for
distributed network emulators running on heterogeneous physical
machines, while, in NFV, we characterize performance impacts of
various virtualization and configuration options and make timely
resource flexing decisions.

Index Terms—virtualization, resource allocation, network
functions virtualization, network emulation

I. INTRODUCTION

In the past decade, virtualization technologies have become
the cornerstone of many modern computer systems. Server
virtualization, storage virtualization and network virtualization
have revolutionized the business model of the IT industry
and academic research in many areas such as networking,
distributed systems and data science. For instance, public cloud
platforms (e.g., Amazon AWS, Microsoft Azure and Google
Cloud) transform infrastructure resources of large-scale data
centers to virtualized resources and many enterprises have
been migrating their services to public clouds to reduce cap-
ital expenditure (CapEx) and operational expense (OpEx) by
leasing or purchasing virtualized resources from public cloud
providers. Experiment platforms (e.g., GENI, CloudLab and
Chameleon) also provide virtualized resources to researchers
to conduct large-scale networking and distributed systems
research experimentation and education.

Virtualization technologies improve the flexibility of re-
source allocation by introducing an abstraction layer between
hardware resources and applications. For instance, with server
virtualization, public clouds mask hardware specifications of
the physical machines and allow users to provision virtualized
resources to their applications. This model enables users to
flexibly instantiate distributed applications without concerning
the specifications of underlying infrastructure and elastically
adjust resource allocation of applications in accordance with
workload variations. However, as virtualization technologies
simplify resource management of applications, it also affects

the predictability of system performance, especially for ap-
plications that are conventionally implemented and deployed
in proprietary hardware (e.g., network functions and telco
systems). With the same amount of virtualized resources,
applications may exhibit significantly different system capacity
(i.e., the maximum application throughput) if the virtualized
resources are mapped to different infrastructure under the
hood. The mapping between virtualized resources and under-
lying infrastructure is a nondeterministic process to users and
it is usually handled by the resource management component
of cloud orchestration platform. It makes resource allocation
a challenging task for application operators to achieve target
performance goals (e.g., service-level objectives (SLOs)). The
impact of this problem may become even more significant
as we embrace hybrid cloud/IT, serverless computing and
intelligent edge in which applications are highly decomposed
and deployed on heterogeneous infrastructure across multiple
geographical locations [1].

While a large number of research work in the literature
focus on virtual machine migration [2]–[4], performance im-
provement of virtualization technologies [5], [6]) and com-
prehensive management frameworks of various virtualized
applications [7], [8]), there are very few work explicitly
focus on the performance problem in virtualized environments.
A straightforward approach to address this problem is to
tolerate the performance unpredictability by over-provisioning
applications. However, this contradicts the key original moti-
vations of adopting virtualization technologies – cost saving.
Stratos [7] and E2 [8] propose comprehensive NFV orches-
tration frameworks to manage VNF instances and distribute
flows efficiently. However, E2 [8] relies on the VNF developer
to give the overload indicator for scaling a VNF with more
instances. The resource provisioning strategy in Stratos [7]
monitors OS-level statistics only and does not specify how
they are used to detect overload. For network emulation, VT-
Mininet [9] proposes an adaptive virtual time system to scale
network emulator Mininet [10] which prolongs the experiment
duration. More detailed discussion of related work can be
found in our papers.

In this dissertation [11], we argue the need for introducing
performance models for allocating resources to applications in
virtualized environments. We propose to evaluate performance
impact of infrastructure configurations or create performance
models of applications and leverage the performance in-978-3-903176-15-7 © 2019 IFIP

659

formation/models to make resource allocation decisions in
virtualized environments. As the operating model of different
virtualized environments varies, we explore the effectiveness
of the proposed approach in two application scenarios: dis-
tributed network emulation and network functions virtual-
ization. To summarize, this dissertation makes the following
contributions:
• Achieving high performance fidelity in distributed net-

work emulation – Running network emulation experiments
on a heterogeneous cluster may lead to low experimental
fidelity if the experiment is not properly separated and
allocated. We tackle this problem by quantifying the traffic
processing capability of physical machines. Then we model
the problem as a graph partitioning problem and design the
Waterfall algorithm [12] that leverages the traffic processing
model of physical machines, together with the experiment
topology, to determine an efficient mapping of the network
experiment while preserving high experiment fidelity.

• Characterizing performance of virtual network func-
tions – Determining the right set of configuration options
and virtualization/hardware knobs to achieve the maximum
potential performance of virtual network functions (VNFs)
is a challenging task for VNF operators. We propose a
performance characterization framework, NFV-VITAL [13],
[14], to automatically evaluate the performance impact of
hardware and software options and determine the optimal
configurations for the initial deployment of a VNF.

• Making auto-scaling decisions for virtual network func-
tions – With a proper initial deployment, operators need
to make timely scaling decisions to reduce SLO viola-
tions with minimum amount of resources. We propose
an Elastic resource flexing system for Network functions
VIrtualization (ENVI) [15], [16], to make accurate online
scaling decisions based on evolving neural network clas-
sifiers. ENVI trains initial neural network classifiers using
experimental data sets collected during the offline stage,
continues to update them using a window-based rewinding
mechanism during online operation to capture emerging
workload patterns and leverages the updated classifiers to
make online scaling decisions.

II. DISTRIBUTED NETWORK EMULATION

Virtualization technologies are widely used by modern net-
work emulators [10], [17], allowing researchers to run network
experiments using limited physical resources. Compared to
network simulators (e.g., ns-2 and ns-3) and testbeds (e.g.,
Emulab, GENI and DETER), network emulators provide an in-
termediate point between simplicity and experimental fidelity.
A key requirement for network emulation is to maintain high
performance fidelity for any network experiment. When the
experimental topology is large or the experiment is highly
traffic-intensive, a physical machine (PM) running the exper-
iment may become overloaded, leading to fidelity loss [18],
[19]. A natural way to address this problem is to extend the
network emulator to run across multiple PMs as shown in
Fig. 1. However, for heterogeneous cluster which is typical

as hardware upgrades cannot be performed at the same time,
violation of performance fidelity becomes even worse if the
network experiment is not properly allocated.

Fig. 1. Mapping a network experiment onto a heterogeneous cluster.

Following the proposed approach, we design a framework
for mapping a network experiment onto a heterogeneous
cluster to address this challenge. In this context, we consider
emulated network devices and end hosts as the application
and the experiment fidelity as the application performance
metric. We leverage MaxiNet [20], which extends the popular
Mininet network emulator [10] to run on a set of physical
machines. Our framework quantifies the capacity of the PMs
in the cluster, and uses this information in our Waterfall
algorithm which leverages a popular graph partitioning engine
METIS [21], [22] to map a network experiment onto some or
all of the cluster PMs.

A. Modeling Traffic Processing Capacity

In the context of network emulation, preserving perfor-
mance fidelity means assuring users not only correct con-
nectivity of the topology, but also accurate performance of
the end hosts and network devices which are emulated by
software switches and routers. The experimental fidelity of
network emulations largely depends on the performance of the
software switches. Therefore, we quantify both the hardware
specifications such as CPU type and memory size and the
traffic processing capacity of software switches for each PM
in the cluster.

Our measurements show that most software switches are
CPU-intensive. Hence, we focus on CPU utilization in this
work and leave other types of resource limits for future
work. Note that, NIC may become the bottleneck in some
experiments in which our approach becomes less effective.
We consider two dominating factors for modeling CPU per-
formance: single core performance and number of cores. We
assign each core with 100 share and use a coefficient to
represent the relative strength of single core performance. We
compute the traffic processing capacity function P i(uis) of PM
i, where us represent the number of CPU shares on PM i.
For instance, P i(50) denotes the maximum traffic rate that
PM i can handle when allocating 50 CPU shares to traffic
processing. Capacity functions are determined by running our
resource quantification module on a simple linear topology. We
investigated 6 different packet sizes from 64 to 1250 Bytes,
and observed that throughput in Mbps varies significantly at

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions660

the same CPU usage for a given software switch. Eq. 1 shows
an example of the capacity function of Stanford reference
switch (UserSwitch) running on a PM with quad-core CPUs
at 2.40 GHz and 16 GB RAM derived using 4 different
linear topology sizes. We perform up to fifth-order polynomial
regression on the data sets we collected and select the model
with minimum mean square error (MMSE) using 5-fold cross
validation. A user can choose a different regression model, if
desired.

P4core@2.39GHz(u) = 0.279u2 + 316.796u+ 948.393 (1)

B. Partitioning and Mapping Experiments

We model the process of mapping a network experiment
onto a heterogeneous cluster as a graph partitioning problem.
We first convert the network topology to a weighted graph
G = (V,E) including |V | vertices which equals the number of
switches and routers, and |E| links which equals the number
of edges among switches and/or routers. Weights w(v) and
w((a, b)) denote the weight of vertex v, and the weight of the
edge between vertex a and vertex b, respectively.

As the core of our framework, we design the Waterfall
algorithm for the partitioning and mapping module which
takes three inputs: (1) weighted graph G = (V,E), (2)
resource requirements of end hosts (e.g., CPU usage), and (3)
traffic processing capacity function derived in section §II-A.
This module generates k′ subgraphs S1, S2, · · · , Sk′ , each of
which corresponds to an experiment partition, where k is the
number of available PMs, Si is the experiment partition that
will be executed on PM i and k′ ≤ k which means not all
PMs have to be used. A partition Si includes a subset of the
vertices of the original graph, where the union of these subsets
is V and the intersection is φ. The objectives are (1) localizing
traffic as much as possible by mapping vertices that are densely
connected via high-bandwidth links onto the same PM, and (2)
attempting not to overload selected PMs, while maximizing the
utilization. The entire mapping process is iterated through the
following steps and terminates when no further improvement
is observed or the maximum number of iterations is reached.
Multi-level Graph Partition. Waterfall first selects a minimal
set of PMs from all available PMs in the cluster by comparing
the total weight of the graph and the maximum processing
capacity derived from the PM capacity functions. It then
allocates CPU shares for traffic processing and emulated end
hosts on each PM and computes parameters for the partition-
ing engine METIS. Then METIS is invoked to perform the
partitioning task.
Result Evaluation. Based on the min edge-cut value and
assignment returned by METIS, Waterfall computes and ranks
the actual assignment of CPU shares for traffic processing
and emulated end hosts of each PM. An assignment is ranked
according to (1) the number of PMs used in the assignment,
(2) the number of over-utilized PMs, (3) the number of under-
utilized PMs, (4) the degree of over-utilization of PMs and (5)
The edge-cut given by the partitioning results. The first four
factors are derived from usage information of the assignment,

and the fifth is directly returned by METIS. We focus on
reducing the overall resource usage, the number of PMs used,
and the edge-cut.
CPU Shares Update. Waterfall updates the CPU shares on
each PM based on the ranking in the previous step. To adjust
CPU shares, we first sort the PMs by the descending values of
the PM utilization. We then compute the CPU shares for the
next iteration based on the output of the current iteration. The
intuition is that, if a PM is overloaded, we assign it with the
maximum load it can handle and move the excessive amount
to the next most powerful PM; if a PM is under-utilized, we
increase its assignment but no more than the shares added to
any “stronger” under-utilized PM. The CPU share adjustment
thus moves excessive CPU shares like a waterfall: overloaded
shares flow towards the next most powerful PMs, and the room
left for expansion in an under-utilized PM is limited. This is
the reason we name this algorithm “Waterfall.”

We evaluate our framework using both simulation and
testbed experiments. For simulation, we compare the Waterfall
algorithm with other partitioning methods on three different
types of topologies ranging from 41 nodes to 690 nodes:
RocketFuel, Jellyfish, and Fat-tree. We found that the Waterfall
algorithm yields minimum PM over-utilization (1∼2%) and
under-utilization (up to 7%), while other partitioning methods
shows unstable and significantly higher over-utilization (up to
60%) and under-utilization (up to 70%) on some PMs. We also
evaluate our framework using DDoS [23] experiments using
RocketFuel topologies of two different sizes (11 nodes and 31
nodes) on a cluster with 6 different PMs. We show that with
our framework, all selected PMs reach 90% CPU utilization
and high performance fidelity (i.e., all links achieve the desired
throughput). Other partitioning algorithms either fail to achieve
the desired link throughput as shown in Fig. 2 or yields low
HTTP throughput even before DDoS attack happens due to
poor resource allocation.

Fig. 2. Nomalized link utilization in DDoS experiments with 31 nodes

III. NETWORK FUNCTIONS VIRTUALIZATION

Virtualization and automated resource orchestration, usually
referred to as cloudification, have transformed IT operations
and management. Telecommunication providers are leveraging
virtualization technologies to move network functions (e.g.,
intrusion detection system (IDS), caching proxy and Evolve

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions 661

Packet Core (EPC)) from proprietary hardware to virtualized
implementation on commodity devices. This adoption, called
Network Functions Virtualization (NFV), increases agility,
scalability, and elasticity of the IT infrastructure. However,
the savings in operational expenses (OpEx) can only be
attained and realized if virtual network functions (VNFs) are
properly configured among the large number of configuration
options and hardware settings (e.g., CPU pinning, Intel DPDK,
PF RING, SR-IOV and NUMA) and scaled proportionally to
the workload variations.

We address this challenge by applying the proposed ap-
proach to first evaluate the performance impact of various
configuration and resource allocation options using NFV-
VITAL and then make online scaling decisions using ENVI.
Fig. 3 shows the overall architecture of NFV-VITAL and ENVI
leveraging the NFV architectural framework from ETSI. In
NFV context, VNFs are considered as the applications and
we aim to improve the system capacity and reduce SLO
violations. As VNFs are generally more diverse and complex
than applications (i.e., emulated network devices and end
hosts) in network emulation, we use neural network to model
the application performance in ENVI.

Fig. 3. NFV-VITAL and ENVI architecture

A. Characterizing VNF Performance

We first conduct a thorough experimental evaluation of a
VNF with multiple components, Clearwater (an IP Multimedia
Subsystem (IMS)), to understand how different resource allo-
cation/scaling methods and configuration options affect VNF
performance. We discover that different scaling methods (e.g.,
scaling up/down and scaling out/in) may yield significantly
different system capacity and performance behavior depending
on the communication complexity and implementation details
(e.g., single-threading v.s. multi-threading and CPU-intensive
v.s. memory-intensive).

Motivated by our observations of Clearwater case study,
we design NFV-VITAL satisfying the following requirements:
(1) accommodate different types of VNFs, (2) adapt the de-
ployment size of a VNF with awareness of VNF components,
(3) generate different VNF workloads, (4) collect resource

utilization traces of all VNF instances, and (5) generate VNF
performance evaluation reports. The framework consists of the
following components: VITAL orchestrator, VNF workload
generator, VNF load monitor, and user input.
User Input. NFV-VITAL allows users to provide their own
deployment specification and workload specification files in
json format. Deployment specifications include VNF infor-
mation such as VM sizes to test, user preferences on server
selection, testing modes and workload generation parameters.
VITAL Orchestrator. The VITAL orchestrator generates plat-
form dependent deployment templates (e.g., OpenStack Heat)
indicating the deployment sizes to test. It then instantiates each
deployment template and bootstrap application using installa-
tion scripts in user input. After deployment is completed, it
invokes the VNF workload generator to initiate the testing
process. During an experiment, the orchestrator executes a
daemon process to receive and store resource utilization traces
from the VNF load monitor and VNF performance logs from
the VNF workload generator. After all tests are completed,
system performance and resource utilization plots are gener-
ated for each test.
VNF Workload Generator. The workload generator is in-
voked by the VITAL orchestrator once a test deployment
is completed. NFV-VITAL relies on the users to specify the
range in which the workload generator operates and the type
of traffic to use. The workload generator starts with the
minimum workload rate, and gradually increases the rate until
the stopping conditions are satisfied.
VNF Load Monitor. Since users may not have access to
physical hosts on some platforms, the VNF load monitor runs
inside VNF instances to collect CPU, memory, and network
utilization, and stores them in a csv file during a test. Upon
completion of a test, the utilization traces are collected by the
VITAL orchestrator for further analysis.
Testing Modes. To make practical and thorough testing plans,
NFV-VITAL offers three testing modes: custom sizing, exhaus-
tive search, and component-aware directed search. Custom siz-
ing allows users to specify different deployment sizes of their
interests. The VITAL orchestrator then translates these deploy-
ment sizes into deployment templates. Exhaustive search is
ideal when a user wants to test all possible deployment sizes
for a given amount of resources (e.g., number of vCPUs). The
VITAL orchestrator first computes all possible combinations
based on the given VM flavors of each VNF component
that satisfy the resource requirements and then executes them
sequentially. Component-aware directed search is designed
based on the lessons we learned from the Clearwater case
study – the overall VNF performance can be limited by a
certain component. In this mode, the VITAL orchestrator starts
testing with the minimal deployment size. It then analyzes the
resource utilization traces when the system capacity is reached,
and determines the VNF component with highest resource
usage as the bottleneck component. Directed search then scales
that component to generate the next deployment size to test.
The entire testing process terminates either when the given
target system capacity is achieved or when the given resource

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions662

limits are reached.
We demonstrate NFV-VITAL with IMS Clearwater and two

IDSes Suricata and Snort using two different testing modes:
component-aware directed search and custom sizing. We show
that, for Clearwater, component-aware directed search is able
to 1) accurately identify the bottleneck component for each
tested deployment, 2) generate the optimal initial deployment
configuration and 3) indicate the best scaling method – scaling
up. For IDSes, NFV-VITAL suggests that scaling up Snort fails
to improve the performance and the system capacity of Snort
is sensitive to the traffic composition (i.e., malicious traffic
ratio), while Suricata scales very well with more resources
added to the same instance and its performance remains stable
as workload composition varies.

B. Flexing VNF Resource Allocation

With the initial VNF deployment configuration generated by
NFV-VITAL, operators need to make timely resource flexing
decisions during online operation in accordance with workload
variations. Accuracy and timeliness of scaling decisions allow
balancing the tradeoffs associated with resource allocation.
Making scaling decisions long before actual overload causes
under-utilization of resources allocated to a VNF (and hence
higher operational expenses). Conversely, scaling decisions
after the fact can incur penalties associated with violations
of SLOs and even service disruption.

In this thesis, we propose ENVI to model the scaling
decision-making process as a classification problem and lever-
age neural network to generate “not scale” or “scale” decisions
based on both infrastructure-level and VNF-level information.
We observe that service developers and users rely on critical
internal runtime state information to manage the stability of
their operational systems. Such critical internal information is
recorded in system/application logs and has become a common
source for debugging and monitoring running programs. We
collect and mine this log data, along with infrastructure
resource utilization information (referred to as VNF-level
features and infrastructure-level features, respectively) to en-
hance our understanding of VNF runtime dynamics, and hence
increase the accuracy of elastic resource flexing. We design
ENVI with two stages: offline training and online updating.
Offline Training Stage. During this stage, we run various
performance tests for each VNF and collect infrastructure-
level and VNF-level feature information every time window
W = nT . The n monitoring data points for each sampling
period T in the same W are aggregate and extended with
statistical measures (e.g., max, min, mean, median and vari-
ance) for each feature as extended features. This process is
repeated for multiple types of workload each of which is
treated as one data set. Then we create and fit standardization
(Z-score normalization) scalers to normalize values for each
feature since many machine learning algorithms favor input
values of similar range. Since the timeliness of scaling decision
is critical, we artificially create a “buffer zone” between
scaling decisions and actual VNF overload to guide the scaling
event not to happen too soon or too late. To achieve this,

we pick one feature as the key performance indicator (KPI)
to estimate VNF capacity and use a configurable threshold
α (e.g., 80%) to control the size of the buffer zone while
labeling the collected samples. The samples with KPI value
greater than α ·system capacity are labeled with 1, otherwise
samples are labeled with 0, where system capacity is detected
during performance testing. The choice of KPI is based on the
functionality of the tested VNF. The labeled samples are then
used to train initial neural networks in batch mode. The offline
stage can be incorporated into the software testing plan such
as performance evaluation process using NFV-VITAL.
Online Updating Stage. ENVI continues to collect composite
feature information during online stage. Initially, ENVI starts
making scaling decisions based on the initial neural network
classifiers. However, similar to many machine learning algo-
rithms, the neural networks may fail with unseen input patterns
if the workload changes over time. Hence, we must validate
the scaling decisions by checking for false negatives (FNs)
and false positives (FPs) and only true negative (TN) and true
positive (TP) decisions should be enforced. By default, we
scale the VNF with one more instance if TP decisions are
detected. The occurrences of FNs and FPs indicate potential
new workload patterns that the current classifier is not able
to handle; hence, the classifier needs to be updated. However,
due to the imbalanced samples of the two classes (as ENVI
is designed to avoid overload) and the difficulty in computing
the VNF capacity during online (as workload is not controlled
like VNF performance testing) for labeling, we cannot simply
update the classifiers with the collected samples. In addition,
it is inefficient to update the classifier with every sample for
a large number of VNF instances. Therefore, we introduce
a window-based rewinding mechanism to select a number of
historical samples with balanced classes as a training window.
The basic idea is to backtrace the historical samples once FN
sample is detected. During backtracing, we select the samples
with KPI feature values greater than α of the KPI value of the
FN sample, and relabel those samples as 1. Then we continue
to backtrace and select the same number of samples and relabel
them as 0. This window of samples with balanced number of
0s and 1s are then used to update the current classifier. The
motivation behind this process is to approximate the labeling
process at offline stage for consistency purpose and maintain
the balance between the two classes.

We evaluate both the offline stage and online stage using
caching proxy Squid and IDS Suricata with synthetic workload
traffic and a real-world week-long NetFlow trace. For offline
stage, we show that combining infrastructure-level and VNF-
level features yields better classification accuracy (up to 20%)
and neural network outperforms other classification models
(decision tree, random forest and logistic regression) by
5%∼14%. Online evaluation indicates that the initial classifiers
trained with one workload type at offline stage can quickly
adapt to new workload pattern and the accuracy stabilizes
using our online updating mechanism. We also observe more
accurate scaling decisions using ENVI which result in less
resource consumption (29%) and close-to-zero SLO violations

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions 663

comparing with baseline scaling policies. Fig. 4 shows an
example comparing the number of instances yielded by ENVI
and the best baseline scaling policy.

Fig. 4. Variation of workload and number of instances using Squid

IV. CONCLUSION AND FUTURE WORK

In this dissertation, we propose to involve application per-
formance modeling in making resource allocation decisions
in virtualized environments. Following this approach, we in-
troduce PM traffic processing capacity functions and leverage
them to design the Waterfall algorithm to map network ex-
periment onto a heterogeneous cluster for distributed network
emulation. In NFV context, we develop NFV-VITAL to evalu-
ate performance impact of various configuration and hardware
options and generate initial VNF deployment configuration.
We then propose ENVI to make online scaling decisions by
modeling VNF performance using neural network classifier.
In both cases, we are able to achieve more accurate and
fine-grained resource allocation and better balance between
application performance and resource allocation.

For network emulation, we are working on improving the
accuracy of traffic processing capacity functions by including
more factors such as memory usage and we are also planning
to model the mapping process as an optimization problem and
leverage integer linear programming (ILP) to solve it. The
neural network classifier used in ENVI is not aware of the
temporal information of the collected samples. However, the
data sets collected from VNFs are typical time series data. We
are planning to capture this temporal information with more
powerful machine learning models such as long short-term
memory (LSTM).

REFERENCES

[1] “Hybrid Cloud Architectures with AWS,” https://aws.amazon.com/
enterprise/hybrid/.

[2] J.-J. Kuo, H.-H. Yang, and M.-J. Tsai, “Optimal approximation algorithm
of virtual machine placement for data latency minimization in cloud
systems,” in Proceedings of IEEE International Conference on Computer
Communications (INFOCOM), 2014, pp. 1303–1311.

[3] X. Li, J. Wu, S. Tang, and S. Lu, “Let’s stay together: Towards traffic
aware virtual machine placement in data centers,” in Proceedings of
IEEE International Conference on Computer Communications (INFO-
COM), 2014, pp. 1842–1850.

[4] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM
placement and routing for data center traffic engineering,” in Proceed-
ings of IEEE International Conference on Computer Communications
(INFOCOM), 2012, pp. 2876–2880.

[5] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward predictable
performance in software packet-processing platforms,” in Proceedings of
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2012, pp. 1–14.

[6] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in Proceedings of USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2014, pp. 459–473.

[7] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella, “Stratos:
Virtual middleboxes as first-class entities,” University of Wisconsin-
Madison, Tech. Rep., 2012.

[8] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for NFV applications,” in Proceedings
of ACM Symposium on Operating Systems Principles (SOSP), 2015, pp.
121–136.

[9] J. Yan and D. Jin, “VT-Mininet: Virtual-time-enabled Mininet for scal-
able and accurate software-define network emulation,” in Proceedings of
ACM SIGCOMM Symposium on Software Defined Networking Research
(SOSR), 2015, p. 27.

[10] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of ACM
SIGCOMM Workshop on Hot Topics in Networks (HotNets), 2010, p. 19.

[11] L. Cao, “Data-driven resource allocation in virtualized environments.”
Ph.D. Dissertation, 2018. [Online]. Available: https://docs.lib.purdue.
edu/dissertations/AAI10830296/

[12] L. Cao, X. Bu, S. Fahmy, and S. Cao, “Towards high fidelity
network emulation,” in Proceedings of IEEE International Conference
on Computer Communication and Networks (ICCCN), 2017. [Online].
Available: https://ieeexplore.ieee.org/document/8038453

[13] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “NFV-VITAL: A
framework for characterizing the performance of virtual network
functions,” in Proceedings of IEEE Conference on Network Function
Virtualization and Software Defined Network (NFV-SDN), 2015.
[Online]. Available: https://ieeexplore.ieee.org/document/7387412

[14] A. Sheoran, X. Bu, L. Cao, P. Sharma, and S. Fahmy, “An empirical
case for container-driven fine-grained VNF resource flexing,” in
Proceedings of IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN), 2016. [Online]. Available:
https://ieeexplore.ieee.org/document/7919486

[15] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “ENVI: Elastic resource
flexing for network function virtualization,” in Proceedings of USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), 2017.
[Online]. Available: https://dl.acm.org/citation.cfm?id=3154591

[16] L. Cao, S. Fahmy, P. Sharma, and S. Zhe, “Data-driven resource flexing
for network functions visualization,” in Proceedings of ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems (ANCS), 2018. [Online]. Available: https://dl.acm.org/citation.
cfm?id=3230725

[17] M. Pizzonia and M. Rimondini, “Netkit: easy emulation of complex
networks on inexpensive hardware,” in Proceedings of ICST Inter-
national Conference on Testbeds and Research Infastructures for the
Development of Netwoks & Communities and Workshops (TridentCom),
2008, p. 7.

[18] W.-M. Yao, S. Fahmy, and J. Zhu, “Easyscale: Easy mapping for large-
scale network security experiments,” in Proceedings of IEEE Conference
on Communications and Network Security (CNS), 2013, pp. 269–277.

[19] R. Chertov and S. Fahmy, “Forwarding devices: From measurements to
simulations,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 21, no. 2, p. 12, 2011.

[20] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, “MaxiNet: Distributed emulation of software-defined networks,”
in Proceedings of IFIP International Networking Conference, 2014, pp.
1–9.

[21] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint
graph partitioning,” in Proceedings of ACM/IEEE Conference on Super-
computing (SC), 1998, pp. 1–13.

[22] ——, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 359–392, 1998.

[23] M. S. Kang, S. B. Lee, and V. D. Gligor, “The Crossfire attack,” in
Proceedings of IEEE Symposium on Security and Privacy (SP), 2013,
pp. 127–141.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions664

