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Abstract—Multi-tenant flexible, scalable and autonomic virtual net-
works isolation has long been a goal of the network research and
industrial community. For today’s Software-Defined Networking (SDN)
platforms, providing cloud tenants requirements for scalability, elastic-
ity, and transparency is far from straightforward. SDN programmers
typically enforce strict and inflexible traffic isolation resorting to low-
level encapsulations mechanisms which help and facilitate network
programmer reasoning about their complex slices behavior.

In this paper, we propose SD-NMS, a novel software-defined architec-
ture overcoming SDN and encapsulation techniques limitations. SD-NMS
lifts several network virtualization roadblocks by combining these two
separate approaches into an unified design. SD-NMS design leverages
the benefits of SDN to provide Layer 2 (L2) isolation coupled with
network overlay protocols with simple and flexible virtual tenant slices
abstractions. This yields a network virtualization architecture that is both
flexible, scalable and secure on one side, and self-manageable on the other.
The experiment results showed that the proposed design offers negligible
overhead and guarantees the network performance while achieving the
desired isolation goals.
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I. INTRODUCTION

Along with the spread of Cloud Computing, network virtualization
is highly used in datacenter networks (DCNs). The popularity of
virtualization results from flexible and efficient management, it makes
the infrastructure of network providers more profitable by sharing
expensive network devices (e.g., routers, switches) between multi-
tenants network. In DCNs, the first major challenge is to isolate
virtual networks of large number of tenants.

In addition to adopting network virtualization, the dynamic and
elastic nature of cloud computing is challenging many aspects of
network virtualization including isolation tools and technologies
which are no longer practical, efficient, or flexible enough for today’s
tenant requirements (e.g., low level encapsulations: VLANs/GRE,
Hypervisor, Middleboxes: FWs/IDS/IPS). These traditional isolation
mechanisms are no more suitable for the cloud elastic environment.
Network architectures limitations are attributed to big-data workload
setting, traffic changing and resources sharing among between vir-
tual tenant networks. They suffer of the following drawbacks: (i)
scaling the network to the sizes needed by service providers is very
expensive, (ii) limited support for multi-tenancy as they do not give
the possibility to the tenant for designing his virtual networks and
defining its own Layer 2 and 3 spaces, and (iii) complex and manual
management operations of large set of network nodes including
switches, routers and firewalls.

Novel approaches for network virtualization which are not based
on traditional mechanisms have become a real possibility since the
appearance of Software-Defined Networking (SDN). Providing multi-
tenancy isolation by creating virtual tenant slices (e.g, FlowVisor [1],
HyperFlow [2], Onix [3]) is a very challenging issue that has not been
completely solved before the introduction of SDN mechanisms like
OpenFlow (OF) [4]. SDN have gained a lot of attention due to their
flexibility for creating separate and independent virtual networks on
top of physical network infrastructures.

In this paper, we present SD-NMS, a novel software-defined
architecture enabling multi-tenant scalable, flexible and autonomic

isolation for virtual networks. SD-NMS provides L2 isolation with
simple and flexible virtual tenants slices (VTSs) abstractions in an
automatic and dynamic way. To overcome SDN scalability bottleneck
and overlays protocols limitation to a single slice (See Section II),
SD-NMS lifts several roadblocks by combining these two separate
technical approaches into an unified design. This yields a network
virtualization architecture that is both flexible, and secure on one
side, and scalable on the other. SD-NMS exploits the high flexibility
of software-defined components and the scalability of new overlay
protocols (e.g., Virtual eXtensible LAN (VXLAN)) to create several
thousands of VTSs on top of shared network infrastructures. For
self-manageable VTSs requirement, SD-NMS is based on autonomic
communication [5] which can be a complementary approach to
SDN to evolve the neglected management plane and provide self-
aware network configuration. It requires only a small amount of
lines as extended application to OF controller. Using hierarchical
and distributed OF controllers, we succeed to enforce our flexible
isolation model and provide in the same manner an efficient and
scalable offloading of control functions without losing the SDN
centralized advantage. By delegating VTSs frequent and local packets
to tenant controller, we limit the overhead on centralized controller
that processes only global and rare events to maintain network-wide
view.

The rest of this paper is organized as follows. Section II investi-
gates issues and lacks of previous solutions addressing multi-tenancy
isolation. In section III, we describe the flexible L2 isolation model
proposed for SD-NMS and detail how it can be exploited to provide
VTSs scalability. Section IV, we describe the SD-NMS design and
detailing the composition of SD-NMS planes including the autonomic
management plane. In section V, we represent SD-NMS evaluation
results. Finally, section VI draws conclusions

II. RELATED WORKS

A. Research Background
Some approaches concerning the concept of multi-tenancy isola-

tion have been proposed for network virtualization before the intro-
duction of SDN. For example, Cabuk et al. [6] presented prototype of
automated security policy enforcement for multi-tenancy based on the
concept of Trusted Virtual Domains (TVDs). Their approach allows
to group VMs belonging to a specific tenant dispersed across multiple
Xen Hypervisor into a TVD zone. Tenant’s requirements for isolation
are automatically enforced by a privileged domain (DOM-0). Such
solution offers tenants separation using VLAN, EtherIp and VPN
tagging. Their solution presents a significant step towards: (i) tenant
transparency by automating the deployment and mapping of tenants
desired network topology, and (ii) isolation elasticity by orchestrating
TVDs through a management framework that automatically enforces
isolation necessary changes (e.g., load balancing, migration) among
different hosts’ hypervisors.

Based on network virtualization paradigms, SDN comes with
better alternative than using the TVD privileged domain, which is not
recommended against attacks. By decoupling control and data planes,
SDN offers a new way to create transparent and isolated virtual



networks by dividing, or slicing, the network resources. Several
approaches were proposed by the SDN community. FlowVisor [1] is
a project working on developing virtual network slicing in hardware
programmable router. The goal of FlowVisor was the implementation
of an OF proxy to allow multiple researchers to share the same
network resources. Such mechanism aims to separate researchers’
slices called “Flowspaces” and lets each slice to be managed by
a single and independent controller. Nevertheless, these slices are
completely independent and FlowVisor does not consider the tenant’s
virtual networks scalability and collaboration. HyperFlow [2] has
a complementary approach. It introduces the idea of enabling the
interconnection between separated slices. HyperFlow uses multiple
controllers to manage each tenant slices following the same concept
as FlowVisor. The connection between slices is provided by a
shared publish/subscribe system because controllers use to update
the network state and send commands to the other controllers. This
mechanism does not support routing over slices and either the slices
scalability. Similar to HyperFlow, Onix [3], is a distributed control
platform that facilitates implementation of distributed control planes.
It provides control applications with a set of general APIs to facilitate
access to network state, which is distributed over Onix instances.

Previous SDN researchers have successfully involved tenant in
network control which has been a long goal of the infrastructure
providers. However, they have made use of centralized or distributed
controllers to achieve strict and inflexible isolation between different
tenant’s slices and resorting to low-level encapsulations mechanisms
(e.g., VLANs, GRE) which help and facilitate network programmer
reasoning about their complex slices behavior. Unfortunately, there
is no mechanism to satisfy tenant requirements of today (e.g., slice
scalability, inter/intra slices communication and collaboration, load-
balancing, migration, etc ...). In addition, there have always concerns
about the SDN scalability bottleneck which has major drawbacks
including lack of either network or controller scalability or both.
As the network scales up, both the number of physical and virtual
switches increases to guarantee the minimal QoS to the end host.
Regardless of the controller capacity, a controller like NOX [7]
does not scale as the network grows. Specially, SDN community [8]
estimates that large DCNs consisting of 2 million VMs may generate
20 million flows per second and current OF controllers can handle
103 flows per second. The SDN controller becomes a key bottleneck
for the network scalability.

B. Industrial Background
For industrial implementation, network virtualization approaches

are ideally based to provide the transport by the physical network and
the virtual machine service by the hypervisors. The traditional slicing
technique has employed VLAN to isolate tenants’ machines on a
single L2 virtual network. However, this simple isolation approach
depends heavily on routing and forwarding protocols and is not easily
configured. VLAN management complexity imposes limitations on
cloud nature and services. More importantly, VLAN lacks scalability
resulting to a segmentation capacity limit to 4K tenants.

Table I summarizes the competing multiple Overlay Transport
Virtualization (OVT) as alternative technologies to substitute VLAN.
These technologies have been proposed within industrials that are in
contrast with the open standards used in OF solutions. They use Open
vSwitch (OVS) plus typical (L2/L3) physical switch to provide virtual
networking isolation and tunneling unlike VLAN which ignores and
dumbs OVS (e.g., VMware’s vCloud Director Networking Infras-
tructure (vCDNI) [9], HP’s NVGRE [10], Nicira’s Network Virtual
Platform (NVP) [11]). More recently, Cisco’s Virtual eXtensible LAN
(VxLAN) [12] has been adopted within several network vendor for
scalable LAN segmentation and automated provisioning of logical
networks between data centers across L3 networks.

The major inconvenience of overlay technologies (e.g., VxLAN,
NVGRE, vCDNI) is the missing of control plane. They can support
only one Overlay Virtualized Networks (OVN) due to the lack of

TABLE I: Comparison of industrial network virtualization
solutions
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scalability. They are competing encapsulations with minor technolog-
ical difference (e.g., TCP offload, load balancing, Security features)
and no one supported by legacy systems. The key mechanism of
scalable architecture is the control plane which maps remote VMs
MAC address into a transport network IP address. These technologies
face a crucial problem to determine the VM destination’s IP address.

Nicira’s NVP seems to be solving the problem with better scalable
solution than VxLAN using an OF controller to install MAC-to-
tunnel forwarding rules on OVS. Nicira’s NVP extends the SDN/OF
standard and introduces OVS protocol to configure OF switches.
Through user-space OVS database (OVSDB), it keeps track of the
topology existing tunnels. This approach scales better than VxLAN
but causes network overall performance degradation.

With SD-NMS, we believe that we can lift several roadblocks
by combining SDN network virtualization approaches and OVN
techniques. More precisely, SDN addresses flexibility, isolation, and
manageability through network slices, but suffers from scalability
limitations. Network overlay techniques overcome scalability issues
of cloud isolation mechanisms, but remain limited to single slice. In
addition, both solutions do not offer a complete transparent isolation
and lack the ability to use multiple network slices within individual
SDN programs. We can overcome their respective limitations into a
unified design and arrive to a consistent solution that consider both
networks and OF control plane scalability bottleneck. This combi-
nation enables to reap the benefits of SDN slices while preserving
scalability. This yields a network virtualization architecture that is
both flexible, secure, and manageable on one side, and scalable on
the other.

III. SD-NMS’S VIRTUAL TENANT SLICES ABSTRACTION
MODEL

In this section, we present our SD-NMS’s Virtual Tenant Slices
(VTSs) abstraction model in details. We make our approach suitable
for the cloud elastic environment and applicable for general tenant
requirements. It enables tenant to: (i) easily update and scale (in/out)
his allocated VTSs by adding new virtual network resources, (ii)
share allocated switches ports, tables, and links between his VTSs,
and (iii) easily transport his VMs to new location while maintaining
the isolation proprieties.

A. SD-NMS’s L2 ISOLATION MODEL
SDN slicing technique typically enforces strict and inflexible traffic

isolation using a hypervisor sitting between SDN planes as extension
to OF switches. SDN slices enforce basic isolation properties by
translating, inspecting, rewriting, and policing OF entries received
from tenant controllers (e.g., no flows originating from tenant1 slice
can reach tenanti ’s slices). This isolation layer added between SDN
planes provide a means for infrastructure provider to limit the scope
of tenant, restricting the network resources that may be affected by
the tenant configuration.



We take a step towards providing rich and extensible SDN slices
by presenting high level L2 isolation abstraction which divides the
shared network into VTSs. We lift SDN and overlay technologies
limitations by combining them into an unified design. With such
combination, we enable to reap the benefits of SDN slices while
preserving scalability. The results are recursive, solving overlay
approach by adding the missing control plane, and overcoming both
virtual networks and SDN control plane scalability bottleneck by
coupling SDN slices with overlay protocols.

Definition 1 (Datapath). Each physical or virtual OpenFlow
switch, in SDN data plane, represents one datapath (dp). The set
of all datapaths (dp) is denoted as D={dp0, dp1, . . . , dpu}; u = |D|
≥ 1. Each dpi is composed of set of OpenFlow ports, tables and
group tables, denoted respectively P(i)

+ , T (i)
+ ,and GT (i)

+ .

dpi = {P(i)
+ , T (i)

+ , GT (i)
+ } / P

(i)
+ ⊂ P , T (i)

+ ⊂ T , and
GT (i)

+ ⊂ GT , where:

• P={p0, p1, . . . , pk}; k = |P| ≥ 1: the set of all OpenFlow
switches’ ports in the multi-tenant data center. These ports
can be classified into two types. The first class (Pext) is
composed of the external ports which link between switches
(pi;i=1..k ∈ Pext). It must be shared between multi-tenant
network to forward packets to external networks or neighbours.
The second class (Pin) regroups the edge or internal port
which links OpenFlow port to virtual machine’s virtual network
interface (VNI) (pi;i=1..k ∈ Pin). Therefore, P can be defined
as P = Pin ∪ Pext.
A port of an OpenFlow switch is considered as boolean vector:
pi = (status, type, dedicated) ∈ {0, 1}3. The first class
status indicates the activation status of port (pi(0) = 0 for
inactivated port and pi(0) = 1 for activated one). The arriving
packets to this port will be automatically dropped. For the type
value, If pi(1) = 0 then pi ∈ Pin , otherwise pi ∈ Pext.
Finally, the dedicated class indicates if the port is dedicated
only for one tenant (pi(2) = 1) or shared between multi-tenant
network (pi(2) = 0).

• T ={t0, t1, . . . , th}; h = |T | ≥ 1: the set of OpenFlow tables
where:
ti;i=1..h is boolean vector: ti = (status, dedicated) ∈
{0, 1}2. ti(0) = 0 points out inactivated table and ti(0) = 1
for activation. The dedicated class indicates if the table is
dedicated only for one slice (ti(1) = 1) or shared between
multiple tenant slices (ti(1) = 0).

• GT ={gt1, gt2, . . . , gtl}; l = |GT | ≥ 1: the set of OpenFlow
group tables 1. Each gti;i=1..l is handling similar or common
actions. Similar to OpenFlow table, gti is boolean vector: gti =
(status, dedicated) ∈ {0, 1}2.

We define a set of controllers C={c1, c2, . . . , cr}; r = |C| ≥ 1 that
can be connected to one or more OpenFlow switches. Each controller,
ci;i=1..r can manage one or more VTS.

Definition 2 (Multi-tenant Network). Multi-tenant Network is
a set of virtual networks dedicated for multi-tenant, denoted as
VTM = {V TN1, V TN2, . . . , V TNw}; w = |V TM | ≥ 1.

Definition 3 (Virtual Tenant Network). Virtual Tenant Network is
a set of virtual tenant slices, denoted as VT N={V TS1, V TS2, . . . ,
V TSq}; q = |VT N | ≥ 1. We allocate for each VT N a dedicated
and shared resources from D.

Definition 4 (Virtual Tenant Slice).

1A group table consists of group entries. The ability for a flow entry to
point to a group enables OpenFlow protocol to present additional methods of
forwarding (e.g. select and all). It can be used for grouping common actions
of different flows or handling specific forwarding like load-balancing.

A tenant’s virtual network, VT N i;i=1..w, can be composed of
one or more Virtual Tenant Slice (V TS) where given SDN resources
allocated for tenant topology are dedicated for each slice including:

• a subset of OpenFlow switches ports (P), denoted as : P(i)
− /

P(i)
− ⊂ P ,

• a subset of processing tables (T ), denoted as : T (i)
− / T (i)

−
⊂ T ,

• a subset of groups tables (GT ), denoted as : GT (i)
− / GT (i)

−
⊂ GT .

• dedicated OpenFlow controllers, denoted as : C(i)− / C(i)− ⊂
C,

• and finally the list of the installed OpenFlow entries (FE(i)− ⊂
FE) in the allocated processing space T (i)

− and GT (i)
− where:

FE={fe1, fe2, . . . , fev}; v = |FE| ≥ 0. fei;i=1..v can be
installed on OpenFlow table ti or group table gti and is
dedicated for specific port pi. By default, we deny all flow
entering the tenant slice’s port similar to basic firewall con-
figuration. fei groups the list of all permitted flows, denoted as
PF={pf1, pf2, . . . , pfz}; z = |PF| ≥ 0. Each pfi;i=1..z is
detailing the permitted packet header attributes (e.g., IP source
and destination, Port source and destination, VXLAN tag . . . ).

From these definitions, our L2 isolation model simply states
that no network element (pi;i=1..k, tj;j=1..h or gto;o=1..l) can be
simultaneously dedicated and shared. A tenant slice could allocate
entire datapath’ ports and processing spaces. Furthermore, it may
consist of a mix of physical and virtual ports, and multiple pro-
cessing spaces (tj and gto) on different and distributed OpenFlow
switches. The mapping process is required to ensure VTS isolation
and compatibility on underlay network. Every logical identifier must
map to unique real one. This condition should be satisfied for all
OpenFlow switches and their related ports, tables and groups tables.
Moreover, FE and their respective PF specify the list of permitted
flows entering the VTS’s OpenFlow port linked to tenant’s VMs.
Finally, VTS can be programmed independently by tenant allocated
controllers (C(i)− ) while ensuring that VTS functions are compatible
with pushed FE(i)− , and that packets do not get interfering or sticking
during processing, except possibly by processing incoming flows on
shared P(i)

− which are checked on shared T (i)
− and GT (i)

− . Even
this form of interference is automatically ruled out through service
providers’ neutral controllers. These controllers manage the shared
network resources by detecting and eliminating any possible conflicts
between tenants’ FE(i)− before pushing it down to the underlay
network. This last feature is already covered by previous researches
(e.g., [13], [14]).

B. HOW SD-NMS’s ISOLATION MODEL MEETS THE
GOALS ?

Cloud multi-tenants will have different, multiple and arbitrary
virtual network services to deploy. A tenant may need to scale his
V TN to an arbitrary size or modify their boundaries without getting
forced into a complex and static reconfigurations. For example, new
VM may be needed to join tenant’s slice for arbitrary reasons such
as scaling tenant applications capacity or for load-balancing purpose.
For that, we facilitate such operation by simply adding new p, t and gt
to the VTS allocated resources without getting forced to rebuilding
steps. Also, a tenant wishing to share a VM or processing space
between two VTSs might simply need to set a port, table or group
table as shared network elements between them. A tenant might also
want to move some VMs or entire VTS’s VMs from one slice to
another. Our flexible isolation supports also this need by enabling
tenant to replicate the same configuration of moving VMs on the
joined VTS. We simply link migrated VMs to the new OpenFlow
ports added on the target VTS and then copy and adapt all their
related flow entries.



Most existing SDN isolation solutions cannot meet all these needs
simultaneously. SD-NMS’s L2 isolation model gives each tenant a
straightforward abstraction view of his allocated VTN topology and
related VTSs: each VM is linked to a single and unique pi, and
one dedicated processing space (tj and gto) is used to forward all
flows entering and leaving the slice. Our flexible and self-manageable
model (See section IV for more details) handles all tedious details
related to enforcing the isolation, freeing cloud tenant from having to
reason about tricky issues and all complex management operations.
This model allows a tenant to design his VTSs as if it is the sole
occupant of the shared infrastructure. That is, a tenant can be able to
define his own slices while he can also automatically: (i) scale them
to desired size by adding new instances, (ii) join migrated VMs from
one to another, and (iii) apply optimizations that make efficient use of
the allocated network resources by sharing them between allocated
slices. The first two features are straightforward and automatically
adapted by our high-level VTS abstraction. However, the last one
needs to be more developed and discussed considering that several
questions related to security enforcement and resources optimization
can be raised. If tenant wants to share a virtual application between
two VTSs (V TSX and V TSY ), all what he needs is to change the
“dedicated” field of VM’s linked pi from “true” to “false” in the
first V TSX and automatically add this OpenFlow port to the second
V TSY with a shared state. The questions that can be raised after
these actions in order to accomplish the tenant requirement are:
• Which table (tj) and group table (gto) will handle the pro-

cessing of entering and leaving packets from/to this shared port
(pi)?

1) It will be the dedicated processing space for V TSX or
V TSY or both by simply adding the shared application
attributes (MAC/IP Addresses and TCP port) into the
corresponding PF ?

2) Or, it will be redirected to a shared tj or gto grouping the
same FE and PF ?

• Are both VTSs controlled by the same tenant controller (c)? IF
not, the tenant must add the V TSX ’ controller to V TSY in
aim to handle all the shared pi’s traffic.

Considering any possible tenant choice from the above solutions,
we combine all possibilities of sharing VTS’s resources that can have
place, not only to predict any tenant needs but also to have a rich
and optimal isolation solution. Tenant’s VTSs can scale to huge sizes
with larger number of virtual applications or ports and accordingly
the number of allocated tables, group tables and controllers. To fully
realize the benefits of network resources sharing, we consider all
multiplexing choices that can be used to achieve the best resource
efficiency and cost savings. Increasing the scale alone, however,
cannot fully minimize the total cost, on an attractive “pay-as-you-
go” model for cloud computing. Therefore, we propose different VTS
types denoted by Sti∈{0..3} in Table II. Each St considers that one or
more network resources types (P , T , GT , C) will be dedicated only
for the deployed VTS. Thus, this constraint eliminates the possibility
of sharing these dedicated resources with other VTSs.

TABLE II: SD-NMS’s Virtual Tenant Slice Types
hhhhhhhhhhhhhVTS Type

Dedicated Resource
P T GT C

St0 3 3 3 3
St1 7 3 3 3
St2 7 3 7 3
St3 7 7 7 7

The core idea of these types is to provide different security levels
that ensure the desired isolation proprieties between tenant’s VTSs
while managing shared resources under mutual agreement enforcing
unified security policies. Each St will enforce the tenant sharing

constraints but it will have advantages and drawbacks at the same
time. The following table III compares between VTS’s types basing
on the following criteria:

TABLE III: VTS Types Advantages
hhhhhhhhhhhVTS Type

Advantages Scalability

O
ptim

ization

O
verhead

C
IA

St0 3 local highest high
St1 3 partial > St2 medium
St2 3 medium > St3 low
St3 3 overall negligible very low

• Scalability: will be always guaranteed for all St. Our isolation
model supports VTS scalability. It allows adding more network
resources to VTS.

• Optimization: A restriction mechanism is enabled by prevent-
ing the share of one or more resource types. St0 restricts
sharing all allocated resources, and thus network and compute
resources optimization can be done just locally in VTS. In
St1, it is permitted to share only P , so tenant will resort
to replicate the same resources configurations (T , GT and
C) on VTSs sharing these P. This kind of optimization is
indicated as “partial” because it can minimize the total cost.
The difference between St2 and St1 is that sharing OpenFlow
tables and controllers is permitted between VTS. Therefore, this
type can offer better optimization than the previous one. Finally,
the last type St3 allows the most efficient usage of tenant’s
allocated resources and overall optimization suitable for the
cloud “pay-as-you-go” model. This isolation type provides the
required optimization, smoothness and performance for cloud
application while ensuring the security between tenant’s VTSs.
The tenant can adapt the trust level and share any allocated
network resources between his VTSs for any reasons and any
desired combination.

• Overhead: Obviously, any extended mechanism to flow pro-
cessing will add more overhead. Thus, enforcing each kind of St
will require more additional time to check and verify restrictions
on VTS. Logically, St3 do not add any restriction on VTS
definition. All allocated resources may be shared. Therefore,
it will generate negligible overhead. We can conclude that
more overhead will be added as much we add restrictions: St0
overhead > St1 > St2 > St3, as shown in the evaluation
section V-B.

• Confidentiality, Integrity and Availability (CIA): Tenant must
be aware about the risks of each St on CIA before choosing.
If a shared resource will be compromised, it can affect the rest
of tenant network. Thus, different security levels are attributed
to VTS types, from the highest (attributed to St0) to the lowest
one (attributed to St3).

IV. SD-NMS’S DESIGN
A. SD-NMS Planes and Components

The proposed SD-NMS architecture is depicted in Figure 1. The
design is composed mainly of the following four planes:
• Data Plane : It includes physical servers hosting all virtualized

components (OF virtual switches and tenants’ virtual machines),
physical routers, and other network elements.

• Virtual Data Plane & SD-NMS VTSs : It consists of all virtual
applications hosting in servers. It represents virtual forwarding
layer resources such as OF switches and SD-NMS VTSs.

• Control Plane : our isolation approach gives to network virtual-
ization a specific description of abstraction to the control layer.
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Tenant’s controller is responsible for specific VTS behavior de-
termination such as path creation, data forwarding roles, traffic
engineering, etc. The Master controller is the network brain. It is
responsible for global network functionalities and requirements
such as multi-tenancy isolation, cross-domain communication.
SD-NMS Agent (SA) is an OF application extending the OF
Controller. It belongs to control plane layer and it is responsible
for providing the L2 isolation by verifying incoming packets on
datapath.

• Management Plane : there are two types of management plane
in our design:
- SD-NMS Autonomic Manager (SAM): enables an advanced
and enriched self-manageability of the SDN network which is
realized through number of control loops into the control plane.
It is a planning, analyzing, orchestrating and provisioning entity.
The analyzing entity would analyze the context and produce
the required sets of control policies. Then, SAM will plan and
execute the necessary management steps. The control loops are
typically policy based. Once a certain condition is satisfied on
the tenant’s modifications and management requirements, an
action will be running. Working with the Master Controller,
SAM could update its global knowledge of the network and
implement several functionalities such as self-provisioning, self-
configuration, self-organization and self-optimization.
- Tenant Management Planes (Management Plane1toN ): These
planes give to the tenant full access to control and manage their
VTSs. The desired tenant’s configuration is uploaded on OF
switches through the allocated controller.

B. SD-NMS Agent (SA) Design
We designed SD-NMS Agent (SA) as OpenFLow 1.3 application

for SDN switches (See Fig. 2) based on extensible packet matching
and pipeline processing. According to the specifications of this OF
version, OF pipeline is divided into multiple sub-pipelines (T (i)

+ and
GT (i)

+ ). The pipeline processing always starts at the first flow table:
the incoming packet is first matched against flow entries of table 0.
For that, we designed SD-NMS Agent to occupy the flow table 0
(SD-NMS Master Table) on each OF switch in DCN. We took this
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design decision based on the VTS definition which is translated into
flow entries in Master Table. The rest of flows tables will be allocated
or shared between SD-NMS slices. All VTSs’ ports are mapped to
a separated lookup table. Also, pipelines can be only dedicated or
shared depending on tenant’s VTS type choice. Thus, the Master
Table is used as a de-multiplexer which dispatches flows to different
and distributed VTSs and the extensible packet matching and the
pipeline features are used by SA to provide our flexible L2 isolation
model.

V. SD-NMS EVALUATION

In this section, we present the deployment model of SD-NMS
architecture, testbed and evaluation results.

A. SD-NMS Testbed scenario: 3-Tiers Application
We used KVM and five servers on Ericsson Blade System (EBS)

interconnected with a 10 Gbps Ethernet switch to create 12 virtual
machines (VM1...VM12) and 5 Open vSwitches (S1. . .S5). All
switches supports OF 1.3 version. We run a NOX OF 1.3 controller
[15] with our SA as extension which links the OF switches and
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presents the centralized SD-NMS Master controller. For each VTS,
we use one NOX to control allocated resources. The switches
are based on the Ericsson software implementation [16], with a
modification in the forwarding plane to support OF 1.3. The NOX is
based on Nicira’s NOX controller, in which OpenFlow processing
model is replaced with “Oflib” from the OpenFlow 1.3 Software
Switch.

We deployed a simple scenario similar to the architecture in Figure
1, with one tenant and four VTSs; each one has three VMs. Tables
III, IV and V represent the isolation and sharing rules in this scenario.

TABLE IV: SD-NMS VTSs dedicated resources

V TSID Dedicated resources
V TS1 S1.t1 , S1.t1 , S1.p3 , S1.p4
V TS2 S1.t2 , S1.gt2 , S1.p6 , S1.p7
V TS3 S5.t1 , S5.gt1 , S5.p2 , S5.p3 , S5.p4
V TS4 S5.t2 , S5.gt2 , S5.p6 , S5.p7

Notations :
Sj.pi : Switchj’s pi, Sj.ti : Switchj’s ti, Sj.gti : Switchj’s gti

TABLE V: SD-NMS slices shared resources

V TSsID Shared resources
V TS1 & V TS2 S1.t3 , S1.t3 , S1.p1 , S1.p2
V TS2 & V TS3 S5.t3 , S5.gt3 , S1.p1 , S5.p1 , S1.p5
V TS3 & V TS4 S5.t4 , S5.gt4 , S5.p1 , S5.p5

TABLE VI: SD-NMS Master Controller Tables

OVSs Tables
SD-NMS Master Tables S1.t0 , S2.t0 , S3.t0 , S4.t0 and S5.t0

B. Evaluation
In this subsection, we evaluate the overhead generated by involving

SA extended to NOX for enforcing our L2 isolation. The first
experiment uses a dedicated packet generator hping to evaluate the
VTS types Sti. In Figure 3a , we generate 100 UDP flows per second,
then we change the rate from 1 to 1000 to compare the delay of
different slicing types. The figure shows that the variation of delay
comparing to NOX is negligible. Even for VTS types, there is no
remarkable difference in delay between VTS types.

While it is difficult to establish direct comparison with others SDN
slicing approaches like FlowVisor since they are implemented their
solutions using local hypervisor on physical OF switches. FlowVisor
results [1] show that including the additional isolation layer in
physical switches causes an average overhead for responses of 0.48
milliseconds with 200 flow per seconds. With the same number of
requests, SD-NMS has higher delay of 0.17 milliseconds (See Fig.
3a). However, this delay is acceptable seen we are using distant
controller handling the isolation tasks.

In order to evaluate our approach in term of number of VTS
capacity, system scalability, and performance for a larger network,
we increase the number of VTSs and generate random the same rate
of UDP requests from random VMs. Figure 3b shows that the latency
remain reasonable and flow processing is not affected by the increased
number of VTS.

VI. CONCLUSION

In this paper, we introduced SD-NMS, a novel software-defined
architecture enabling multi-tenancy scalable, flexible and autonomic
isolation for virtual networks. Our architecture aims at automating
the instantiation of a virtual infrastructure while automatically
deploying the required security mechanisms to enforce the network
isolation between different tenant VTSs. This deployment is
driven by cloud tenant’s global isolation policy, and thus covers
all resources. Our approach demonstrates the simplicity and the
feasibility of SDN slicing technique. The flexibility gained through
this approach helps to adapt the network dynamically to both
unforeseen and predictable changes in the network. It offers the
possibility to run multiple slices within the same logical switch
without performance degradation.

Future work will be an extension for our paper to demonstrate the
simplicity of VTSs scalability which requires more extensive testing
that the experiment reflected in this article. Additional testing of
tenant’s VMs and VTSs migration is in fact part of challenging future
work.
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