
Kaleidoscope: Real-Time Content Delivery in

Software Defined Infrastructures

Qi Zhang, Sai Qian Zhang, Jieyu Lin, Hadi Bannazadeh, Alberto Leon-Garcia

Department of Electrical and Computer Engineering,

University of Toronto, Toronto, ON Canada

{ql.zhang, sai.zhang, jieyu.lin, hadi.bannazadeh, alberto.leongarcia}@mail.utoronto.ca

Abstract—Real-time content delivery services such as live
media streaming, news casting and real-time event subscrip-
tion/publication systems have become popular in recent years.
Unlike traditional content delivery applications, real-time content
delivery requires live content to be processed and delivered to
end users in a timely and efficient manner. Furthermore, as both
content producers and consumers may change over-time, it is a
challenge to provision resources for these applications to achieve
high service quality while minimizing total operational costs.

Fortunately, the recent development of Cloud computing and
Software Defined Networking (SDN) enables efficient imple-
mentation of real-time content delivery systems. Recently, the
concept of Software Defined Infrastructure aims at combining
Cloud computing and SDN to provide an unified framework
for application deployment and management. In this paper, we
present Kaleidoscope, an architecture for real-time content deliv-
ery in Software Defined Infrastructures. Kaleidoscope leverages
network virtualization, SDN-based broadcasting and dynamic
cloud resource provisioning to achieve high resource efficiency
and service performance. Specifically, we present a resource
management scheme that controls Cloud resource allocation and
network configuration at run-time in accordance with service
demand. Experiments show that Kaleidoscope is able to achieve
lower resource cost while providing high service quality.

I. INTRODUCTION

Real-time content delivery services such as live media

streaming, web-casting and real-time monitoring have gained

significant popularity in recent years. In these applications, a

content producer publishes live contents to the content delivery

system. The live content then undergoes several stages of

processing (e.g. video transcoding and segmentation) and is

delivered to content consumers in real-time. The capability of

providing live content as it becomes available has generated

considerable attention. For example, live video streaming

applications like Twitch [1] has received 45% increase in

monthly viewers compared to 2013 [2], and its peak Internet

traffic has surpassed that of Facebook [3]. It has been reported

that live-streaming has become the most popular activity for

sports fans online [4], and Cisco predicted that the total live

streaming and video on demand will account for more than

90% of Internet traffic by 2016 [5].

Unlike traditional content delivery systems, managing a live

content distribution system introduces several key challenges.

First, the content created by the content producer must be

processed in real time and delivered to multiple content

consumers. Therefore, sufficient bandwidth and processing

capacities must be provisioned to avoid delay in the delivery of

the content. Second, as both content producers and consumers

may come from different geographical regions, the content

must be delivered simultaneously to multiple locations in

a responsive and cost-effective manner. Finally, since both

content producers and consumers may join and leave the

system over time, there is a need to provision resources

dynamically to minimize total cost. However, dynamic service

reconfiguration often incurs a cost in terms of resource usage

and performance penalty. Therefore, it is necessary to mini-

mize the reconfiguration cost during reconfiguration process.

Fortunately, the recent development of Cloud computing

and Software Defined Networking (SDN) has enabled new

techniques for implementing real-time content delivery sys-

tems. Cloud computing permits dynamic creation, deletion and

migration of virtual servers, while SDN enables underlying

networks to be dynamically reconfigured for both unicasting

and broadcasting. Recently, SDN has also been used to control

wide-area networks. For instance, Google has deployed SDN

to interconnect data centers across multiple geographical re-

gions [6]. While traditionally SDN and Cloud resources are

managed by separate management systems, recently there is a

trend towards integrated systems that provide unified manage-

ment of both Cloud resources and SDN enabled-networks. In

particular, Software Defined Infrastructure (SDI) [7] aims at

providing open interfaces for heterogenous resources, includ-

ing both compute resources and network resources controlled

by SDN. This unified management framework brings numer-

ous benefits for real-time content delivery services:

• Cloud computing enables rapid acquisition and release of

computing resources, which allows live content delivery

systems to scale up and down dynamically. Furthermore,

leveraging heterogeneity in geographically distributed

data centers, it is possible to reduce total bandwidth usage

by allocating servers in data centers close to end users.

• SDN enables efficient implementation for multicasting

at L2/L3 switches and routers. This enables the content

delivery system to achieve better network efficiency com-

pared to overlay-based multicasting schemes. In addition,

SDN enables user-controlled routing of network flows,

which allows for dynamic reconfiguration of multicast

sessions. This can improve the overall efficiency of the

content delivery system.

• SDI provides support for Network Function Virtualiza-

tion (NFV). The goal of NFV is to virtualize network

node functions (e.g. middleboxes such as load balancers,

firewall, intrusion detection systems) into building blocks

that may be connected together to create communication

services [8]. In SDI, NFV modules can be handled as

virtual servers running in physical devices (e.g. servers

and middleboxes).

Based on these observations, in this paper we present Kalei-

doscope, an architecture for real-time content delivery in SDI.

Kaleidoscope leverages network virtualization, SDN-based

broadcasting and dynamic resource provisioning to achieve

better resource efficiency and service performance. A key

challenge in the design of Kaleidoscope is the design of

the resource management scheme that jointly controls Cloud

resource allocation and network configuration at run-time in

accordance with service demand. In this paper, we provide

our technical solution to this problem, and evaluate its perfor-

mance using realistic simulations. While we are working on

a full implementation of Kaleidoscope, our evaluation results

already demonstrate that our system is able to achieve lower

resource cost while ensuring high service quality.

The rest of the paper is organized as follows. Section

II describes the architecture of Kaleidoscope. We formally

present the resource allocation problem in Section III and

provide our solution in Section IV. We evaluate our solution

in Section V, and draw our conclusion in Section VI.

II. SYSTEM ARCHITECTURE

This section provides an overview of Kaleidoscope. We

consider a geographically distributed Cloud that consists of

multiple data centers of various sizes. We assume these data

centers are connected through SDN-enabled networks. To keep

our model simple, currently we only consider the case where

the physical network is owned by a single Internet Service

Provider (ISP). It is in our future work to consider the case

where the physical network is operated by multiple ISPs.

The realization of a real-time content delivery system is

shown in Figure 1. The system can be divided into 3 tiers.

In the Producer tier, the content producer is responsible

for registering and uploading its content to the system. The

updated content is then processed in multiple steps by the

various servers and NFV modules (e.g. transcoders) in the

Cloud tier. In this paper, we used the term server to refer

to either a server that runs in a Cloud, or a NFV module

in the network. The output will then be distributed to end

users using multicast mechanisms. In the ideal scenario, we

would like to use network-level multicast supported by SDN

to deliver content all the way to the end users. However, since

not every network domain supports network-level multicast, In

Kaleidoscope, the output content is first distributed to multiple

distribution servers (i.e. content servers) using network-level

multicast mechanisms. Then, the User tier which is beyond

the control of Kaleidoscope finally delivers the content to end

users using unicast mechanisms.

The implementation of Kaleidoscope is shown in Figure 2.

In a typical scenario, the content producer submits a request

Fig. 1. Architecture of a Real-Time Content Distribution System

Fig. 2. Architecture of a Real-Time Content Distribution System

to the Registration Server, which registers the content in

the system. The request also allows the content producer

to specify the intermediary processing units as well as the

bandwidth requirement after each processing step. The content

submission request is then forwarded to the scheduler, which

makes an initial scheduling decision. The scheduling then

invokes the API of the SDI Controller, allowing the VMs

and VN to be allocated in the physical infrastructure. At run-

time, each end user may send its content request to a Lookup

server (such as load balancers and DNS servers), which will

then redirect the request to an appropriate distribution server.

The end user then establishes the connection with the content

server to start the streaming session.

Over time, the Request Monitor collects the statistics of

content requests as well the resource status information. The

scheduler then uses this information to make reconfiguration

decisions. The dynamic reconfiguration is performed periodi-

cally. However, when demand spike occurs, the Request Mon-

itor may trigger the Scheduler to make immediate scheduling

decisions. In this work, we assume content demand is a known

for each location at a given time. The demand forecasting

and estimation problem has been studied extensively in the

literature [9], [10], and existing solutions can be applied to

Kaleidoscope. Finally, it should be mentioned that many real-

time streaming systems allow end users to assist each other

by forming an overlay network [11], [12]. Kaleidoscope can

handle this case by letting the Request monitor to capture the

aggregate demand from each access network.

As end users may join and leave the system at any time,

each multicast topology may need to be reconfigured over

time. With the global view of network state, SDN allows

flow migration to be done promptly within seconds. However,

for live contents, even interruptions of a few seconds can be

disruptive, not to mention that the time-consuming process of

launching or migration of servers may also be involved during

topology reconfiguration. To minimize service disruption, cur-

rently we do not perform server migration in Kaleidoscope.

Rather, the multicast topology is gradually reconfigured as

demand arrives and leaves the system. Specifically, when new

demand joins the system that causes the multicast tree to route

to a new distribution server, we construct a path from the new

distribution server to multicast tree. Similarly, when demand

leaves the system, we can gradually remove the the branch

of the multicast tree that is no longer being used. In this

case, the reconfiguration cost refers to the time of setup a

new path to the distribution server, and the time to remove

a path (and perhaps deallocate the distribution server). In the

following sections, we shall describe the problem formulation

as well as our technical solutions for the dynamic multicast

tree scheduling problem in Kaleidoscope.

III. PROBLEM FORMULATION

We now formally introduce the multicast tree scheduling

problem. Given a set of real-time content delivery services,

some of which has already been scheduled, our goal is to find

a new resource allocation of services that maximizes the total

net revenue. Mathematically, we model the network as a graph

G = (N,L), where each node n ∈ N can be a server (either

a virtual server or a NFV component), switch or router. In

our model, there are R types of resources. Each node n has

resource capacity Cnr for resource r ∈ R. Each link l ∈ E
has bandwidth capacity Cl and latency δl.

In our system, there are I contents to be published, each

content i ∈ I has a source (i.e. the content producer) si
and a set of destinations Di (i.e. access networks). Similar

to existing work [11], we assume each destination d ∈ Di

has an aggregate demand qid in terms of bandwidth usage,

regardless of whether overlay-based multicast is used in the

user tier. Each content i from si is forwarded to Di through

a tree ti that involve one or more servers (e.g. virtual servers

and NFVs). We assume each content i requires Ki processing

steps, each step k ∈ {1, 2, ...Ki} needs to be performed in a

server pik. For each content i ∈ I , let Ti denote the set of all

feasible multicast trees. While in theory it is possible to have

multiple multicast trees for the delivery of a single content

i each carrying a fraction of the traffic, doing so at network

level is difficult for several reasons. First, implementing multi-

path routing using software such OpenFlow can be a complex

task. Second, using multiple broadcast trees would introduce

synchronization issues at both servers and end host. Thus, in

this work we assume a single multicast tree rooted at the

content producer is used. Let xit ∈ {0, 1} denote whether

multicast tree t ∈ Ti is selected for multicasting content i.
The following constraint must be satisfied:

∑

t∈Ti

xit ≤ 1 ∀i ∈ I (1)

For each multicast tree ti ∈ Ti, define aitkn ∈ {0, 1} as

a known constant that denotes whether tree ti places the kth

server at node n. Similarly, let aitkl denote whether link l ∈ E
is used by multicast tree ti between k−1th and kth server. For

the sake of simplicity, let source si represent the 0th server,

distribution servers as the Kith servers and each destination as

the one of the (Ki +1)th servers. Furthermore, let bik denote

the bandwidth usage by a multicast tree i between the (k−1)th
and the kth server.

A. Modeling Capacity constraints

We now describe the server and network capacity con-

straints. Our model assumes there are M type of servers. For

each content i ∈ I, define bikτ ∈ {0, 1} as a known constant

that indicates whether of pik is of type τ . Let yτn ∈ N
+

denote the number of servers of type τ at location n, and pτ
denote the processing capacity of a type τ server. Essentially

pτ determines the maximum number of streams that can

be processed by a type τ server. For example, a transcoder

application may process at most 10 streams simultaneously.

This implies the following constraint must be satisfied:

∑

i∈I

Ki+1
∑

k=0

∑

t∈Ti

xitaitknbikτ ≤ yτnpτ ∀τ ∈ M,n ∈ N.

(2)

Each server of type τ also has resource requirements. Let cτr
denote the resource requirement of a type τ server for resource

r. The following server capacity constraint states that the total

resource usage should not exceed the capacity of each node:

∑

τ∈M

yτncτ ≤ Cnr ∀n ∈ N (3)

Similarly, the link capacity constraint can be stated as:

∑

i∈I

Ki+1
∑

k=0

∑

t∈Ti

xitaitklbik ≤ Cl ∀τ ∈ M, l ∈ L (4)

B. Demand Constraint

As the distribution servers (i.e., the Kith processing unit)

delivers the content to end users using unicast, these leaf nodes

must have sufficient capacity to deliver the content to end

users. Let Bn denote the outgoing bandwidth capacity of node

n that can be used to serve end users, and let Bin denote the

bandwidth capacity of node n allocated for delivering content

i. Furthermore, let σitdn denote the demand from d assigned to

distribution server at n for content i delivered using multicast

tree t. We now have the following demand constraints:
∑

d∈Di

∑

t∈Ti

σitdnbi(Ki+1) ≤ Bin ∀i ∈ I, n ∈ N (5)

∑

i∈I

Bin ≤ Bn ∀n ∈ N (6)

Bin

Bn

≤ xitaitKin ∀i ∈ I, t ∈ Ti, n ∈ N (7)

∑

t∈Ti

∑

n∈N

σitdn = qid ∀i ∈ I, d ∈ Di, n ∈ N (8)

Eq. (5) ensures that total bandwidth demand for content i
assigned to n should be at most Bin. Eq. (6) specifies that the

total bandwidth allocated should not exceed the total available

bandwidth of the physical node. Eq. (7) states that the Bin ≥ 0
can only be true if n is a leaf node of the multicast tree for

content i. Finally, eq. (8) ensures that total demand from each

location d is fully satisfied.

C. Optimization Objective

Given a set of real-time content delivery requests, some of

which have already been scheduled, the goal of the scheduling

problem is to find a new resource allocation configuration that

maximizes the total revenue minus the total operation cost.

Let Ri denote the revenue of serving a content i ∈ I . Total

revenue R obtained from serving contents becomes

R =
∑

i∈I

∑

t∈Ti

xitRi. (9)

The operational cost consists of (1) resource usage cost,

(2) run-time performance cost and (3) reconfiguration cost.

Specifically, Let πτn denote the cost of allocating a type τ
server at n, πn denote the unit cost for the outgoing bandwidth

in the user tier at node n, and πl denote the bandwidth cost

of link l in the Cloud tier, the resource cost C becomes

C =
∑

τ∈M

∑

n∈N

yτnπτn +
∑

i∈I

Binπn

+
∑

i∈I

Ki
∑

k=0

∑

t∈Ti

xitaitklbikπl. (10)

The performance cost refers to the penalty due to violation

of performance constraints. Many types of real-time content

delivery applications such as real-time monitoring have both

bandwidth and end-to-end delay requirements. While the ca-

pacity constraints ensure sufficient bandwidth is allocated to

each multicast tree, the penalty due to violation of delay

requirement still need to captured in our model. In this case,

we assume each content i has a maximum expected end-to-

end delay D̄i that is specified in the content request. We also

assume each server τ has a processing delay δτ . For each

multicast tree t rooted at si with destinations Ni, let Ltn

denote the delay between the source node of multicast tree

t and n. Ltn can be computed by summing up the link delay

and processing delay between si and n in multicast tree t.

Ltn =

Ki
∑

k=1

xitbikτ δτ +
∑

t∈Ti

Ki
∑

k=1

∑

l∈L

xitaitklδl (11)

Similarly, let Ldn denote the average communication delay

between d ∈ Di and a distribution server n in the user tier.

The delay penalty cost P can now be expressed as

P = w ·
∑

d∈Di

∑

t∈Ti

∑

n∈N

σitdn

(

Ltn + Ldn

D̄i

− 1

)

, (12)

where the term in the bracket captures the ratio between the

violation in delay Ltn+Ldn− D̄i and the expected maximum

delay D̄i, and w represents the per user penalty cost.

Finally, as mentioned in Section II, the reconfiguration cost

can be measured by the waiting time of setup a new path to

the distribution server, and the time to remove a branch in

the multicast tree. Let t̄ ∈ Ti denote the the old multicast

tree that is being used, and t denote the new multicast tree

that is to be provisioned. We define ∆t̄t denote the cost

of changing multicast tree t̄ to t. ∆t̄t can be computed by

summing up the difference in the two multicast trees weighted

by reconfiguration time. The reconfiguration cost G becomes:

G =
∑

i∈I

∑

t∈Ti

∆t̄tπt̄t (13)

The dynamic multicast tree scheduling problem becomes

max
{xit,σitdn}

R− C − P −G, (14)

subject to constraints (1)-(8). It is easy to show that this prob-

lem is NP-hard. In fact, this problem generalizes multi-source

unsplittable flow problem, which is NP-hard to approximate

with an approximation factor better than Ω(|L|
1

2) [13].

It may seem that our problem shares many similarities with

the connected facility location problem [14], whose goal is to

find a set of servers to be allocated that have sufficient capacity

to serve end users, and construct a Steiner tree to connect the

servers such that the sum of server allocation cost, the cost

of connecting end users to servers and cost of constructing

the steiner tree is minimized. However, the connected facility

location problem neither considers the intermediary servers

nor the bandwidth capacity of the links in the Steiner tree.

In particular, routing flows through intermediary servers may

introduce loops [15] in the multicast tree, which is not captured

by the classic Steiner tree problem.

IV. SOLUTION ALGORITHM

In this section, we present our algorithm for the dy-

namic multicast tree scheduling problem. As this algorithm

is reconfiguration-aware, it can be used for both scheduling

a new content request or adapting existing multicast trees to

new demand patterns.

It is easy to see that linear programming (LP)-relaxation

based solutions such as [16] do not scale well for our problem

due to O(nn−2) multicast trees Ti for each i ∈ I . Therefore,

we resolve to develop greedy algorithms for our problem.

Algorithm 1 Resource Allocation Algorithm

1: Estimate demand for content i ∈ I at each location in d ∈ Di

2: for each i ∈ I do do
3: w← 0, κ← 0, qκid ← qid for all d ∈ Di

4: while w ≤ wmax do
5: while ∃d : qκid ≥ 0 do
6: for n ∈ N that can schedule a Kith server for i do
7: Compute a set of demand {σκ

idn} using eq. (17)
8: {σ∗κ

idn} ← {σ
κ
idn} with the lowest cost

9: for d ∈ Di do
10: qκid ← qκid −

∑
n∈N

σ∗κ
idn

11: κ← κ+ 1
12: // now construct multi-cast tree
13: κ← 0
14: while κ ≤ |nKi

| do
15: for n ∈ N do
16: for k = 1...Ki do
17: compute score(n, k, κ) according to equation (17)
18: Nf ←Top Nth nodes with lowest costs

19: for each {n1, n2..., nKi
} ∈ NKi do

20: Compute Cnκ
according to equation (16)

21: P ∗

κ ← Cnκ
with the best cost

22: Embed virtual links according to P ∗

κ

However, unlike the traditional greedy virtual network em-

bedding algorithm (e.g. [17]), our algorithm must find a

right balance between minimizing total resource cost and

meeting delay requirements. If we place servers based solely

on resource cost, the resulting multicast tree may not satisfy

the delay requirement for the content.

Motivated by this observation, in our algorithm we first

identify the distribution servers to which end users should be

connected. Once the distribution servers have been selected,

we then construct a multicast tree to connect the distribution

servers to the source. Finding the optimal set of distribution

servers can be formulated as a special case of the capacitated

facility location problem [18]. In this case, we propose a

greedy algorithm similar to the approximation algorithm for

the facility location problem. The greedy heuristic proceeds

in iterations. In iteration κ, we select a content server at a

node n ∈ N and assign a set of demands σκ
idn from d to n to

minimize a cost function Cκ
σn:

Cκ
σn = min

{σκ

idn
}

{

fn +
∑

σκ
idnLdn

∑

m̄∈N̄ σκ
idn

}

(15)

where fn is the cost for operating a distribution server at n:

fn =

{

w · Lsin + πnτ(i,k) + snτ(i,k) There is no server at n

w · Lsin + πnτ(i,k) Otherwise

The value of Cκ
σn can be computed optimally in a greedy

manner, by first sorting access networks in Di in increasing

order of distance to n, and then greedily assigning demand to

n according to the order. Due to the
∑

m̄∈N̄ σκ
idn term in the

denominator in equation (15), the value of Cκ
σn will decrease

at first. But as Ldn increases over time, the value of Cκ
σn will

eventually start to increase. Finding this optimal turning point

that minimizes Cκ
σn can be done greedily using binary search.

Once we have identified the distribution servers to which

the demand should be assigned, we then need to construct

a multicast tree from the source to the distribution servers.

Finding the optimal multicast tree can be modeled as a special

case of the Steiner tree problem. However, the traversal of

intermediary servers makes the traditional spanning tree-based

approximation algorithm [18] ineffective, due to the possible

occurance of loops. In our context, as we are also minimizing

the height of the multicast tree, we apply a simple greedy

heuristic as follows. We first sort the distribution servers in

decreasing distance to si, and iteratively establish a path pn
from si to each node that leverages existing allocated servers

and links as much as possible. Specifically, let uκ
ikn ∈ {0, 1}

as a boolean variable indicates whether there is a server

responsible for the kth processing step of content i at node

n at the start of iteration κ, and let uκ
ikl ∈ {0, 1} indicates

whether link l is used for transferring content after the kth

processing step. Let τ(i, k) ∈ M represent the type of the kth

server. As the κth iteration, we allocate a path from si to the

nκ, the κth node in the list that minimizes the allocation cost

Cnκ
=

Ki
∑

k=1

∑

n∈pn

uκ
iknπτ(i,k)n +

Kl
∑

k=0

∑

l∈pn

uκ
iklbikπl (16)

Finding the exact minimum cost path can be done by exam-

ining all combinations of Ki nodes and find shortest paths

between them, which can be done in O(KiN
Ki+1 logN) time.

This algorithm performs well when Ki is small. However,

when Ki is large, this algorithm can take very long to run. To

improve the running time of the algorithm, we can focus our

search in a subset of the nodes. The intuition is that the node

selected for hosting servers must either have low resource cost

or near the shortest path between si and nκ. Thus, we compute

a score for each node in the subset, which is determined by

score(n, k, κ) =uκ
iknπτ(i,k)n + wLsinκ

+ wLsi,nκ
(17)

and select the top Nth nodes for use of computing path

between si and nκ. The cost of computing the path becomes

O(NKi

th |N | log |N |) time. Finally, the overall running time

of our dynamic multicast tree scheduling algorithm is rep-

resented by Algorithm 1. The running time of the algorithm

is O(w|N | log |N |(|N |+NKi

th)).

V. EXPERIMENTS

We have implemented a prototype of Kaleidoscope using

OpenStack and OpenFlow, and evaluated the performance of

our algorithm using simulations. We simulated a 100 nodes

power-law topology where 15% nodes are selected as data

centers of various resource capacities, and around 25% nodes

as access networks. The resource capacities for CPU, memory

and disk of each data center are randomly generated between

0− 1000 cores, 10− 1000GB RAM, and 1− 100 TB storage,

respectively. The link capacities are set between 100MB/s
to 10GB/s. As for the content requests, the CPU, memory

and disk requirement of each type of server are generated

randomly between 1−4 cores, 1−10GB RAM and 0.1−1TB

storage. These values are typical in production Cloud data

0 1200 2400 3600 4800 6000 7200
0

100

200

300

400

500

600

Time (minute)

R
ev

en
u
e

(D
o
ll

ar
s)

Kleidoscope

MinCost

MinDistance

0 1200 2400 3600 4800 6000 7200
0

100

200

300

400

500

600

Time (minute)

R
ev

en
u
e

(D
o
ll

ar
s)

Fig. 3. Net income over time

0 1200 2400 3600 4800 6000 7200
0

10

20

30

40

50

60

70

80

90

100

110

Time (minute)

R
es

o
u
rc

e
C

o
st

 (
D

o
ll

ar
s)

Kleidoscope

MinCost

MinDistance

0 1200 2400 3600 4800 6000 7200
0

10

20

30

40

50

60

70

80

90

100

110

Time (minute)

R
es

o
u
rc

e
C

o
st

 (
D

o
ll

ar
s)

Fig. 4. Resource cost over time

0 1200 2400 3600 4800 6000 7200
0

10

20

30

40

50

60

70

80

90

Time (minute)

D
el

ay
 V

io
la

ti
o
n
 C

o
st

 (
D

o
ll

ar
s)

Kleidoscope

MinCost

MinDistance

0 1200 2400 3600 4800 6000 7200
0

10

20

30

40

50

60

70

80

90

Time (minute)

D
el

ay
 V

io
la

ti
o
n
 C

o
st

 (
D

o
ll

ar
s)

Fig. 5. Delay penalty cost over time

0 1200 2400 3600 4800 6000 7200
0

1

2

3

4

5

6

Time (minute)

R
ec

o
n
fi

g
u
ra

ti
o
n
 C

o
st

 (
D

o
ll

ar
s)

Kleidoscope

MinCost

MinDistance

0 1200 2400 3600 4800 6000 7200
0

1

2

3

4

5

6

Time (minute)

R
ec

o
n
fi

g
u
ra

ti
o
n
 C

o
st

 (
D

o
ll

ar
s)

Fig. 6. Reconfiguration cost over time

Kaleidoscope minCost minDist
0

2

4

6

8

10

12

14
x 10

4

Fig. 7. Total Income

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3
x 10

4

w

R
ev

en
u
e

(D
o
ll

ar
s)

Kleidoscope

MinCost

MinDistance

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3
x 10

4

w

R
ev

en
u
e

(D
o
ll

ar
s)

Fig. 8. Impact of w on net income

centers [19]. To simulate the heavy-tail distribution of real-

time content popularity [20], we set 2% of the content sessions

to be long (between 2-5 days), and the rest to be short (0.5-

3 hours). The arrival rate of short content sessions follows a

Poisson distribution with an average arrival rate of 18 requests

per hour during normal working hours (i.e. between 9am and

5pm), and 6 requests per hour during other hours.

We compared Algorithm 1 with two heuristics. The min-

Cost heuristic assigns demand to servers solely based on re-

source costs, and ignores delay requirements. The minDistance

heuristic gives high priority to satisfying delay requirements.

Specifically, it greedily selects servers that minimize the sum

of distances from each access network to the content source.

We set per-user penalty to w = 0.1 in these experiments. The

total net revenue is shown in Figure 3 for all 3 algorithms for a

duration of 5 days. Clearly, our algorithm achieves the highest

income, while minDistance achieves the lowest income. The

reasons can be found in Figure 4 5. In particular, the minCost

algorithm achieves much lower resource cost than the minDis-

tance algorithm, but the delay penalty cost of minCost is higher

than minDistance. In this case, our algorithm tries to balance

the objective of minimizing resource cost and satisfying delay

requirement. As a result, it incurs a small amount resources

cost to reduce penalty cost and achieve higher net income.

Figure 6 shows the reconfiguration cost of each algorithm.

We see that minCost incurs the highest reconfiguration cost

because it is most sensitive to demand fluctuation. Finally,

Figure 7 shows the total income obtained by all 3 algorithms,

our algorithm outperforms minCost algorithm by 18%.

To better understand the trade-off between resource cost and

delay violation penalty, we varied the value of w between 0 to

0.5 and evaluated the total net income achieved by each algo-

rithm for 24 hours. The results are shown in Figure 8. It is clear

that as w increases, the revenue obtained by each algorithm

decreases. However, minCost algorithm produces the sharpest

drop due to lack of consideration of delay violation penalty.

As a result, minDistance outperforms minCost when w is

large. However, minCost still yields lower revenue then our

algorithm as it does not take resource cost into consideration.

In all cases, our algorithm consistently achieves 10−20% gain

in net income compared to the other algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present Kaleidoscope, an architecture for

real-time content delivery that leverages both Cloud computing

and SDN. Kaleidoscope utilizes network virtualization, SDN-

based broadcasting and dynamic cloud resource provisioning

to achieve better resource efficiency and service performance.

We further present a dynamic resource management scheme

that modifies Cloud resource allocation and network con-

figuration at run-time in accordance with service demand.

Simulations show our system is able to achieve lower resource

cost while providing high service quality. Currently we are

working on a full implementation of Kaleidoscope that will

be deployed in a real SDI such as the SAVI testbed [7].

ACKNOWLEDGEMENT

The work of this paper is funded by the Smart Applications

on Virtual Infrastructure (SAVI) project under National Sci-

ences and Engineering Research Council of Canada (NSERC)

Strategic Networks grant number NETGP394424-10.

REFERENCES

[1] “Twitch,” http://www.twitch.tv/.
[2] “Twitch dominated streaming in 2013, and here are the numbers

to prove it,” http://www.dailydot.com/esports/twitch-growth-esports-
streaming-mlg-youtube-2013/.

[3] “Twitch.tv ahead of facebook in peak traffic,”
http://www.lazygamer.net/general-news/twitch-tv-ahead-of-facebook-in-
peak-traffic/.

[4] “Research: Live-streaming most popular activity for sports fans online,”
http://iq.videonuze.com/content/view/18716.

[5] “Internet video homepage,” http://www.cs.cmu.edu/ internet-video/.
[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” in Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM. ACM, 2013, pp. 3–14.

[7] J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia, “Savi testbed: Control
and management of converged virtual ict resources,” in Integrated Net-
work Management (IM 2013), 2013 IFIP/IEEE International Symposium

on. IEEE, 2013, pp. 664–667.
[8] “Etsi isg on network functions virtualization (nfv),”

http://portal.etsi.org/portal/server.pt/community/NFV/367.
[9] D. Niu, B. Li, and S. Zhao, “Understanding demand volatility in large

vod systems,” in NOSSDAV. ACM.
[10] D. Niu, Z. Liu, B. Li, and S. Zhao, “Demand forecast and performance

prediction in peer-assisted on-demand streaming systems,” in INFO-

COM, 2011 Proceedings IEEE. IEEE, 2011, pp. 421–425.
[11] F. Wang, J. Liu, and M. Chen, “Calms: Cloud-assisted live media stream-

ing for globalized demands with time/region diversities,” in INFOCOM,
2012 Proceedings IEEE. IEEE, 2012, pp. 199–207.

[12] A. H. Payberah, H. Kavalionak, V. Kumaresan, A. Montresor, and
S. Haridi, “Clive: Cloud-assisted p2p live streaming,” in Peer-to-Peer

Computing (P2P), 2012 IEEE 12th International Conference on. IEEE,
2012, pp. 79–90.

[13] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, “Approximation
algorithms for the unsplittable flow problem,” in Approximation Algo-
rithms for Combinatorial Optimization. Springer, 2002, pp. 51–66.

[14] C. Swamy and A. Kumar, “Primal-dual algorithms for connected facility
location problems,” in Approximation Algorithms for Combinatorial

Optimization. Springer, 2002, pp. 256–270.
[15] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-

fying middlebox policy enforcement using sdn,” in ACM SIGCOMM,
2013.

[16] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in INFOCOM

2009, IEEE. IEEE, 2009, pp. 783–791.
[17] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network

embedding: substrate support for path splitting and migration,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[18] V. V. Vazirani, Approximation algorithms. springer, 2001.
[19] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Harmony:

Dynamic heterogeneity-aware resource provisioning in the cloud,” in
Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International
Conference on. IEEE, 2013, pp. 510–519.

[20] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live
streaming workloads on the internet,” in Proceedings of the 4th ACM

SIGCOMM conference on Internet measurement. ACM, 2004, pp. 41–
54.

