Heterogeneous Cloud Systems Monitoring Using
Semantic and Linked Data Technologies

Alessandro Portosa™, M. Mustafa Raﬁquei, Spyros Kotoulas, Luca Foschinif, Antonio Corradif
fDipartimento di Informatica — Scienza e Ingegneria (DISI), University of Bologna, Italy;
IBM Research, Ireland
Email: alessandro.portosa@studio.unibo.it; mustafa.rafique @ie.ibm.com; spyros.kotoulas;
luca.foschini @unibo.it; antonio.corradi @unibo.it

Abstract—Cloud businesses need comprehensive visibility on
hardware and software components, their utilization and their
configuration. In addition, they need to integrate such information
with their asset management systems and publicly available
information such as hardware specifications. In this paper, we
present an approach for cloud management and monitoring
based on a semantic layer that unifies different interfaces and
representations, and makes all relevant information accessible
from a single point. We show a proof-of-concept based on
OpenStack and Linked Data technologies and evaluate it in
terms of overhead, query execution times, and effectiveness in
the data gathering phase. Our findings indicate that a semantics-
based approach is indeed feasible and advantageous for providing
uniform access across different cloud environments and levels.

Keywords—Cloud computing; monitoring; * as a Service
(*aa8); linked data

I. INTRODUCTION

Cloud computing systems are generally composed of di-
verse infrastructures that run on diverse software and hardware
components. Depending upon the customers’ requirements,
these components are used to provide different service offers,
such as Software as a Service (SaaS), Platform as a Service
(PaaS), Infrastructure as a Service (IaaS), Database as a service
(DBaaS), etc. Software components in cloud systems often
have diverse ownership, some being owned by cloud providers
and others by customers. Even at the application level, it is
possible that not all components have the same ownership,
e.g., consider a typical scenario where a bare metal host runs
an application server, which is owned and managed by the
customer, communicates with a database (DB) server, which is
instead owned and managed by the service provider (DBaaS).

With the increase in the use of cloud resources, one of the
fundamental challenges faced by cloud providers is the lack
of fine-grain monitoring tools to gather useful resource uti-
lization information about the underlying system. The current
state-of-the-art cloud monitoring frameworks provide resource
monitoring either at the granularity of physical or Virtual
Machine (VM) level. Often, they are unable to providing
needed aggregated information, making it challenging and
sometimes impossible for a provider to determine the resource
utilization of either entire distributed services or particular
processes and applications inside a VM.

Linked Data technologies have emerged as a way to
integrate large-scale information in a flexible manner. Linked

*A part of this research was conducted during a student placement at IBM
Research, Ireland.

Data represents each entity as a unique, global identifier, which
is a generalization of Uniform Resource Locators (URLs).
Relationships between entities are also represented with such
identifiers. A set of World Wide Web Consortium (W3C)
recommendations standardizes semantics and representations:
Linked Data enables the representation of an arbitrarily exten-
sible information space with well-defined semantics.

In this paper, based on the versatility of Linked Data
technologies, we propose an approach for heterogeneous cloud
systems monitoring. The novelty of our approach lies in: (i)
its ability to harvest information from multiple systems and at
different level; and (ii) extensibility of the model to cater for
the diverse modeling needs. We design and develop a frame-
work called Semantic Monitoring Agents for Cloud Systems
(SMACS) that enables efficient monitoring of hardware and
software components in a cloud setup. We integrate SMACS
with the widely-used OpenStack cloud computing platform [1]
to elaborate its use and compatibility with conventional cloud
computing platforms.

The rest of the paper is organized as follows. In Section II,
we discuss the work that is closely related to our work
presented in this paper. In Section III, we highlight the back-
ground technologies that enables SMACS. In Section IV, we
present the design and architecture of SMACS. In Section V,
we present an evaluation of SMACS and demonstrate its
effectiveness. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Monitoring is a core functionality of any integrated network
and service management platform. Cloud computing increases
the complexity of monitoring infrastructures since it incorpo-
rates multiple physical and virtualized resources. Furthermore,
it spans over several layers, from Infrastructure as a Service
(TaaS) to Platform as a Service (PaaS) and Software as a
Service (SaaS). In this section, we summarize the existing
monitoring approaches that are closely related to the work
presented in this paper.

Nagios [2] is a very popular server monitoring service to
monitor the status of services and resources in data centers.
Nagios adopts a centralized client/server architecture where
a central server gathers monitoring information from remote
nodes. Notwithstanding its widespread diffusion and differ-
ent supported interaction modes, Nagios is more oriented to
service status visualization rather than monitoring continuous
changes of system resources, such as memory and CPU.
Moreover, it is designed to monitor traditional large-scale IT
infrastructures instead of cloud systems.

[3] proposes a hybrid pull-and-push approach to monitor
cloud resources allows switching the communication strategy
according to users’ consistency and efficiency requirements.
However, it focuses only on the interaction model (pull/push)
and does not tackle the problem of scalable and timely data dis-
tribution. Another work [4] proposes distributed monitoring for
load balancing in virtual networks based on network metrics
gathered by agents deployed at each virtual interface. However,
this work is limited to the network resources and does not
incorporate other resources, such as CPU and memory.

The push-based approach in [5] monitors services in clouds
with the goal of scaling web applications: a monitoring agent,
installed in the web application, triggers opportune up-scale or
down-scale operations. The main problem of this proposal is
that it focuses mainly on web server resource usage at service
level without incorporating hardware resources. Furthermore,
it does not support any monitoring at the infrastructure level.

DARGOS [6] adopts a fully-distributed peer-to-peer pub-
lish/subscribe model, and a hybrid push/pull approach to dis-
seminate resource monitoring information. It provides physical
and virtual resources utilizations in the cloud while maintain-
ing a very low overhead. Moreover, it is designed to be flexible
and extendable to new metrics.

PCMONS [7] is an open-source pull-based cloud moni-
toring system. It relies on a monitoring server that receives
information from multiple data integrators that pull cloud mon-
itoring information. It relies on a single server to process the
obtained monitoring information thus impairing its scalability.

An agent-based resource monitoring system is proposed
in [8] for multi-tenant cloud environments where a cloud
system is administered by cooperating entities via a one-
to-many communications publish/subscribe communication
support. Similarly, Lattice [9], adopts a publish/subscribe
paradigm to disseminate monitoring information originating
from cloud nodes. Lattice is also highly scalable and can per-
form complex monitoring tasks on large scale virtual networks.

Notwithstanding the recent advancements in cloud moni-
toring domain, we believe that extending these advancements
with the use of standard semantic technologies, to ease inter-
operability and to foster higher expressiveness, may represent
a big step forward in the cloud monitoring research area.

III. LINKED DATA FOR CLOUD SYSTEMS MONITORING

Linked data has emerged as a paradigm for information
integration across domains and systems [10]. It typically adopts
a Resource Description Framework (RDF) [11], [12] repre-
sentation. The basic RDF model dictates that information is
represented as a set of labeled edges across nodes with unique,
global identifiers. Typically, a standardized triple notation is
used, consisting of RDF terms, generally referred as Subject-
Predicate-Object triples. Data is usually stored in a data store
(typically referred to as triple store or RDF store) and queried
through the SPARQL query language.

The RDF terms can be URIs, Literals or BNodes. We
leverage URIs in this work. URIs uniquely identify entities,
properties or concepts: for example IBM has a unique URI,
same as the concept Company. The same holds for properties.
URIs may come from different domains, typically depending
on the data publisher. Nevertheless, this does not mean that
data owners may not use the URIs of others. In fact, they
are encouraged to. For example, IBM may use URIs from

DBPedia, so as to promote integration. Literal values are
represented through typed literals (when no type is mentioned,
type String is assumed).

We have chosen Linked Data as the data representation
paradigm of our system for the following reasons. First,
Linked Data (and associated schemas/ontologies) are arbitrar-
ily extensible. This allows extensions to provide fine-grain
information for various components: while all programs may
report memory used, server components may additionally
report network bandwidth. Moreover, web servers may also
report request throughput. Second, the global semantics of
URIs allow us to uniformly access information without relying
on a specific (database) representation. Third, merging data
from various Linked Data sources is very easy. In principle it
entails either doing federated queries across the stores, without
any schema mediation, or storing all information in the same
RDF store, effectively taking the union of the triples from
different systems. Schema mapping and consolidating entities
from different sources is more complicated and is beyond the
scope of this paper.

IV. FRAMEWORK DESIGN

It is typical to have a system based on a heterogeneous
cloud environment with different monitoring mechanisms at
different levels. In literature, a cloud systems is divided into
the three main levels, i.e., Infrastructure as a Service, Platform
as a Service and Software as a Service. Due to distinct
characteristics of each layer, developing a cross-monitoring
framework for all resources in the cloud-stack is very chal-
lenging. Therefore, required tools for monitoring operations
are selected and installed according to specific needs at each
layer. Moreover, the information content is represented to cater
a specific tool, regardless of the fact that the semantic might
be the same. The main challenge of a unified monitoring
framework is to overcome the diversity of the systems to
integrate all features in a synergistic way, especially for fully
autonomous systems.

To design a unified cloud monitoring system, it is critical to
map information in order to support all levels of heterogeneity
while maintaining the original semantics with finer granularity.
Moreover, a unique way and single access point to request data
from the cloud environments is required. We develop SMACS
as a monitoring system for the integration and aggregation
of metrics data coming from various systems. To this end,
SMACS relies on a client/agent/server distribution model and
uses a pull interaction model with a periodic update strategy.

SMACS provides monitoring capabilities across the stack
of cloud services (public and private laaS, PaaS and SaaS)
overcoming the heterogeneity of technologies. The schema of
considered environments and resources is shown in Figure 1.
In the following, we present and describe our view of a unified
cloud monitoring architecture that uses semantic technologies
to overcome the challenges of using different monitoring tools
and techniques.

A. SMACS Architecture

SMACS is composed of six main components, namely,
Data Provider, Cloud Broker, Data Agent, Storage Consistency
Maintainer, TDB and Resources Information Endpoint. The
interaction between these components as well as the overall
architecture of SMACS is shown in Figure 2. From the
functionality point of view, the proposed framework can be

T 1

l |

CloudFoundry] [e

Amazon Web
Services

CloudWatch

|
Agent-based Agent-based
system via Ceilometer system via

SIGAR, Monit

applications

gent-base
system via
JMX

Fig. 1: Schema of considered environments and resources

split in the following two sections, where Data Provider acts
as bridge between the two sections:

o A gathering layer (the left half) pulls the monitoring
data from the cloud environment, using a deployed
agent or a set of exposed cloud API.

e A semantic layer (the right half) provides the required
level of abstraction to enhance the decoupling between
the implementation details and the single access point.

Data Provider is the core component to compose the
proposed architecture. It uses Cloud Broker component to
communicate, when expected, with the cloud environments.
In order to start gathering the data, Data Provider needs the
IP address of the compute nodes and the VM instances, in
addition to the VM status and availability zone, to decide
if a monitoring action is required. An internal component,
Data Gatherer, is responsible for starting the Cloud Broker
and handling the received information. A Data Worker, when
expecting the information from a Cloud Broker, starts commu-
nication with Data Agent by sending an asynchronous request
via REST web services and returns back a set of information
to the Data Gatherer, which stores the received information
in the TDB, as better explained in the following.

Cloud Broker provides a bridge between the data provider
and a cloud environment, such as OpenStack and Amazon
Web Services. Due to the lack of a standard interface for the
cloud management, extending SMACS to communicate with
others IaaS requires the development of a new cloud broker
for each adopted interface. For example, the Amazon EC2
API [13] is a de-facto standard and the OpenStack framework
has adopted a compatible set of APIs, even though the APIs
are still not fully compatible with each other. Similarly, the
Open Grid Forum (OGF) and the Distributed Management
Task Force (DMTF) have been proposed as standard interfaces
for cloud computing management [14], [15]. Cloud Broker
communicates with OpenStack and Amazon Web Services via
REST APIs and forwards information regarding hypervisors,
host, and instances (e.g., IP address, node name, VM status,
etc.) to the Data Provider. It also leverages specific cloud
monitoring APIs provided by Ceilometer service (OpenStack)
and CloudWatch (Amazon Web Services).

Data Agents are responsible for polling metering data and
sending them to the Data Worker using REST web service.
Furthermore, data agents are developed to be independent
of a specific deployment environment, making them portable
across different operating systems. The Data Agent component
is stateless and is instantiated when a GET request on a

Gathering Semantic

Layer Layer
CloudFoundry

Data Agent |«
- / Data Provider
A Storage
OpenStack Data Consistency
‘Worker 1 =
5
21

Data
Gatherer

Cloud Broker

AWS API

specific URI occurs. An agent is able to gather metering data
(e.g., percent of CPU load, number of writes on a specific
disk, etc.) for every monitored resource. It also produces a
consolidated summary about all the monitored resources in a
cloud environment.

Fig. 2: Framework architecture

Storage Consistency Maintainer maintains the consistency
of TDB according to the specified configurations. It is started
by the Data Gatherer during the initial system startup and it
accepts parameters that influence the size and organization of
the TDB data storage.

TDB (Triples Database) represents and builds the data
abstraction. It provides a triples storage, built using Jena TDB,
where RDF data are stored by Data Gatherer and periodically
removed by Storage Consistency Maintainer according to a
time-based filtering option.

Resources Information Endpoint acts as a front-end for
the whole architecture. This component enables requesting
information, interacts with the TDB and uses the gathered and
stored data to satisfy such requests from the users.

B. Data mapping on RDF

The multiplicity of resources and the diversity of com-
puting environments involved in our monitoring scenario re-
quire the use of different monitoring mechanisms. Therefore,
SMACS relies on different services to enable heterogeneous
monitoring capability. To this end, we model three types of
agents. The first agent leverages cross-platform monitoring
library to monitor the status and resources of cloud infrastruc-
ture. We integrate a set of native libraries provided by System
Information Gatherer and Reporter (SIGAR) [16], which is
a platform- and language-independent library for accessing
operating system and hardware level information in Java.
SMACS uses SIGAR to implement Node Agents that obtains
on-demand real-time information about the infrastructure of
the compute nodes and the running instances.

The second agent integrates a Java Management Extensions
(JMX) technology [17]. JMX provides management and mon-
itoring support for applications, system devices and objects
using a client-server architecture. Most enterprise applications,
such as Apache Tomcat, Apache web server, IBM Web-
Sphere, etc. already provide interfaces for JMX technology.

Data Agent

Data Worker |« JMX Agent o P JMX Server
™ Data Worker |«

|——>| Monit Agent :_I Monit Process
SIGAR Agent | g SIGAR Library

™ Data Worker
™ Data Worker
™ Data Worker

YYVYYVYY 4

A
Bean2RDF Javabean Mapper
A

4

4

A
e =
enStacl b
I])ISroks-r 4-_>— Ceilometer
Amazon | !
b Broker <—— CloudWatch
Cloud Broker

Fig. 3: RDF mapping process

In SMACS, a JMX client connects with the JMX agent to
perform management and monitoring operations on the target
applications and resources.

Although there is no direct interface to monitor Cloud-
Foundry, it provides state information on jobs through the
Monit daemon of BOSH. Our third agent dialogues with
CloudFoundry, executing locally (since it must be deployed
inside the monitored CloudFoundry installation) the command
monit status that provides status and metrics about all the
CloudFoundry processes. Once results from the command have
been obtained, the Data Agent maps the metrics using common
objects which are translated later to RDF.

As shown in Figure 3, Data Gatherer starts the process of
pulling the data from the Data Agent and maps it into RDF.
This approach is fundamental to provide a unique interface
where different information can be retrieved homogeneously.
Data Gatherer creates a hierarchy of entities, where the leaf
nodes represent Data Workers that start communication with
specific Data Agents and Cloud Brokers, and process the
received information.

Information received from a Data Agent, which uses a
JSON encoding, are mapped in a set of JavaBeans. The aim is
to built a corresponding set of RDF starting from these classes
and store the new converted data in the TDB. To this end,
we use an existing tool, JenaBean', that transforms common
object oriented code into Semantic Web Languages. JenaBean
is a powerful and flexible RDF API to persist JavaBean.
Its approach is not driven by the Web Ontology Language
(OWL) [18] ontology or RDF schema, but it is instead class-
driven. This kind of binding enables saving JavaBean as RDF
with no mapping file or template. Every bean class is coded
with a set of annotations to extend the semantic information
(RDF property and namespace), providing a more fine binding
between object and RDF.

When a response is received, or if a connection timeout,
the Data Worker returns back the metering data to its parent
in the hierarchy. Once all Data Worker complete their tasks, a
highly parallel merging phase starts. In this phase, the metering
data is translated in to RDF, and each RDF is also merged
with other RDFs. Every RDF shares the same schema, the

Thttp://code.google.com/p/jenabean/

Data
Gatherer

SELECT ?usedMemory ?time
WHERE {?jid a smacs:Process;
smacs:reference ?reference.
FILTER regex(?reference, "CloudFoundry")|
?jid smacs:name ?jname.
FILTER regex(?jname, "nats")
?jid smacs:memory ?usedMemory;
smacs:timestamp ?time
FILTER (?time >
"2014-03-06T12:00:00"**xsd:dateTime
8& ?time <
"2014-03-06T12:59:59"**xsd:dateTime) }
ORDER BY ?time
LIMIT 6

Storage
Consistency
Maintainer

A
Resources

Information | usedMemory time
E“deint 19648 2014-03-06T12:06:12

I 17998 2014-03-06T12:08:30
21244

34006 2014-03-06T12:13:01
29451 2014-03-06T12:15:05
29778 2014-03-06T12:17:12

2014-03-06T12:10:47

Fig. 4: Semantic layer integration

base of the URIs and each resource keeps a reference to its
parent resource. This enables creating a network of metrics,
where the whole information gathered from different sources
is linked together. In this way, the top of the hierarchy returns a
unique RDF object that includes linked metrics for the specific
monitoring round. Finally, the Data Gatherer gets the unique
RDF representing the whole set of the retrieved information.

C. Semantic layer Integration

The integration of a semantic layer in SMACS architecture
allows a better decoupling between the user’s view of the
framework and the implementation details. Figure 4 shows
the integration of semantic layers in SMACS and the main
components involved. The Data Gatherer extracts the triples
from the RDF existing from the Data Worker hierarchy and
adds them to a specific TDB graph. If the relative graph does
not exist, an empty one is created on demand and is inserted
as usual.

The TDB is organized in graphs, where the name of
each graph depends on its creation date. A graph for each
time frame is created on demand and the triples are stored
in the right graph depending on when a specific resource
is monitored. This modeling approach enables efficient data
retrieval and processing by isolating the monitored resources
and the associated data.

Storage Consistency Maintainer leverages the concept of a
time window, where the size of the window is chosen by the
Data Provider. In effect, the Data Provider is also responsible
to start the execution of the Storage Consistency Maintainer,
and providing it with the information about the width of the
time window. Storage Consistency Maintainer extracts a list
of the named graphs and checks if there exists any graph that
are outside the time window (the graphs are named using date
time format).

The Resources Information Endpoint has been integrated
as a SPARQL endpoint, to provide an efficient access to the
stored data. The endpoint is closely tied to the TDB that acts
as the information container, and the data can be queried using
the SPARQL syntax, which allows access to the corresponding
information by using clauses, filters and functions [19] with
a high level of expressiveness. Finally, the results from the
query execution are shown in a tabular format. We note that the

10000
8833 2500

7200
H
a 1500 1405
g
£ 1000
8
500 376

Fig. 5: Initial and average data gathering and
RDF data conversion

9000

8000
7000

E om0
5304

2
£ 5000
?g 4000 m‘“ 3639
= 3000 2016
2000
1000
0

20
Virtual machin

s (i)

Virtual

joint use of a SPARQL endpoint, TDB storage and RDF data
representation is critical to archive the required role-separation
between the two layer (gathering and semantic) in SMACS.

V. EVALUATION

In order to prove the validity of our solution, we report a
series of different experiments regarding the architectures de-
scribed in the previous section. Benchmarks on scalability and
performance measurements of the SMACS has been performed
in the IBM Research Lab of Dublin (Ireland), where a real
distributed scenario for OpenStack and SMACS was installed.
Subsequently, further experiments on SMACS functionalities
are conducted in the University of Bologna.

A. Performance Analysis

We consider a SMACS testbed consisting of 4 high-
end physical nodes placed in the computing cluster of IBM
Research in Dublin. Each node consist of 2 Intel Xeon X5670
@2.93 GHz (12 cores each) processors, 256 GB memory, 1
TB hard drive and running RHEL 6.3 as operating system.
Each physical node is provided with two network interfaces,
one with 1 Gbit/s throughput reserved as private interface
(which mainly involves VMs communication) and one with
10 Gbit/s throughput used as public interface for inter-node
communication. Three of the aforementioned nodes are used
to manage an OpenStack Grizzly installation which consists of
one master node running all OpenStack Nova services (e.g.,
compute, scheduler, network) and two slaves node running
nova-compute service. The last node of the four is used to run
the SMACS semantic layer, the TDB database, the SPARQL
endpoint and the Data Provider.

The deployment of SMACS agents concerns both the
physical nodes and VMs of the OpenStack environment. VMs
are sized with a standard ml.tiny flavor (1 VCPUs, 512 MB
memory). Our evaluation of SMACS is focused on analyzing
the performance and scalability as well as proving the fea-
sibility of the proposed solution. We tested our system in a
low workload and traffic scenarios to highlight the overhead
introduced by the monitoring layer. We further investigate the
scalability of SMACS by increasing the number of running
VMs from 5 to 50 while logging the execution time of RDF
data storing, data gathering and RDF data conversion.

1) Survey on Data Gathering and RDF Conversion: We
evaluated the performance of our agent-based polling system,
including the RDF conversion process. Figure 5 details about
polling and RDF data conversion time. The measure starts
when Data Gatherer begins to request data, continues during
all the communications between and stops when the “Map
and Merge” phase ends. The chart shows an initial high value
due to the instantiation and configuration of the Data Provider,

1704

1

Fig. 6: Initial and average RDF data storing

= Monitored
Not moni

\ “ lu J‘ f.x 'm(‘,'\&‘

CPU usage (%)

-
!

N

machines (#) 0 Tin

Fig. 7: CPU overhead

Data Agents and Storage Consistency Maintainer. That can
considered a warm-up “issue”, which will not affect the normal
behavior of the system. After few rounds, the time decreases
reasonably and the monitoring system replies faster. Using
SMACS, increasing the number of VMs by a factor of 10
changes the total data gathering and RDF conversion time only
by a factor of 2 showing that the monitoring system scales
reasonably. We note that a considerable portion of the mea-
sured execution time is spent to load and use SIGARS libraries,
which shows a good choice for its abstraction capability but
with a trade-off in terms of performance.

2) Consideration on the RDF Data Storage: The novelty
in using TDB as a container for the metrics of the monitored
resources requires verification if its use fits the purpose. We
logged the time of storing RDF data and checked the behavior
of data storage by increasing the number of VMs monitored
(and therefore the number of information that have to be
stored). The result of this experiment is shown in Figure 6.
The initial high value is due to the creation and configuration
of the TDB which occurs only during the monitoring system
startup. The storing attempts are not affected by this overhead.
The increase in the number of VMs by a factor of 10 changes
the storing time by a factor of 2. This shows that in a real
cloud setup with hundreds of running VMs, the use of TDB
as a data backend is a feasible choice in providing a reasonable
storing time and scalability.

3) Monitoring Overhead: Considering the purpose of
SMACS, a significant aspect is the overhead introduced by
the monitoring layer on top of the running cluster. A high
overhead might compromise the ability of nodes to achieve
the required performance and may make SMACS unsuitable
for cloud systems. In our evaluation, we consider both the
CPU and network overhead. In both cases, we present the
data collected on the master node of the OpenStack cluster.
The master node represents a hot-spot in our cluster since it is
running the majority of OpenStack services. We have decided
to focus on this node since it represents the worst-case for our
monitoring solution.

Figure 7 illustrates the CPU usage time of the master node
for the monitored and unmonitored case when the cluster is
running 20 VMs. The estimated CPU overhead is between
3% to 4% on the master node of the OpenStack cluster and
even lower on the slave nodes, which may be considered as
a minimal overhead. In fact, the peaks in Figure 7 are mainly
related to the OpenStack services and not directly related to
our monitoring services.

The network usage of the master node is shown in Fig-
ure 8 and Figure 9. The peaks in these figures represent the
traffic generated by the SMACS agents for the data collection
task. Despite being remarkably higher than the unmonitored

B Monitored scenario

Not monitored scenario

Bandwidth (KB/s)

Bandwidth (KB/s)

:] Ll .‘wlu lm \L L lfh tll li I“L i ‘) i “u “ bl il

Fig. 8: Outbound network traffic overhead on
master node

master node

scenario, it should be noted that the workload is a very
low network-intensive one and that a peak of 18 KByte/s of
receiving overhead is reasonable for most of the real-world
scenarios. The low network-intensive scenario enables us to
investigate and focus on this benchmark to study the overhead
of our agent-based monitoring system. The difference of used
bandwidth between the inbound and the outbound traffic is
due to the diversity of the messages exchanged. A reply
from an agent contains much more information and all of
them have to be forwarded through the master node to the
Data Provider. Overall, the results show that SMACS incurs
minimal monitoring overhead for CPU and network resources.

B. Testing the Functionality

We also evaluate the execution of a significant set of queries
using the Resources Information Endpoint against the Data
Storage where metrics have been collected. For each of them
we provide the starting query expressed with SPARQL syntax,
the resulted table, and a measurement of the total execution
time. Contrary to the results present in Section V-A, we use
only one workstation in this experiment. The aim of this
experiment is to demonstrate the unified access to the collected
data from heterogeneous systems for verifying the correctness
of the dataset, rather than analyze other performances metrics,
such as, scalability, overhead, etc. Therefore, this experiment
is configured with:

e All-in-one OpenStack installation with basic services
(Nova, Keystone, Glance, Ceilometer) with three ac-
tive VMs;

e CloudFoundry instance running on the first VM;

e CentOS 6.3 instances running on the second and third
VMs. These instances host SMACS Data Agent;

e RHEL 6.5 instance running on Amazon Web Services
and monitored by CloudWatch.

1) Sample Queries and Results: In order to provide quan-
titative results for the total query execution times for the
4 sample queries shown in Table I, SMACS is setup on a
Dell Optiplex 780 configured with an Intel Core 2 Duo CPU
E8400 @3.00GHz (2 cores) CPU, 4 GB memory and running
CentOS 6.5 as operating system. All queries are executed three
times after one warm-up query and the average of the three
measures are shown in Figure 10. As expected, the information
retrieval times are extremely low for SPARQL query engine
and the TDB storage system. For Query 3, we note that the
use of the FILTER expressions impact the total execution time.
Therefore, for a more complex query, the usage of the FILTER
functions must be seriously considered, since it may impact the
execution time.

[VURIN YL T | FR

Fig. 9: Inbound network traffic overhead on

® Monitored scenario

Not monitored scenario 3

50

21

Total execution time (ms)

Query 1 Query 2 Query 3 Query 4

Fig. 10: Query execution time measures

1 What kind of information is there SELECT DISTINCT ?type
available? WHERE { [1 rdf:type ?type }

5 What kinds of information for an SELECT DISTINCT ?property
application are there available? WHERE {?s a smacs:Application; ?property []}

SELECT ?usedMemory ?time
WHERE {?jid a
smacs:reference ?reference.
FILTER regex(?reference, "CloudFoundry")
?jid smacs:name ?jname.
FILTER regex(?jname, "nats")
memory for a CloudFoundry job ?jid smacs:memory ?usedMemory;
named "nats". The results are smacs:timestamp ?time
FILTER (?time >
"2014-03-06T12:00:00"*"xsd:dateTime
8& ?time <
"2014-03-06T12:59:59"*"xsd:dateTime) }
ORDER BY ?time
LIMIT 6

smacs:Process;

Retrieve measurements of resident

filtered and sorted by timestamp.

SELECT DISTINCT
Get names of the monitored virtual — ?vmName ?provider ?applicationName
WHERE {
vid a
smacs: name
smacs: reference
OPTIONAL{
?appid smacs:reference ?vname;
smacs:name ?applicationName. } }
ORDER BY ?vmName

machines, regardless the provider smacs:VirtualNode;

?vmName ;
?provider.

(Amazon or OpenStack). For each
VM, the result might also contains
the running applications names,
sorted on the VM names.

TABLE I: Example queries

VI. CONCLUSIONS

This paper proposes a novel approach based on Seman-
tic Web concepts for monitoring heterogeneous cloud sys-
tems. Compared to traditional monitoring systems, which
are typically based on relational database systems, there are
many aspects of Semantic Web technologies which make
them suitable for integrating data from globally distributed,
heterogeneous, and autonomous data sources. The proposed
framework, SMACS, is based on a server-agent architecture
and uses a set of brokers to communicate with several cloud
components at different [aaS/PaaS/SaaS levels, translating data
from heterogeneous data sources to RDF by leveraging the
highly expressive RDF and SPARQL standards. The evaluation
of SMACS using CloudWatch, Ceilometer, and Monit, shows
that it is highly flexible and extendable and can be used
with many information sources, monitoring tools, and cloud
systems.

The future extensions of SMACS involve different aspects.
The first one is to extend the set of supported monitoring tools
increasing the number of available data sources. Furthermore,
the wide spreading of Monitoring as a Service (MaaS) may
help in gathering information from different systems. The
second one is to investigate other possibilities on the seman-
tic implementation. Finally, the third one is to manage the
increasing complexity of SMACS due to new data sources
and brokers, by employing RDF meta models and OWL
ontologies.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

Rackspace Cloud Computing, “OpenStack Cloud Software,” 2012, http:
/Iwww.openstack.org/.

Nagios Enterprises LLC, “Nagios - The Industry Standard in IT
Infrastructure Monitoring,” 2014, http://www.nagios.org.

H. Huang and L. Wang, “P&p: A combined push-pull model for
resource monitoring in cloud computing environment,” in Cloud Com-
puting (CLOUD), 2010 IEEE 3rd International Conference on, July
2010, pp. 260-267.

A. Ciuffoletti, “Monitoring a virtual network infrastructure: An iaas
perspective,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 5, pp.
47-52, Oct. 2010.

T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic scaling
of web applications in a virtualized cloud computing environment,” in
Proceedings of the 2009 IEEE International Conference on e-Business
Engineering, ser. ICEBE "09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 281-286.

J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi,
and L. Foschini, “Dargos: A highly adaptable and scalable monitoring
architecture for multi-tenant clouds,” Future Generation Computer
Systems, vol. 29, no. 8, pp. 2041 — 2056, 2013.

S. De Chaves, R. Uriarte, and C. Westphall, “Toward an architecture for
monitoring private clouds,” Communications Magazine, IEEE, vol. 49,
no. 12, pp. 130-137, December 2011.

P. Hasselmeyer and N. d’Heureuse, “Towards holistic multi-tenant
monitoring for virtual data centers,” in Network Operations and Man-
agement Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP, April
2010, pp. 350-356.

S. Clayman, R. Clegg, L. Mamatas, G. Pavlou, and A. Galis, “Mon-
itoring, aggregation and filtering for efficient management of virtual
networks,” in Network and Service Management (CNSM), 2011 7th
International Conference on, Oct 2011, pp. 1-7.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so
far,)” International Journal on Semantic Web and Information Systems
(IJSWIS), vol. 5, no. 3, pp. 1-22, 2009.

G. Klyne and J. J. Carroll, “Resource description framework (RDF):
Concepts and abstract syntax,” World Wide Web Consortium, Recom-
mendation REC-rdf-concepts-20040210, February 2004.

O. Lassila and R. R. Swick, “Resource Description Framework
(RDF) Model and Syntax Specification,” W3C Recommendation,
February 1999. [Online]. Available: http://www.w3.0org/TR/1999/
REC-rdf-syntax- 19990222/

Amazon, “Amazon Elastic Compute Cloud (Amazon EC2),” http://
www.amazon.com/b?ie=UTF8&node=201590011.

R. N. T. Metsch, A. Edmonds and A. Papaspyrou, “Open cloud
computing interface - core,” Open Grid Forum, Tech. Rep., 2011.
[Online]. Available: http://www.ogf.org/documents/GFD.183.pdf

“Cloud infrastructure management interface (cimi) model and rest
interface over http,” Distributed Management Task Force (DMTF),
Tech. Rep., 2012. [Online]. Available: http://dmtf.org/sites/default/files/
standards/documents/DSP0263_1.0.0.pdf

VMware, Inc., “Hyperic SIGAR APL” 2014, http://www.hyperic.com/
products/sigar.

H. Kreger, W. Harold, and L. Williamson, Java and JMX: Building
Manageable Systems. Boston, MA: Addison-Wesley, 2003, ISBN:
978-0-672-32408-6.

G. Antoniou, , G. Antoniou, G. Antoniou, F. V. Harmelen, and F. V.
Harmelen, “Web ontology language: Owl,” in Handbook on Ontologies
in Information Systems. Springer, 2003, pp. 67-92.

E. Prud’hommeaux and A. Seaborne, “Sparql query language for rdf,”
Latest version available as http://www.w3.org/TR/rdf-sparql-query/,
January 2008.

