
vNMF: Distributed Fault Detection using Clustering
Approach for Network Function Virtualization

Masanori Miyazawa and Michiaki Hayashi Rolf Stadler
KDDI R&D Laboratories, Inc. ACCESS Linnaeus Center

2-1-15 Ohara, Fujimino, Saitama, JAPAN KTH Royal Institute of Technology
{ma-miyazawa, mc-hayashi}@kddilabs.jp stadler @kth.se

Abstract—Network function virtualization introduces

additional complexity for network management through the use
of virtualization environments. The amount of managed data and
the operational complexity increases, which makes service
assurance and failure recovery harder to realize. In response to
this challenge, the paper proposes a distributed management
function, called virtualized network management function
(vNMF), to detect failures related to virtualized services. vNMF
detects the failures by monitoring physical-layer statistics that
are processed with a self-organizing map algorithm.
Experimental results show that memory leaks and network
congestion failures can be successfully detected and that and the
accuracy of failure detection can be significantly improved
compared to common k-means clustering.

Keywords— Fault detection; network function virtualization
self-organizing map; in-network management

I. INTRODUCTION
With the emergence of new technology providing software-

based telecommunication, which is called network function
virtualization (NFV) discussed in the ETSI [1], the concept of
incorporating its virtualization technology into the networking
domain generally helps service providers reduce equipment,
power consumption and accelerate the time-to-market for new
services and network functionalities. To fully benefit from
NFV, several challenges need to be overcome from a network
management perspective. Fault detection in particular has
become a top priority due to the increase in managed data and
changed operation procedure for NFV.

Traditional networks are currently supported by a
centralized management system such as an OSS (Operation
Support System), which detect failures and analyze the root
cause by integrally collecting management information,
including statistical data and event data from network devices.
However, under NFV, the amount of such managed data tends
to keep increasing due to the expanded system scale and
functionality with virtualization technology. The increased
amount of managed data delays operational work, such as
detecting failure and exploring affected services. The delayed
failure detection, in turn, hinders network management
activities, including the network recovery process, thus causing
service quality to decline compared to the existing network.
The challenge is to achieve scalable fault detection to support
numerous virtualized infrastructures.

In addition, the existing network function usually comprises
traditional network hardware appliances integrally provided by
vendor-specific hardware, which are basically supported by a

single vendor. In contrast, Virtual Network Functions (VNFs)
are provided and supported by several vendors because the
VNFs can share certain infrastructure resources such as
hardware and hypervisor in NFV infrastructure (NFVI). In the
complicated arrangements, the VNF is prone to unexpected and
silent forms of failure, affected by failures from the separated
NFVI. However, it is difficult to detect such failure under
multi-vendor environments, since each VNF is supposed to
have independent implementation of management interfaces.
The fault detection must thus integrally monitor the tricky
failures by monitoring performance behavior in unified NFVI.

It is challenging to promptly detect failures and
performance anomalies in such NFV environments before they
escalate into other failures. Many approaches to fault detection
and prediction focused on large-scale network and cloud
systems have been proposed. Most conventional approaches
use supervised learning techniques [2, 3] to monitor production
cloud systems. The supervised learning techniques can only
detect previously known anomalies, but we assume increased
detection of unknown anomalies in NFV because NFV
components are basically unregulated structures comprising
one-to-many relations between VNF applications and NFVI.
As an unsupervised approach, clustering is one useful solution
to detect anomalies in communication networks as well as
wireless sensor networks. The author of [4] focuses on
localizing failure for large-scale sensor networks and their
localization technique in a distributed manner, which is
implemented on each sensor node. The approach can
effectively detect failures without known abnormal behavior,
but requires a few metrics as input data and is not focused on
complicated virtualization environments. Further work is still
required in this area to validate applicability in support of NFV.

In this paper, we propose the design of a virtualized
Network Management Function (vNMF) for NFV, which is
achieved by our proposed two contributions; one of which is a
the distributed detection framework to offload its function
inside the network domain and analyze the huge number of
statistical data in support of NFV for scalability. The other is a
fault-detection mechanism implemented in vNMF, to detect
abnormal failure on VNFs over NFVI statistical data at an early
stage, using a Self-Organizing Map (SOM) algorithm. In
addition, the proposed fault detection, which is implemented as
a prototype vNMF system, was demonstrated for showing
proof of concept. The results of the evaluation using memory-
leak and network-congestion events event confirm that the
proposed vNMF system successfully detected abnormal
performance behavior.

II. MANAGEMENT FOR NFV

A. Problem statement for fault management on NFV
NFV allows network operators to deploy network functions

such as firewalls, virtual routing and so forth on virtualized
physical infrastructure, called NFVI, instead of traditional
hardware appliances implemented on proprietary hardware. Its
technology allows for various network services to be
continuously created within a short time and many VNFs from
different vendors for several dedicated network services to co-
exist separately on the same NFVI, such as hypervisor and
servers. The concept indicates that network structure and its
operation would change dramatically compared to the existing
network based on network hardware appliances. Amid such
environment, VNFs would be prone to unexpected failure and
impaired performance due to hidden failure (e.g., hardware
failures, software bugs and traffic congestion failures) from
separated NFVI. Accordingly, it is hard to understand the root
cause of failure because the management framework for NFV,
which is defined by NFV MANO [5], manages each
component independently, while the Virtual Infrastructure
Manager (VIM) and VNF manager are responsible for
managing NFVIs and VNFs, respectively. For instance, if
performance degrades due to CPU overload in an NFVI, the
degradation may be detected by VIM. However, the event also
affects other components such as virtual CPUs in NFVI , which
means several alarms unsynchronized among NFVI, VM and
VNF are generated respectively. The large number of alarms is
sent to OSS to identify the root cause. However, the operation
procedure for NFV is complex and takes considerable time; not
only to detect failure but also identify the cause, given the lack
of insight into the causal relationship of failures and its
abnormal behavior in such NFV environments. With this in
mind, services are at risk of degrading customer experience.

B. Requirements of fault detection function in NFV
To detect failure based on use cases, management functions

must address three requirements for NFV:

[Req. 1] Detection of gray-box failure: One is to successfully
detect unknown behavior and hidden failures in a virtualization
environment, such as memory leaks, without knowledge of
detailed VNF application-level information, because the failure
information is often implemented as vendor-specific. It can
provide advance notice of application-level failure before
escalating into significant failures and eliminating the need for
vendor-specific knowledge and prior knowledge of abnormal
behavior.

[Req. 2] Scalability: The second is sufficient analysis
resolution to detect faults because the operator wants to detect
failures on a real-time basis and at an early stage before they
escalate to critical failures. For instance, considering the
management of a mobile network with the scale of a real
telecom network, approximately tens of thousands of network
functions including a control plane, data plane and packet
switching function should be managed. In addition to this, we
have to newly manage NFVI resources. In fact, the number of
managed resources tends to increase compared to network
hardware appliances. Scalable fault detection thus must be
required to support the large-scale data monitoring and analyze
the result.

[Req. 3] Short learning time: A short learning time is
necessary because the life cycle of network and service in NFV
tends to be shortened compared to existing telecommunication
services. If we obtain training data set to cover all possible
normal events and/or rare abnormal events for detection using
a supervised learning algorithm over extended periods (e.g.,
over 1 month), the service and network configuration may
already be changed, or the service may be terminated.

C. Failure model to detect faults on NFV
We assume that faults leading to failures on the VNF also

affect performance metrics with NFVI (e.g., CPU usage
memory usage, Disk I/O and network I/O). In paper [6],
increasing failure instability emerges, whereby a number of
interesting computer-related faults are verifiably preceded by a
visible abnormal pattern. If we observe a behavior, taking
various types of performance metrics into account and under
normal and abnormal conditions, advance fault detection on
NFV is possible using various types of performance metrics
collected from NFVI. Figure 1 represents the potential impact
on the relationship between resources when failures involving
impaired performance occur in VNF and NFVI. Based on this
assumption, no performance metrics with the VNF are required
to detect the failure generated from the VNF by overall
observation of performance behavior with NFVI.

Fig. 1. Relationship of failure in NFV

III. VNMF FOR FAULT DETECTION
In this section, we present the design of a proposed vNMF

as a scalable NFV management function, which can monitor
statistical data of NFVI and detect failure by analyzing
different type of performance metrics.

A. Fault detection mechanism
As described in Section II.C, to totally analyze the

performance behavior of interrelated performance metrics, a
clustering technique is useful to classify and extract relevant
information from large data sources. One particular clustering
method, known as the SOM [7], has several beneficial features
that make it particularly useful for data clustering. SOM is a
type of neural network and unsupervised learning algorithm. It
is capable of analyzing various types of data and capturing its
complex behavior while being computationally less expensive.
It maps vectorial input data items with similar patterns on
contiguous locations of a discrete low-dimensional grid of
neurons in a manner that preserves topology. Its output data
can be compared to a map: neighboring locations have similar
data patterns attributed. Accordingly, SOM provides the
analysis of various input data, lightweight and short learning
time and is a prerequisite to our requirements.

Performance*
degrada-on�

CPU*usage�

Memory*
usage�

Disk*IO�

Network*I/O*
(Throughput)�

CPU*usage�

Memory*
usage�

Disk*IO�

Network*I/O*
(Throughput)�

affect�

Increase�

VNF application� Virtual Infra� Physical infra�

affect�

Increase�

Strongly relate�

Synchronize�

Synchronize�

Weakly relate�

Weakly
relate�

The SOM comprises the following steps as shown in Fig. 2.

[Step 1]Initialization: All reference vectors mi are initialized
by random numbers. A sample is extracted from the training
dataset and input vector x is input to all nodes simultaneously
in parallel.

[Step 2]Competition: SOM identifies the node with the
reference vector which most resembles the input data, called
the best matching unit (BMU.) To calculate the BMU, each
data is examined to find that with the reference vector most
similar to the input vector. This selection is performed using
the Euclidean Distance formula as equation (1), which
measures similarity between the input data and the node with
the reference vector.

∑
=

=

−=−
ni

i
ijji mxmx

0

2)(
 � � � � � � (1)

The input vector xj belongs to a winner node that is with the
weight vector closest to xj.

 � (2)

and defines the image of the input x on the map.

[Step 3]Adaptation: The nodes within a certain distance of the
winning node c are updated according to the equation.

 (3)

hci is called the neighborhood function around the winner node
c. Finally, SOM determines the stability condition. If the
stability condition is satisfied, then the learning process
terminates, otherwise go to Step 2 for another learning loop.

Fig. 2. The basic steps of SOM algorithm

 After the input data is classified, some clusters must be
divided to decide normal or abnormal behavior. In general, the
number of clusters must be predefined in the case of k-means
algorithm. The algorithms aim to minimize the sum of squared
distance between all data points and the cluster center. The
inconvenience of this procedure is the determination of the best
value of k for optimal clustering. If the wrong number of k is
set in advance, our results may be incorrect. However, it is rare
to learn the appropriate number if unknown failure tends to
increases. The author of [8] proposed a cluster-extraction
algorithm using 1-dimensional SOM. To address the above
problem, we apply a cluster-extraction algorithm based on a
histogram to dynamically divide the number of clusters without
pre-configuration. The main reason for choosing this clustering
algorithm is its significant characteristic in SOM. When the
input data comprises some clusters, the density of input data is

high around the center of each cluster and low among the
clusters. In the map built by SOM, the distance between two
reference vectors assigned around the boundary of clusters
exceeds that assigned around the center of each cluster. This
characteristic allows clusters to be divided from input data by
detecting valleys of the histogram of distance between the
reference vectors of adjacency nodes. To do so, three processes
can be used. First is the map building process, whereby the
input data are subject to SOM for a set of reference vectors.
The second is the map analysis process. For every node i, the
reference vector density S (in other words, representing
similarity between reference vectors) is found by distance
between reference vectors from nodes i to i+1 using Euclidean
distance.

 (4)

Finally, based on node i, the cluster integration density is
calculated using the following equation:

 Li =
Vi
Si

 (5)

where Vi is the number of input data which is assigned to
generate the histogram of Li. Boundaries among the clusters
can be extracted by detecting valleys of the histogram with an
appropriate threshold Lth as shown in Fig. 3. Finally, to find a
cluster concerning abnormal behavior in several separated
clusters, a cluster covering minimum space is identified as the
outlier cluster. Moreover, only if the identified cluster satisfies
the following equation is it deemed to include abnormal
behavior,

 vi ≤
vh
d

 (6)

where vs is the coordinate number associated with the identified
cluster, vh is the total coordinate number concerning each
cluster and d represents the number of the cluster.

Fig. 3. Concept of cluster extraction

B. System design for vNMF
Figure 4 shows the system design of the distributed vNMF,

which monitors statistical data, analyzes performance behavior
and detects failure. The vNMF adopts a decentralized approach
that is basically deployed on each NFVI and uses the residual
resource to collect statistical data from VM and NFVI, process
such data and detect faults. In our previous work, we proposed
a distributed performance management framework [9], which
offloads several performance management activities inside
network devices to reduce the delay in comprehending network
performance. To realize scalable fault detection, a fault-

x −mc =min
i

x −mi{ }

mi (t +1) =mi (t)+α(t)hci[x(t)−mi (t)]

kfeo

����

���� �����$��"�

��� ��� ���

��"������
��"����&�� ��� �����$��"� !����"����
��

	��

[Step2]: Calculate Euclidean distance to each
reference vector, and find shortest node.

��"�������!!�������#"���"��"��	���

	��

��#"�
�� �����"�!"������������� ������

���#"���"��

%� %� %�

��#"���"���

���� �����$��"� ���

Si = mi −mi−1 + mi −mi+1

�
��
��
��
���
��
��
��
��
��
��
��
��
�	
�

��������� ��������� ���������

	��

������

����������
�
������� ��

detection function is additionally implemented in this
framework as shown in Fig. 4. Firstly, the adapter collects the
statistical data (e.g., CPU usage, memory usage, disk
read/write I/O and in/out octets in/out packet, error packets as
network I/O) from several VMs and NFVI via SNMP. After
receiving data, the data is normalized using a data-processing
function, due to the considerable variation among input data.
Subsequently, the normalized data is stored into the DB
function [10]. Finally, the fault detection function refers its data
and analyzes by proposed clustering. If failure is detected,
alarms are sent to OSS by the notification function.

Fig. 4. vNFM system design

IV. PERFORMANCE EVALUATION

A. Evaluation methodology
To evaluate our proposed fault detection, a network testbed

simulating memory-leak faults was configured as shown in Fig.
5. In this testbed, simulated NFV systems comprise physical
infrastructure, such as the commodity server, virtual
infrastructures, virtual machines and VNFs and have also
implemented a vNMF prototype on each server. Table I
summarizes the hardware and VM specifications for these
experiments. The underlying interconnect is a 1 Gbps between
physical NICs and 100 Mbps between virtual NICs. In terms of
vNMF, it is responsible for collecting statistical data from
physical and virtual infrastructure at 5-second intervals via
SNMP. The data include CPU usage, memory usage, Disk I/O
and network I/O respectively. Our proposed fault-detection
function in vNMF was implemented using the R package [11].

TABLE I. HARDWARE AND VM SPECIFICATION

 CPU Mem size Software spec

Server 1
Intel (R) Xeon
CPU @3.10GHz
4 core

8GBytes
- Cent OS 6.5 (host OS)
- libvirt 0.10.2
- QEMU 0.12.1

VM-11
(VNF-app1) 2 core 2GBytes

- Cent OS 6.5 (guest OS)
- Iperf 2.5.0.2
- Memory-leak program

VM-12
(VNF-app2) 2 core 2GBytes - Cent OS 6.5 (guest OS)
VM-13
(vNMF) 2 core 2GBytes - Cent OS 6.5 (guest OS)

Server 2
Intel (R) Xeon
CPU @3.10GHz
4 core

2GBytes - Cent OS 6.5 (host OS)
- vNMF(R package)

VM-21
(VNF-app3) 2 core 2GBytes - Cent OS 6.5 (guest OS)

- Iperf 2.5.0.2
VM-22
(VNF-app4) 2 core 2GBytes - Cent OS 6.5 (guest OS)

- Neo4J 2.0.4
VM-23
(vNMF) 2 core 2GBytes - Cent OS 6.5 (guest OS)

- vNMF(R package)

 To demonstrate the effectiveness of the proposed fault
detection, we evaluate it based on two remarkable use cases,
such as both memory-leak and network congestion. We assume
that it is hard to understand the events under VNF applications
running under vendor-specific knowledge.

[Use Case #1]: We evaluated a real-world memory-leaking
event using an open source graph database [12] for comparison
with the use case of VNF (Use case #2). The DB system was
implemented in VNF-app12. The memory-leak event was
generated by creating data and deleting it periodically within a
single transaction process [13]. The memory leak ran out of
available memory size in approximately two hours.

[Use Case #2]: The next use case is a memory-leak event on a
simulated VNF, performed to simulate network traffic between
VNFs using traffic generators installed into both VNF-app11
and VNF-app21. In addition, a memory-leak event was
simulated by a simulated memory-leak program on the VNF-
app11. As with use case#1, the memory leak ran out of
available memory in two hours.

[Use Case #3]: We also evaluated network congestion
internally generated in server 2. Bi-directional 80Mbps traffic
was simulated between VNF-app21 and -22 using traffic
generators. To generate traffic overload, additional traffic was
fed from VNF-app22 to VNF-app21. The traffic slowly
increased for 20 minutes.

Fig. 5. Experimental setup

B. Evaluated results of the fault detection
We initially evaluated the effectiveness of the SOM-based

fault detection approach. Figure 6 shows the training data put
into SOM. The training data are all normal condition data and
represent no rapid change in each performance behavior.
Figure 7 shows each input data retrieved from VM-12 and
server 1 when a memory-leak failure by DB bug occurs in VM-
12 (Use case #1). After the memory-leak event occurs, the
available memory size gradually decreases and it took
approximately two hours to run out of available memory. After
two hours, it eventually started to use swap space. Furthermore,
disk I/O as well as CPU usage fluctuated considerably due to
the increased swap usage. Conversely, CPU usage and disk I/O
with server 1 also rose after 120 minutes in response to the
significant fluctuation in VM-12. In the case of simulated VNF
(Use case #2), the observed performance behavior basically
resembled variations with use case # 1.

Figure 8 (a) depicts the total number of faults detected per
ten-minute period by vNMF1 based on use case #1. Although it
detected fewer than 30 failures on average before 60 minutes,
there is a significant jump in the rate of reported failures
around 60 minutes. We consider this increase due to the
variation in available memory size on VM-12 and the variation
in CPU usage on server 1 compared to normal conditions.
Toward 120 minutes, which is the time when available memory
runs out, the rates of increase converged. The graph represents

�������

�
�������������� ��������

���������������
��
��

�	��

������������
����������

	
�����������

������������������������ ���������

�� ����������������������������

�	��
	�

�
�

vSW

Virtual infrastructure

VM-11
vNIC

pNICServer-1

VNF-app11

vNMF1
(Monitoring)

CPU
Mem
Disk

CPU Mem Disk

Traffic,
Generator

VM-13

NW

VM-12
vNIC

VNF-app12

DB0

vSW

Virtual infrastructure

VM-21
vNIC

pNICServer-2

VNF-app21

vNMF2
(Monitoring)

CPU
Mem
Disk

CPU Mem Disk

Traffic,
Generator

VM-23VM-22
vNIC

VNF-app22

Traffic
Generator

<Use case#2> <Use case#1>

<Use case#3>

the trend of proportional increase in association with the
progression of memory leak. Note that vNMF can detect a
maximum of 12 fault detections per minute because it analyzes
fault detection at 5-second intervals. In this evaluation, we
identified the occurrence of abnormal behavior symptoms
concerning memory-leak when vNMF detected more than 60
failures on average within ten minutes. Accordingly, we
confirmed the memory-leak failure manifested after 60 minutes.
To demonstrate adaptability other than for memory-leak events,
proposed fault detection under network-congestion events (use
case #3) was evaluated. Figure 8 (b) depicts the total number of
faults detected per 5 minutes by vNMF2. The result shows a
significant jump in the rate of reported failures after 5 minutes
in association with the progressive network congestion on
server 2. Thus, we observed that traffic losses occurred on the
virtual switch after around 10 minutes, which confirmed that
our approach was working properly, since more than 30
failures were detected in around 10 minutes. Accordingly, we
confirm the ability of our fault-detection method to adapt to
both memory leaks and network-congestion events.

In addition, to understand the efficiency of the proposal and
reveal the difference of the detection rate between use case #1
and #2, we conducted sensitivity experiments to study how
vNMF performed under different parameters associated with
SOM clustering. Three important parameters decisively
influenced the fault-detection rate. One was the number of
SOM nodes with the potential to affect fault-detection accuracy,
as shown in Fig. 9 (Left graph: use case #1, right graph: use
case #2). For fewer than 13 nodes, there was no false positive
but the number of true positives was fewer than 13 nodes.
Conversely, for more than 13 nodes, the number of false
positives soared. Accordingly, the result shows that 13 nodes
are reasonable to detect abnormal behavior. Comparing the
case of an actual DB application (Use case #1) with that of a
simulated VNF (Use case #2), the results were subject to the
same tendency, but the number of true positives of use case #2
was smaller than that of use case #1. In the case of use case #2,
no outstanding variation in CPU usage was observed on server
1 compared to use case #1. Accordingly, the difference
between use case #1 and #2 is considered to be greatly
influenced by CPU usage behavior with server 1. Likewise, we
evaluated the impact of the number of training data as depicted
in Fig. 10. Given the large volume of training data, there were
few true positives and when it was small, considerable false
positives. From the result, 11000 training data, equivalent to a
training window of approximately one hour, was required to
detect faults more accurately. In comparison with both use case
#1 and #2, the results were subject to the same decreasing
tendency regarding the number of true- and false positives.
Finally, we verified the impact of the threshold value Lth to
decide the number of clusters as shown in Fig. 11. The nature
of the threshold value means if a large value is set, the number
of false positives rises, given the increased number of divided
clusters. The result indicated that the number of false positives
had increased in both use cases as the threshold value exceeded
0.05 and we confirmed that around 0.03 was an optimal value.
Based on the results of Figs. 8 (a), 9, 10 and 11, we confirm
that this evaluation indicates the effectiveness of our fault-
detection method for memory leaks generated from not only
actual DB applications but also simulated VNF, and

outperforms the baseline approach where direct measurements
are analyzed.

Fig. 6. Training data under normal condition

Fig. 7. Performance behavior in VM-12 and server 1 during memory-leak
(Use case #1)

Fig. 8. Total number of detection in the case of use case #1 and #3.

 Finally, to evaluate the accuracy of our fault detection, we
compared our approach using SOM to k-means clustering.

0"

2"

4"

6"

8"

10"

0" 30" 60" 90" 120" 150" 180"

��

�'
&�

�*
�&

�#
"�

��
��
����#$���

����#$���

0"

2"

4"

6"

8"

10"

12"

14"

0" 30" 60" 90" 120" 150" 180"
��!��!�"��

��

�'
&�

�*
�&

�#
"�

��
��

��!��!�"��

����#$���

����#$���

����#$�	�

����#$�
�

1.21$

1.215$

1.22$

0$ 30$ 60$ 90$ 120$ 150$ 180$
1.77$

1.78$

1.79$

0$ 30$ 60$ 90$ 120$ 150$ 180$�(
��

 �
�

��
!

�!
#$

)�
%�

*�
���

�)
&�

��

��!��!�"��

�(
��

 �
�

��
!

�!
#$

)�
%�

*�
���

�)
&�

��

��!��!�"��

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

0" 30" 60" 90" 120" 150" 180"

�
��

��
���

���
 #

��
�%

��
��

��!��!�"��

���������
�$�&������

�
$�&

��
���

���
 #

��
�%

��
��

0"

1"

2"

3"

4"

5"

6"

7"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

0" 30" 60" 90" 120" 150" 180"

�
��

��
���

���
 #

��
�%

��
��

��!��!�"��

�
$�&

��
���

���
 #

��
�%

��
�����������

�$�&������

���������� ������$(�$���

0"

10"

20"

30"

40"

50"

0" 20" 40" 60" 80" 100" 120" 140"
0"

20"

40"

60"

80"

100"

0" 20" 40" 60" 80" 100" 120" 140"

��

�'
&�

�*
�&

�#
"�

��
��

��!��!�"��

����#$���

����#$���

����#$�	�

����#$�
�

��

�'
&�

�*
�&

�#
"�

��
��

��!��!�"��

����#$���

����#$���

0"

0.5"

1"

1.5"

2"

0" 20" 40" 60" 80" 100" 120" 140"�(
��

 �
�

��
!

�!
#$

)�
%�

*�
���

�)
&�

��

��!��!�"��

1.2$

1.21$

1.22$

0$ 20$ 40$ 60$ 80$ 100$ 120$ 140$�(
��

 �
�

��
!

�!
#$

)�
%�

*�
���

�)
&�

��

��!��!�"��

0"

10"

20"

30"

40"

0"

200"

400"

600"

800"

1000"

0" 20" 40" 60" 80" 100" 120" 140"

�
��

��
���

���
 #

��
�%

��
��

��!��!�"��

���������
�$�&������

�
$�&

��
���

���
 #

��
�%

��
��

0"

5"

10"

15"

20"

25"

30"

35"

0"

200"

400"

600"

800"

1000"

0" 20" 40" 60" 80" 100" 120" 140"

�
��

��
���

���
 #

��
�%

��
��

��!��!�"��

�
$�&

��
���

���
 #

��
�%

��
��

���������
�$�&������

���������� ������$(�$���

N
um

be
r o

f f
au

lt
de

te
ct

io
n(

co
un

t/1
0m

in
)

Time(min)

0

20

40

60

80

100

0 20 40 60 80 100 120 140
0

10

20

30

40

(5 5 15 25 35N
um

be
r o

f f
au

lt
de

te
ct

io
n(

co
un

t/5
m

in
)

Time(min)
(a) Use case#1 (b) Use case#3

Figure 13 shows a comparison result under memory-leak event
(Use case #1). The comparison experiment was performed
using the same training data depicted in Fig. 6 and the same
input data shown in Fig. 7. We used a Receiver Operating
Characteristic (ROC) curve to compare the performance, which
can effectively show a tradeoff between the true positive and
false positive rates, respectively. The ROC curve for SOM was
obtained by adjusting the value of Lth. For the k-means
meanwhile, the ROC curve was calculated by adjusting the
distance threshold value, which decides the boundary cluster to
judge normal or abnormal data. As a setting of k-means, the k
was set to 20. The choice of k value used in this experiment
was based on five trial experiments conducted with k set to 5,
10, 15 and 20, respectively. The performance of k-means-based
detection represented no significant improvement when k was
set to a value exceeding 20. As shown in Fig. 12, the
significant best result showed a 97% true positive rate along
with a 0.2% false positive rate. We confirm that the result
indicates that the performance of our approach could achieve
higher accuracy than common k-means clustering.

Fig. 9. Relation between the number of SOM nodes and the detection rate

Fig. 10. Relation betwenn the number of training data and the detection rate

Fig. 11. Relation between Lth and the detection rate

Fig. 12. Accuracy comparison between SOM and k-means clustering

V. CONCLUSION
In this paper, we proposed a distributed network

management function for NFV called vNMF, which was
achieved by our two contributions; one was a distributed fault
detection framework to offload its function inside the network
domain to analyze the huge number of statistical data in
support of NFV for scalability, the other was a fault detection
mechanism. The detection mechanism identified abnormal
behavior generated from VNF application at an early stage by
integrally analyzing various types of statistical data with NFVI
using SOM-based clustering. Finally, we evaluated the
effectiveness of our proposed fault detection using a prototype
of the vNMF system. The results showed memory-leak failure
and network congestion failure, which is complicated in terms
of finding the failure on virtualization, were successfully
detected using only one-hour training dataset, and its accuracy
detection was significantly improved compared to the common
k-means clustering approach. These results also showed that it
met Req.1 (Detection of gray-box failure) and Req.3 (Short
learning time) that are our requirements for fault detection
described in Section II.B Regarding Req.2 (scalability), we
indicated the design of a distributed framework that can deploy
the fault detection on each server. In our future work, we plan
to need to evaluate different scenarios to demonstrate
effectiveness of the proposed fault detection, and complement
the scalability evaluation with the vNMF by comparison with
common centralized approach. Accordingly, the proposed
vNMF is expected to facilitate scalable network management
toward more complex network virtualization environments.

REFERENCES
[1] Network Function Virtualization Reference Architecture (ETSI GS NFV

002 V1.1.1)
[2] A.W.Williams, S.M.Pertet, and P.Narasimah, “Tiresias:Black-

box Failure Prediction in Distributed Systems,” In Proc. of IPDPS 2007,
pages 1-8, Mar. 2007.

[3] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani and D.
Rajan, ”PREPARE: Predictive Performance Anomaly Prevention for
 Virtualized Cloud Systems,” in Proc. of ICDCS2012, Pages 285-294,
Jun. 2012.

[4] L. Paladina, M. Paone, G. Jellamo, and A. Puliafito, “Self
organizing !maps for distributed localization in wireless sensor networks,”
in Proc of ISCC 2007, pages 1113-1118, Jul. 2007.

[5] ETSI ISG NFV GS NFV-MAN 001 V0.6.1 Network Function
Virtualization (NFV) Management and Orchestration.

[6] G. T. A. Dumitras ̧and P. Narasimhan, “Fault tolerance and the magical
1%,” In ACM/IFIP Conference on Middleware, pages 431-441,
Grenoble, France, Nov. 2005.

[7] T. Kohonen, “Self-Organizing Maps,” Springer-Verlag Berlin
Heidelverg, 1995.

[8] M. Terashima, et al., “Unsupervised Cluster Segmentation Method
Using Data Density Histogram on Self-Organizing Feature Map,” (in
Japanese), Transactions of the Institute of Electronics, Information and
Communication Engineers, Vol.J79-D-II, No.7, pages.1280-128, 1996.

[9] M. Miyazawa, M. Hayashi, “In-network real-time performance
monitoring with distributed event processing,” In Proc. of MANFI�
2014, pages 1-5, May. 2013.

[10] Apache. Cassandra-2.0.8: http://cassandra.apache.org
[11] R project: http://www.r-project.org
[12] Neo4j 2.0.4 : http://neo4j.com
[13] http://neo4j.com/release-notes/neo4j-2-1-3/

0

5

10

15

20

25

30

35

0

20

40

60

80

100

120

140

8 10 12 14

N
um

be
r o

f t
ru

e
po

si
tiv

e

N
um

be
r o

f f
al

se
 p

os
iti

veTrue positive
False positive

Number of SOM node

0

5

10

15

20

25

0

10

20

30

40

8 10 12 14

N
um

be
r o

f t
ru

e
po

si
tiv

e

N
um

be
r o

f f
al

se
 p

os
iti

veTrue positive
False positive

Number of SOM node
(a) Use case#1 (b) Use case#2

N
um

be
r o

f t
ru

e
po

si
tiv

e

Number of sample

N
um

be
r o

f f
al

se
 p

os
iti

ve

True positive
False positive

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

0 10000 20000 30000

True positive
False positive

N
um

be
r o

f t
ru

e
po

si
tiv

e

Number of sample

N
um

be
r o

f f
al

se
 p

os
iti

ve

0

10

20

30

40

50

60

70

0
10
20
30
40
50
60
70
80

0 10000 20000 30000

(a) Use case#1 (b) Use case#2

N
um

be
r o

f t
ru

e
po

si
tiv

e

Lth

N
um

be
r o

f f
al

se
 p

os
iti

ve

0
2
4
6
8
10
12
14
16
18
20

0

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2

True positive
False positive

0

5

10

15

20

25

0

10

20

30

40

50

0 0.05 0.1 0.15 0.2

N
um

be
r o

f t
ru

e
po

si
tiv

e

Lth

N
um

be
r o

f f
al

se
 p

os
iti

ve

True positive
False positive

(a) Use case#1 (b) Use case#2

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

SOM

k-means

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

