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Abstract—Network function virtualization introduces 

additional complexity for network management through the use 
of virtualization environments. The amount of managed data and 
the operational complexity increases, which makes service 
assurance and failure recovery harder to realize. In response to 
this challenge, the paper proposes a distributed management 
function, called virtualized network management function 
(vNMF), to detect failures related to virtualized services. vNMF 
detects the failures by monitoring physical-layer statistics that 
are processed with a self-organizing map algorithm. 
Experimental results show that memory leaks and network 
congestion failures can be successfully detected and that and the 
accuracy of failure detection can be significantly improved 
compared to common k-means clustering. 
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I.  INTRODUCTION 
With the emergence of new technology providing software-

based telecommunication, which is called network function 
virtualization (NFV) discussed in the ETSI [1], the concept of 
incorporating its virtualization technology into the networking 
domain generally helps service providers reduce equipment, 
power consumption and accelerate the time-to-market for new 
services and network functionalities. To fully benefit from 
NFV, several challenges need to be overcome from a network 
management perspective. Fault detection in particular has 
become a top priority due to the increase in managed data and 
changed operation procedure for NFV. 

Traditional networks are currently supported by a 
centralized management system such as an OSS (Operation 
Support System), which detect failures and analyze the root 
cause by integrally collecting management information, 
including statistical data and event data from network devices. 
However, under NFV, the amount of such managed data tends 
to keep increasing due to the expanded system scale and 
functionality with virtualization technology. The increased 
amount of managed data delays operational work, such as 
detecting failure and exploring affected services. The delayed 
failure detection, in turn, hinders network management 
activities, including the network recovery process, thus causing 
service quality to decline compared to the existing network. 
The challenge is to achieve scalable fault detection to support 
numerous virtualized infrastructures. 

In addition, the existing network function usually comprises 
traditional network hardware appliances integrally provided by 
vendor-specific hardware, which are basically supported by a 

single vendor. In contrast, Virtual Network Functions (VNFs) 
are provided and supported by several vendors because the 
VNFs can share certain infrastructure resources such as 
hardware and hypervisor in NFV infrastructure (NFVI). In the 
complicated arrangements, the VNF is prone to unexpected and 
silent forms of failure, affected by failures from the separated 
NFVI. However, it is difficult to detect such failure under 
multi-vendor environments, since each VNF is supposed to 
have independent implementation of management interfaces. 
The fault detection must thus integrally monitor the tricky 
failures by monitoring performance behavior in unified NFVI. 

It is challenging to promptly detect failures and 
performance anomalies in such NFV environments before they 
escalate into other failures. Many approaches to fault detection 
and prediction focused on large-scale network and cloud 
systems have been proposed. Most conventional approaches 
use supervised learning techniques [2, 3] to monitor production 
cloud systems. The supervised learning techniques can only 
detect previously known anomalies, but we assume increased 
detection of unknown anomalies in NFV because NFV 
components are basically unregulated structures comprising 
one-to-many relations between VNF applications and NFVI. 
As an unsupervised approach, clustering is one useful solution 
to detect anomalies in communication networks as well as 
wireless sensor networks. The author of [4] focuses on 
localizing failure for large-scale sensor networks and their 
localization technique in a distributed manner, which is 
implemented on each sensor node. The approach can 
effectively detect failures without known abnormal behavior, 
but requires a few metrics as input data and is not focused on 
complicated virtualization environments. Further work is still 
required in this area to validate applicability in support of NFV. 

In this paper, we propose the design of a virtualized 
Network Management Function (vNMF) for NFV, which is 
achieved by our proposed two contributions; one of which is a 
the distributed detection framework to offload its function 
inside the network domain and analyze the huge number of 
statistical data in support of NFV for scalability. The other is a 
fault-detection mechanism implemented in vNMF, to detect 
abnormal failure on VNFs over NFVI statistical data at an early 
stage, using a Self-Organizing Map (SOM) algorithm. In 
addition, the proposed fault detection, which is implemented as 
a prototype vNMF system, was demonstrated for showing 
proof of concept. The results of the evaluation using memory-
leak and network-congestion events event confirm that the 
proposed vNMF system successfully detected abnormal 
performance behavior. 



II. MANAGEMENT FOR NFV 

A. Problem statement for fault management on NFV  
NFV allows network operators to deploy network functions 

such as firewalls, virtual routing and so forth on virtualized 
physical infrastructure, called NFVI, instead of traditional 
hardware appliances implemented on proprietary hardware. Its 
technology allows for various network services to be 
continuously created within a short time and many VNFs from 
different vendors for several dedicated network services to co-
exist separately on the same NFVI, such as hypervisor and 
servers. The concept indicates that network structure and its 
operation would change dramatically compared to the existing 
network based on network hardware appliances. Amid such 
environment, VNFs would be prone to unexpected failure and 
impaired performance due to hidden failure (e.g., hardware 
failures, software bugs and traffic congestion failures) from 
separated NFVI. Accordingly, it is hard to understand the root 
cause of failure because the management framework for NFV, 
which is defined by NFV MANO [5], manages each 
component independently, while the Virtual Infrastructure 
Manager (VIM) and VNF manager are responsible for 
managing NFVIs and VNFs, respectively. For instance, if 
performance degrades due to CPU overload in an NFVI, the 
degradation may be detected by VIM. However, the event also 
affects other components such as virtual CPUs in NFVI , which 
means several alarms unsynchronized among NFVI, VM and 
VNF are generated respectively. The large number of alarms is 
sent to OSS to identify the root cause. However, the operation 
procedure for NFV is complex and takes considerable time; not 
only to detect failure but also identify the cause, given the lack 
of insight into the causal relationship of failures and its 
abnormal behavior in such NFV environments. With this in 
mind, services are at risk of degrading customer experience.  

B. Requirements of fault detection function in NFV 
To detect failure based on use cases, management functions 

must address three requirements for NFV: 

[Req. 1] Detection of gray-box failure: One is to successfully 
detect unknown behavior and hidden failures in a virtualization 
environment, such as memory leaks, without knowledge of 
detailed VNF application-level information, because the failure 
information is often implemented as vendor-specific. It can 
provide advance notice of application-level failure before 
escalating into significant failures and eliminating the need for 
vendor-specific knowledge and prior knowledge of abnormal 
behavior. 

[Req. 2] Scalability: The second is sufficient analysis 
resolution to detect faults because the operator wants to detect 
failures on a real-time basis and at an early stage before they 
escalate to critical failures. For instance, considering the 
management of a mobile network with the scale of a real 
telecom network, approximately tens of thousands of network 
functions including a control plane, data plane and packet 
switching function should be managed. In addition to this, we 
have to newly manage NFVI resources. In fact, the number of 
managed resources tends to increase compared to network 
hardware appliances. Scalable fault detection thus must be 
required to support the large-scale data monitoring and analyze 
the result. 

[Req. 3] Short learning time: A short learning time is 
necessary because the life cycle of network and service in NFV 
tends to be shortened compared to existing telecommunication 
services. If we obtain training data set to cover all possible 
normal events and/or rare abnormal events for detection using 
a supervised learning algorithm over extended periods (e.g., 
over 1 month), the service and network configuration may 
already be changed, or the service may be terminated. 

C. Failure model to detect faults on NFV 
We assume that faults leading to failures on the VNF also 

affect performance metrics with NFVI (e.g., CPU usage 
memory usage, Disk I/O and network I/O). In paper [6], 
increasing failure instability emerges, whereby a number of 
interesting computer-related faults are verifiably preceded by a 
visible abnormal pattern. If we observe a behavior, taking 
various types of performance metrics into account and under 
normal and abnormal conditions, advance fault detection on 
NFV is possible using various types of performance metrics 
collected from NFVI. Figure 1 represents the potential impact 
on the relationship between resources when failures involving 
impaired performance occur in VNF and NFVI. Based on this 
assumption, no performance metrics with the VNF are required 
to detect the failure generated from the VNF by overall 
observation of performance behavior with NFVI. 

 
Fig. 1. Relationship of failure in NFV 

III. VNMF FOR FAULT DETECTION  
In this section, we present the design of a proposed vNMF 

as a scalable NFV management function, which can monitor 
statistical data of NFVI and detect failure by analyzing 
different type of performance metrics. 

A. Fault detection mechanism 
As described in Section II.C, to totally analyze the 

performance behavior of interrelated performance metrics, a 
clustering technique is useful to classify and extract relevant 
information from large data sources. One particular clustering 
method, known as the SOM [7], has several beneficial features 
that make it particularly useful for data clustering. SOM is a 
type of neural network and unsupervised learning algorithm. It 
is capable of analyzing various types of data and capturing its 
complex behavior while being computationally less expensive. 
It maps vectorial input data items with similar patterns on 
contiguous locations of a discrete low-dimensional grid of 
neurons in a manner that preserves topology. Its output data 
can be compared to a map: neighboring locations have similar 
data patterns attributed. Accordingly, SOM provides the 
analysis of various input data, lightweight and short learning 
time and is a prerequisite to our requirements. 
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The SOM comprises the following steps as shown in Fig. 2. 

[Step 1]Initialization: All reference vectors mi are initialized 
by random numbers. A sample is extracted from the training 
dataset and input vector x is input to all nodes simultaneously 
in parallel. 

[Step 2]Competition: SOM identifies the node with the 
reference vector which most resembles the input data, called 
the best matching unit (BMU.) To calculate the BMU, each 
data is examined to find that with the reference vector most 
similar to the input vector. This selection is performed using 
the Euclidean Distance formula as equation (1), which 
measures similarity between the input data and the node with 
the reference vector. 
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The input vector xj belongs to a winner node that is with the 
weight vector closest to xj. 

  �            (2) 

and defines the image of the input x on the map. 

[Step 3]Adaptation: The nodes within a certain distance of the 
winning node c are updated according to the equation. 

   (3) 

hci is called the neighborhood function around the winner node 
c. Finally, SOM determines the stability condition. If the 
stability condition is satisfied, then the learning process 
terminates, otherwise go to Step 2 for another learning loop. 

 
Fig. 2. The basic steps of SOM algorithm 

 After the input data is classified, some clusters must be 
divided to decide normal or abnormal behavior. In general, the 
number of clusters must be predefined in the case of k-means 
algorithm. The algorithms aim to minimize the sum of squared 
distance between all data points and the cluster center. The 
inconvenience of this procedure is the determination of the best 
value of k for optimal clustering. If the wrong number of k is 
set in advance, our results may be incorrect. However, it is rare 
to learn the appropriate number if unknown failure tends to 
increases. The author of [8] proposed a cluster-extraction 
algorithm using 1-dimensional SOM. To address the above 
problem, we apply a cluster-extraction algorithm based on a 
histogram to dynamically divide the number of clusters without 
pre-configuration. The main reason for choosing this clustering 
algorithm is its significant characteristic in SOM. When the 
input data comprises some clusters, the density of input data is 

high around the center of each cluster and low among the 
clusters. In the map built by SOM, the distance between two 
reference vectors assigned around the boundary of clusters 
exceeds that assigned around the center of each cluster. This 
characteristic allows clusters to be divided from input data by 
detecting valleys of the histogram of distance between the 
reference vectors of adjacency nodes. To do so, three processes 
can be used. First is the map building process, whereby the 
input data are subject to SOM for a set of reference vectors. 
The second is the map analysis process. For every node i, the 
reference vector density S (in other words, representing 
similarity between reference vectors) is found by distance 
between reference vectors from nodes i to i+1 using Euclidean 
distance. 

          (4)
 

Finally, based on node i, the cluster integration density is 
calculated using the following equation:  

                       Li =
Vi
Si

                                                      (5) 

where Vi is the number of input data which is assigned to 
generate the histogram of Li. Boundaries among the clusters 
can be extracted by detecting valleys of the histogram with an 
appropriate threshold Lth as shown in Fig. 3. Finally, to find a 
cluster concerning abnormal behavior in several separated 
clusters, a cluster covering minimum space is identified as the 
outlier cluster. Moreover, only if the identified cluster satisfies 
the following equation is it deemed to include abnormal 
behavior, 

                        vi ≤
vh
d

    (6) 

where vs is the coordinate number associated with the identified 
cluster, vh is the total coordinate number concerning each 
cluster and d represents the number of the cluster. 

 
Fig. 3. Concept of cluster extraction 

B. System design for vNMF 
Figure 4 shows the system design of the distributed vNMF, 

which monitors statistical data, analyzes performance behavior 
and detects failure. The vNMF adopts a decentralized approach 
that is basically deployed on each NFVI and uses the residual 
resource to collect statistical data from VM and NFVI, process 
such data and detect faults. In our previous work, we proposed 
a distributed performance management framework [9], which 
offloads several performance management activities inside 
network devices to reduce the delay in comprehending network 
performance. To realize scalable fault detection, a fault-

x −mc =min
i

x −mi{ }

mi (t +1) =mi (t)+α(t)hci[x(t)−mi (t)]
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detection function is additionally implemented in this 
framework as shown in Fig. 4. Firstly, the adapter collects the 
statistical data (e.g., CPU usage, memory usage, disk 
read/write I/O and in/out octets in/out packet, error packets as 
network I/O) from several VMs and NFVI via SNMP. After 
receiving data, the data is normalized using a data-processing 
function, due to the considerable variation among input data. 
Subsequently, the normalized data is stored into the DB 
function [10]. Finally, the fault detection function refers its data 
and analyzes by proposed clustering. If failure is detected, 
alarms are sent to OSS by the notification function. 

 
Fig. 4. vNFM system design 

IV. PERFORMANCE EVALUATION 

A. Evaluation methodology 
To evaluate our proposed fault detection, a network testbed 

simulating memory-leak faults was configured as shown in Fig. 
5. In this testbed, simulated NFV systems comprise physical 
infrastructure, such as the commodity server, virtual 
infrastructures, virtual machines and VNFs and have also 
implemented a vNMF prototype on each server. Table I 
summarizes the hardware and VM specifications for these 
experiments. The underlying interconnect is a 1 Gbps between 
physical NICs and 100 Mbps between virtual NICs. In terms of 
vNMF, it is responsible for collecting statistical data from 
physical and virtual infrastructure at 5-second intervals via 
SNMP. The data include CPU usage, memory usage, Disk I/O 
and network I/O respectively. Our proposed fault-detection 
function in vNMF was implemented using the R package [11]. 

TABLE I.  HARDWARE AND VM SPECIFICATION 

 CPU  Mem size Software spec 

Server 1 
Intel (R) Xeon 
CPU @3.10GHz 
4 core 

8GBytes 
- Cent OS 6.5 (host OS) 
- libvirt 0.10.2 
- QEMU 0.12.1 

VM-11 
(VNF-app1) 2 core 2GBytes 

- Cent OS 6.5 (guest OS) 
- Iperf 2.5.0.2 
- Memory-leak program 

VM-12 
(VNF-app2) 2 core  2GBytes - Cent OS 6.5 (guest OS) 
VM-13 
(vNMF) 2 core 2GBytes - Cent OS 6.5 (guest OS) 

Server 2 
Intel (R) Xeon 
CPU @3.10GHz 
4 core 

2GBytes - Cent OS 6.5 (host OS) 
- vNMF(R package) 

VM-21 
(VNF-app3) 2 core 2GBytes - Cent OS 6.5 (guest OS) 

- Iperf 2.5.0.2 
VM-22 
(VNF-app4) 2 core  2GBytes - Cent OS 6.5 (guest OS) 

- Neo4J 2.0.4 
VM-23 
(vNMF) 2 core  2GBytes - Cent OS 6.5 (guest OS) 

- vNMF(R package) 
  

 To demonstrate the effectiveness of the proposed fault 
detection, we evaluate it based on two remarkable use cases, 
such as both memory-leak and network congestion. We assume 
that it is hard to understand the events under VNF applications 
running under vendor-specific knowledge.  

[Use Case #1]: We evaluated a real-world memory-leaking 
event using an open source graph database [12] for comparison 
with the use case of VNF (Use case #2). The DB system was 
implemented in VNF-app12. The memory-leak event was 
generated by creating data and deleting it periodically within a 
single transaction process [13]. The memory leak ran out of 
available memory size in approximately two hours. 

[Use Case #2]: The next use case is a memory-leak event on a 
simulated VNF, performed to simulate network traffic between 
VNFs using traffic generators installed into both VNF-app11 
and VNF-app21. In addition, a memory-leak event was 
simulated by a simulated memory-leak program on the VNF-
app11. As with use case#1, the memory leak ran out of 
available memory in two hours. 

[Use Case #3]: We also evaluated network congestion 
internally generated in server 2. Bi-directional 80Mbps traffic 
was simulated between VNF-app21 and -22 using traffic 
generators. To generate traffic overload, additional traffic was 
fed from VNF-app22 to VNF-app21. The traffic slowly 
increased for 20 minutes.  

  
Fig. 5. Experimental setup 

B. Evaluated results of the fault detection 
We initially evaluated the effectiveness of the SOM-based 

fault detection approach. Figure 6 shows the training data put 
into SOM. The training data are all normal condition data and 
represent no rapid change in each performance behavior. 
Figure 7 shows each input data retrieved from VM-12 and 
server 1 when a memory-leak failure by DB bug occurs in VM-
12 (Use case #1). After the memory-leak event occurs, the 
available memory size gradually decreases and it took 
approximately two hours to run out of available memory. After 
two hours, it eventually started to use swap space. Furthermore, 
disk I/O as well as CPU usage fluctuated considerably due to 
the increased swap usage. Conversely, CPU usage and disk I/O 
with server 1 also rose after 120 minutes in response to the 
significant fluctuation in VM-12. In the case of simulated VNF 
(Use case #2), the observed performance behavior basically 
resembled variations with use case # 1. 

Figure 8 (a) depicts the total number of faults detected per 
ten-minute period by vNMF1 based on use case #1. Although it 
detected fewer than 30 failures on average before 60 minutes, 
there is a significant jump in the rate of reported failures 
around 60 minutes. We consider this increase due to the 
variation in available memory size on VM-12 and the variation 
in CPU usage on server 1 compared to normal conditions. 
Toward 120 minutes, which is the time when available memory 
runs out, the rates of increase converged. The graph represents 
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the trend of proportional increase in association with the 
progression of memory leak. Note that vNMF can detect a 
maximum of 12 fault detections per minute because it analyzes 
fault detection at 5-second intervals. In this evaluation, we 
identified the occurrence of abnormal behavior symptoms 
concerning memory-leak when vNMF detected more than 60 
failures on average within ten minutes. Accordingly, we 
confirmed the memory-leak failure manifested after 60 minutes. 
To demonstrate adaptability other than for memory-leak events, 
proposed fault detection under network-congestion events (use 
case #3) was evaluated. Figure 8 (b) depicts the total number of 
faults detected per 5 minutes by vNMF2. The result shows a 
significant jump in the rate of reported failures after 5 minutes 
in association with the progressive network congestion on 
server 2. Thus, we observed that traffic losses occurred on the 
virtual switch after around 10 minutes, which confirmed that 
our approach was working properly, since more than 30 
failures were detected in around 10 minutes. Accordingly, we 
confirm the ability of our fault-detection method to adapt to 
both memory leaks and network-congestion events.   

In addition, to understand the efficiency of the proposal and 
reveal the difference of the detection rate between use case #1 
and #2, we conducted sensitivity experiments to study how 
vNMF performed under different parameters associated with 
SOM clustering. Three important parameters decisively 
influenced the fault-detection rate. One was the number of 
SOM nodes with the potential to affect fault-detection accuracy, 
as shown in Fig. 9 (Left graph: use case #1, right graph: use 
case #2). For fewer than 13 nodes, there was no false positive 
but the number of true positives was fewer than 13 nodes. 
Conversely, for more than 13 nodes, the number of false 
positives soared. Accordingly, the result shows that 13 nodes 
are reasonable to detect abnormal behavior. Comparing the 
case of an actual DB application (Use case #1) with that of a 
simulated VNF (Use case #2), the results were subject to the 
same tendency, but the number of true positives of use case #2 
was smaller than that of use case #1. In the case of use case #2, 
no outstanding variation in CPU usage was observed on server 
1 compared to use case #1. Accordingly, the difference 
between use case #1 and #2 is considered to be greatly 
influenced by CPU usage behavior with server 1. Likewise, we 
evaluated the impact of the number of training data as depicted 
in Fig. 10. Given the large volume of training data, there were 
few true positives and when it was small, considerable false 
positives. From the result, 11000 training data, equivalent to a 
training window of approximately one hour, was required to 
detect faults more accurately. In comparison with both use case 
#1 and #2, the results were subject to the same decreasing 
tendency regarding the number of true- and false positives. 
Finally, we verified the impact of the threshold value Lth to 
decide the number of clusters as shown in Fig. 11. The nature 
of the threshold value means if a large value is set, the number 
of false positives rises, given the increased number of divided 
clusters. The result indicated that the number of false positives 
had increased in both use cases as the threshold value exceeded 
0.05 and we confirmed that around 0.03 was an optimal value. 
Based on the results of Figs. 8 (a), 9, 10 and 11, we confirm 
that this evaluation indicates the effectiveness of our fault-
detection method for memory leaks generated from not only 
actual DB applications but also simulated VNF, and 

outperforms the baseline approach where direct measurements 
are analyzed. 

 

Fig. 6. Training data under normal condition   

 

Fig. 7. Performance behavior in VM-12 and server 1 during memory-leak 
(Use case #1) 

 

Fig. 8. Total number of detection in the case of use case #1 and #3. 

 Finally, to evaluate the accuracy of our fault detection, we 
compared our approach using SOM to k-means clustering. 
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(a) Use case#1 (b) Use case#3



Figure 13 shows a comparison result under memory-leak event 
(Use case #1). The comparison experiment was performed 
using the same training data depicted in Fig. 6 and the same 
input data shown in Fig. 7. We used a Receiver Operating 
Characteristic (ROC) curve to compare the performance, which 
can effectively show a tradeoff between the true positive and 
false positive rates, respectively. The ROC curve for SOM was 
obtained by adjusting the value of Lth. For the k-means 
meanwhile, the ROC curve was calculated by adjusting the 
distance threshold value, which decides the boundary cluster to 
judge normal or abnormal data. As a setting of k-means, the k 
was set to 20. The choice of k value used in this experiment 
was based on five trial experiments conducted with k set to 5, 
10, 15 and 20, respectively. The performance of k-means-based 
detection represented no significant improvement when k was 
set to a value exceeding 20. As shown in Fig. 12, the 
significant best result showed a 97% true positive rate along 
with a 0.2% false positive rate. We confirm that the result 
indicates that the performance of our approach could achieve 
higher accuracy than common k-means clustering.  

 

Fig. 9. Relation between the number of SOM nodes and the detection rate 

 

Fig. 10. Relation betwenn the number of training data and the detection rate 

 

Fig. 11. Relation between Lth and  the detection rate  

  
Fig. 12. Accuracy comparison between SOM and k-means clustering 

V. CONCLUSION 
In this paper, we proposed a distributed network 

management function for NFV called vNMF, which was 
achieved by our two contributions; one was a distributed fault 
detection framework to offload its function inside the network 
domain to analyze the huge number of statistical data in 
support of NFV for scalability, the other was a fault detection 
mechanism. The detection mechanism identified abnormal 
behavior generated from VNF application at an early stage by 
integrally analyzing various types of statistical data with NFVI 
using SOM-based clustering. Finally, we evaluated the 
effectiveness of our proposed fault detection using a prototype 
of the vNMF system. The results showed memory-leak failure 
and network congestion failure, which is complicated in terms 
of finding the failure on virtualization, were successfully 
detected using only one-hour training dataset, and its accuracy 
detection was significantly improved compared to the common 
k-means clustering approach. These results also showed that it 
met Req.1 (Detection of gray-box failure) and Req.3 (Short 
learning time) that are our requirements for fault detection 
described in Section II.B Regarding Req.2 (scalability), we 
indicated the design of a distributed framework that can deploy 
the fault detection on each server.  In our future work, we plan 
to need to evaluate different scenarios to demonstrate 
effectiveness of the proposed fault detection, and complement 
the scalability evaluation with the vNMF by comparison with 
common centralized approach. Accordingly, the proposed 
vNMF is expected to facilitate scalable network management 
toward more complex network virtualization environments. 
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