A High Performance VOLTE Traffic Classification
Method using HTCondor

Jonghwan Hyun*, Jian Lif, ChaeTae Im*, Jae-Hyoung Yoo*, James Won-Ki Hong*{
*Department of Computer Science and Engineering, POSTECH, Pohang, Korea
Email: {noraki, styoo, jwkhong} @postech.ac.kr
TDivision of IT Convergence Engineering, POSTECH, Pohang, Korea
Email: gunine@postech.ac.kr
{Korea Internet & Security Agency, Seoul, Korea
Email: chtim@kisa.or.kr

Abstract—Voice-over-LTE (VoLTE) is a VoIP-based multimedia
service which is provided using All-IP based LTE networks.
VOLTE service was first commercialized by Korean telcos in
2012, and now more and more telcos are trying to adopt
this technology. With the increased VoLTE service popularity,
it is inevitable to have large VoLTE traffic volume (possibly
degrading the service quality) and the potential attacks (possibly
degrading the service reliability and availability) in the near
future. Therefore, in order to avoid such potential issues, we need
to perform thorough analysis on VoLTE traffic. As a first step, we
propose a VOLTE traffic classification method and its distributed
architecture. As the proposed classification method relies on Deep
Packet Inspection (DPI) technique, it severely suffers from the
large processing time and scalability issues. To overcome these
issues, we further propose a distributed architecture for VoOLTE
traffic classification by adopting a high throughput computing
framework - HTCondor. We performed a set of experiments
using real-world traces captured from a commercial LTE core
network, and have shown that with the proposed architecture, we
can achieve up to 23.869 Gbps classification throughput which
was almost 35 times faster than the system without distributed
processing.

Keywords—HTCondor, Traffic Analysis, VOLTE, RTP, SIP

I. INTRODUCTION

With the growth of Long Term Evolution (LTE) service market
and the increased popularity of smart devices, the mobile traffic
volume has been growing rapidly in the past several years,
and such trend will inevitably continue in coming years. In
the worldwide, the mobile traffic volume is expected to grow
at least 3 times in 2016 [1]. Moreover, among the overall LTE
traffic, the voice and video traffic contributes the most (more
than 75 %), as the large bandwidth that the LTE network can
provide.

Voice call service was typically realized using a circuit switch-
ing method in the existing 2G and 3G networks. However,
LTE network is an All-IP based network, and with which all
services should be implemented over packet switching net-
works. Hence, VOLTE service was developed with considering
this context, and through which voice and video call service
can be provided. VoLTE service was first commercialized
by Korean telcos in 2012, and now more and more telcos
are trying to adopt it is inevitable to have large VoLTE
traffic volume (possibly degrading the service quality) and the
potential attacks (possibly degrading the service reliability and

availability) in the near future. Therefore, in order to avoid
such potential issues, we need to perform thorough analysis
on VoLTE traffic.

Because VOLTE is a VolP-based multimedia service, the un-
derlying communication protocols of two services are almost
identical. Consequently, it is non-trivial to classify the VOLTE
traffic among LTE traffic using existing VoIP traffic classi-
fication methods [2][3][4][5][6]. To effectively perform the
classification of the VoLTE traffic, we need to find out the
different characteristics of two services (VoIP and VoLTE),
and with which we can differentiate VOLTE traffic from VoIP
traffic within LTE traffic. We summarized the differences of
VOoLTE and VoIP services as three parts,

e Underlying Wireless Networks: VoIP services are pro-
vided over various types of wireless networks (e.g., LTE,
3G, Wi-Fi, WiMAX), while VOoLTE service is provided over
the LTE network only.

e Guaranteed QoS Level: to provide guaranteed QoS to
VoLTE service, mobile network operators logically separate
the VOLTE traffic and non-VoLTE traffic using different
bearer type. VOLTE traffic, which has the highest priority, is
delivered over a dedicated bearer, while non-VoLTE traffic
including VoIP traffic is delivered over default bearer with
which only best effort QoS can be preserved.

e Application Types: all of the VoIP traffic over LTE net-
work is generated by third party mobile applications (e.g.,
Skype, Viber and WeChat), while VoLTE traffic can only be
generated by the phone dial application which is typically
pre-installed by mobile network operators.

The first difference can be exploited when the VOLTE and VoIP
services run over the different underlying wireless networks.
Unfortunately, the targeted VOLTE and VoIP traffic is captured
from the identical network (e.g., LTE core network); hence,
we cannot design the classification method by taking into
account the first difference. When it comes to the second
difference, since only VOLTE traffic is delivered over dedicated
bearer, it is reasonable to exploit the bearer type as the
VOLTE classification criterion. Since each User Equipment
(UE) holds two bearer IDs (both for default and dedicated
bearers), we have to properly manage the dedicated bearer
IDs to differ the dedicated bearer type. However, managing the
dedicated bearer IDs is challenging, due to 1) synchronizing

the dedicated bearer ID among multiple capture points requires
the comprehensive knowledge on overall LTE core network,
and 2) removing the expired dedicated bearer ID is a non-
trivial problem. Therefore, in this work, we design our VoOLTE
traffic classification method by exploiting the third difference,
which is the application level classification.

Similar to the VoIP service, VOLTE service relies on two types
of communication protocols, SIP [7] and RTP [8]. We first
analyze the traffic traces of VoIP and VOoLTE applications, and
then synthesize the VOLTE application payload signature based
on our observation. With this signature we classify the VOLTE
SIP traffic among all SIP traffic with high accuracy. Finally,
we extract the meta-information from VOLTE SIP traffic, to
further classify the VOLTE RTP traffic.

Payload signature based application classification method is
typically relying on Deep Packet Inspection (DPI) technique;
nevertheless, this technique induces high computational over-
head [9]. Moreover, vast amount of existing traffic classifica-
tion methods [10][11] are difficult to be parallelized because
they perform flow-based classification, which induces depen-
dency among parallelized workloads. Therefore, to overcome
these problems, we propose a distributed architecture for
VOLTE traffic classification workload in a way that increases
the classification speed.

The remainder of this paper is organized as follows: Section II
presents related work on VOLTE and VolIP traffic classification
and the distributed architecture for traffic analysis. Section
IIT presents our VoLTE traffic classification method, and its
performance for a single machine. A distributed VoLTE traffic
classification architecture is proposed in Section IV, and its
performance is evaluated in Section V. Finally, conclusion and
future work are discussed in Section VI.

II. RELATED WORK
A. VoIP Traffic Classification

VOLTE uses SIP to establish a multimedia session, and uses
RTP to transfer multimedia data. As VoLTE is an emerging
service, there is merely little literature work has been done
on classifying the VOLTE traffic among overall LTE traffic.
However, both VoIP and VOLTE services rely on the same
communication protocols (e.g., SIP and RTP), we can still get
some insights by carefully analyzing the literature work on
VoIP traffic classification methods.

The RTP traffic classification techniques fall into two cate-
gories. The first technique relies on the SIP payload which
contains a set of RTP meta information including port num-
ber, and with which the RTP traffic can be easily classified
with high accuracy. The second technique does not rely on
inspecting SIP payload; instead, it requires pre-defined RTP
header or payload signatures (e.g., L7-filter [19]). Birke and
Sinam et al. in [3][4] proposed heuristic algorithms which are
used to classify RTP flows instead of RTP packets for the
purpose of further decreasing the computational complexity.
In a summary, the first technique inspects both SIP payload as
well as RTP header, which induces large computational over-
head, yet provides very high classification accuracy. Whereas,
the second technique inspects RTP header/payload only, hence
the computational overhead is relatively moderate, yet shows
poor classification accuracy compared to the former technique.

In this work, we choose and further extend the first technique
to classify the SIP and RTP packets of VOLTE service. The
reasons are: 1) the rich information (e.g., IP, codec information,
user-agent and etc.) contained in SIP payload can be utilized
as a solid basis for differentiating the VOLTE and VoIP service;
2) it provides much higher accuracy compared to the second
technique; and 3) we can overcome the deficiency of the first
technique by adopting the distributed architecture to realize the
classification parallelism.

B. Distributed Traffic Analysis

Traffic analysis requires vast amount of computing power,
especially for DPI technique. Most of the commercial DPI
devices require specialized hardwares; nevertheless, expensive
price burdens the adoption of those devices. An alternative
solution is to adopt a large scale cluster which is comprised
of cheap commodity servers. Due to the economic and scal-
ability merits, the cluster based DPI approach becomes more
and more popular recently. However, parallelizing the traffic
processing operation over a cluster is non-trivial problem.

To make a scalable and distributed traffic analysis system,
a lot of research have applied the Hadoop framework [21],
which implements a popular parallel programming model,
MapReduce [20]. In [22], the authors proposed a scalable
Internet traffic measurement and analysis architecture with
Hadoop. They evaluated the proposed system using a Hadoop
testbed with 30 and 200 nodes. They also demonstrated that
the MapReduce based traffic analysis method achieved up to
14 Gbps of throughput for 5 TB input files. RIPE [23] is
a packet processing library for Hadoop, and it can be used
within MapReduce jobs to natively read pcap formatted files. It
took 180 seconds for analysis of 100 GB pcap input file using
100 Amazon EC2 instances. However, it does not consider the
parallel processing capability of reading packet records.

HTCondor [24] is a software framework for distributed and
parallel processing of workloads that require high computing
power. Compared to Hadoop, HTCondor has following ad-
vantages, especially on traffic analysis: 1) HTCondor supports
C/C++, so legacy codes (e.g., based on libpcap library) can
be used to analyze the traffic without additional modification,
whereas Hadoop based approach must re-implement the entire
logic in MapReduce fashion; 2) Hadoop requires additional I/O
operation to read and write pcap (binary) formatted traffic trace
while HTCondor supports both of text and binary formatted
traffic trace.

Due to the impropriety of Hadoop on traffic processing, in
this paper, we propose an HTCondor-based distributed VoLTE
traffic classification architecture in Section IV.

III. VOLTE TRAFFIC CLASSIFICATION

In this section, we present a VOLTE traffic classification
method. The method is based on traditional application level
traffic classification method which relies on not only the
application specific payload signature, but also the DPI tech-
nique as well. For the DPI technique, we adopt the SIP,
RTP based approach which has been mentioned in Section II,
because: 1) the VOLTE service relies on the similar underlying
communication protocol (e.g., SIP, RTP) as VoIP services; 2)
to the best of our knowledge, SIP and RTP based approach

is by far the most simple and effective VoIP classification
method. Therefore, by using VoLTE signature and SIP, RTP
based DPI technique, we can accurately classify the VoLTE
traffic. We will discuss in detail on the proposed VOoLTE traffic
classification method in the following subsections.

A. VOoLTE Signature Generation

Here, we describe how we generated the VOLTE signature for
classifying VOLTE traffic. To generate the VOLTE signature,
the first step is to collect the VOLTE traffic. We collected the
VOLTE traffic from VOLTE enabled smartphones. We chose
the Samsung Galaxy S4 LTE as the target device. For LTE
service, the LTE communication module provides two virtual
interfaces: one for delivering Internet traffic, and the other for
delivering VOLTE traffic. By capturing on the interface for
VoLTE service, we could collect VOLTE traffic only. We then
analyzed VoLTE SIP packets and extracted VOLTE tailored
SIP packet signature as a regular expression form from the
captured VOLTE traffic as follows:

User-Agent: *-LTE-VoLTE*_AND/1.*

Because VOLTE traffic can only be generated by pre-installed
application by mobile network operators, the number of VOLTE
application will not be increased rapidly, which means that
User-Agent field values will not be changed significantly.
Therefore, using User-Agent field value as DPI signature is
sufficient to classify VOLTE traffic among LTE traffic.

B. Classification Method

As the VOLTE traffic is comprised of SIP and RTP traffic,
we need to classify both types of traffic. The classification of
VoLTE SIP traffic is relatively easy and shows more accurate
result compared to that of VOLTE RTP traffic, as explained
in the previous section. Moreover, since RTP dynamic port
information resides inside the SIP payload which is used for
establishing a call session, we have to classify the VoLTE
SIP traffic first, and then classify the VOLTE RTP traffic.
Next, we store the VOLTE RTP port information from the
classified VOLTE SIP payload to some temporary space for
later reference. We name this temporary space as VoLTE RTP

St -
eNodeB S

[Payload]iP[cTP-UJuDP] IP]

Delete unused
session during

last n sec

RTP session table

Decapsulation
SrcIP | Src port | Dst IP | Dst port | Timestamp

Payload xxxx. | 12345 | yyyy | 54321 T,

aaaa| 23456 [bbbb | 65432 T,
Lookup RTP
session table

Is VOLTE No Is VOLTE Yes [Update RTP
TP packe! IP packet2 session table
Yes No
f”Z"_"Z> <o Ta
- End

IRTP pe;kets)'

~——— -

TSiP packets |
L s

—_—— -

Fig. 1: Proposed VOLTE Traffic Classification Method

session table, and with which we can achieve the VOLTE RTP
traffic classification speed improvment because: 1) with VoLTE
RTP session table, VOLTE RTP classification no longer relies
on the SIP information; 2) we only need to apply the DPI
technique to SIP packets only rather than the entire packets;
and 3) once a RTP session has been established, it will last
for a few minutes; therefore, managing VoLTE RTP session
table does not induce much overhead. With considering these
benefits, we propose a VOLTE traffic classification method
assisted with VOLTE RTP session table. The overall working
procedure has been shown in Fig. 1.

The session entry includes RTP source IP address, RTP source
port, RTP destination IP address, RTP destination port and the
timestamp which stores the time at which its session entry
is lastly matched (hit). Each session entry is generated by the
first SIP packet that is for establishing the VOLTE RTP session.
However, we cannot store all RTP session entries without any
bound, due to the limited memory resource and searching
efficiency issues. Therefore, we need to find a way to evict
the least significant session entry. The significance is defined
as follow: 1) validity of a RTP session; and 2) popularity of a
RTP session.

The pseudo code of the proposed VoLTE traffic classification
method is shown in Algorithm 1. The algorithm takes an LTE
packet and the global session table as input. We also introduce
two auxiliary functions. IsUDP() is used to check whether a
LTE packet uses UDP, and SIPType() is used to extract the SIP
type from a LTE packet.

Algorithm 1: VoLTE Traffic Classification Algorithm
input : pkt,session_tbl
output: VOLTE SIP and RTP packet, session_tbl
1 Remove GTP header from pkt and recover original IP header;
2 if IsUDP (pkt) = FALSE then
3 | Exit();

4 if session_tbl contains a matching entry then

5 Store pkt into VOLTE RTP repository;

6 Update the timestamp of the entry in session_tbl;
7 Exit();

8 if Destination port number # 5060 then

9 | Exit();

10 if SIP packet matches with the signature then
11 Store pkt into VOLTE SIP repository;
12 if SIPType (pkt) = “BYE” then

13 L Remove corresponding entry from sesston_tbl;
14 else

15 if pkt contains SDP message as a payload then
16 L Store the RTP session info. to session_tbl;

To evaluate the proposed VOLTE traffic classification speed,
we performed a set of experiments 10 times using a single
machine, equipped with Intel Xeon X5650 CPU (2.66 GHz,
6 cores with Hyper-threading) with 24 GB RAM and a 500
GB HDD with no RAID support. The average throughput was
around 0.718(%0.0012) Gbps which is far lower than what
we expected. To further enhance the classification speed, we
present a distributed VOLTE traffic classification architecture
in Section IV.

Central
Job Manager

| Submitter |— _____________

(!) - ==\ (2 \
z| A 1 r\ \1 .
o |2 I Transfer split trace i - Analysis Node
5|2 Thread Split trace 1~ -
] < ! | with full SIP VoLTE Traffic
=18 , pal—— Classification
5o RX 1 [read I Nransfer full SIP trace -
gla Queue i AN _ K___3 - -~
1R g ' - I Splittrace | L= ",A
o g RX Thread - jwith full SIP VOLTE Trafficl
ol|E Q " ead [N Full SIP < ol u_)
212 deue 1 trace i -<
Q E 1 ¥ - 4 r SRR \4 ~
Z| 3 W Thread S - i -
a8 O__ | N I Spiittrace 1 Analysis | [Aggregation
el ' 1 with full SIP Node ; Node
\ : J ~_ - \ l
Kernel Space | User Space - Analysis 1 _yY_
eNodeB ! K_o__-3 Node [
S1 - - Task Flow Ivﬁtﬂi}l}hagﬁj 1] I l Result |
L\ — Traffic Trace Flow el A -
Node
— -9 Classified Data Flow (_Storage Server Farm)

Fig. 2: Distributed Architecture for VOLTE Traffic Classification

IV. DISTRIBUTED ARCHITECTURE FOR VOLTE TRAFFIC
CLASSIFICATION

The proposed VOLTE traffic classification method relies on
DPI technique, which shows poor classification throughput
(less than 1 Gbps with single machine setup), while high
classification accuracy in general. Hence, in order to apply the
method into real-world deployment in on-line manner (requires
20 Gbps throughput at least), we need to find a way to further
improve the classification speed. As a solution, we propose
a HTCondor based distributed architecture for the proposed
VOLTE traffic classification method.

The classification procedure consists of two main phases which
are traffic capturing and traffic processing; and in each phase
we may experience the performance bottleneck using the com-
modity hardware. To maximize the classification performance,
we need to mitigate or remove the bottleneck in each phase
and realize operational parallelism.

e Traffic Capture: in traditional x86 machine, only one RX
queue resides in kernel space to receive the packets from
network device, and multiple user level application threads
compete each other for accessing the single RX queue. This
design is inefficient for parallelizing the traffic capturing
operation, thus to be a solution, we adopt the PF_RING
[25] and Receiver-Side Scaling (RSS) [26] technology in
our design. RSS is a state of art technology, which enables
x86 machines to receive the packets using multiple RX
queues, while PF_RING binds the each user-level thread to
the individual RX queue, so that each thread can directly
access RX queue without any competition. Such design can
alleviate the single RX queue bottleneck and significantly
increase the overall traffic capturing performance. Using
PF_RING, we can achieve over 20 Gbps packet capturing
speed.

e Traffic Process: traffic classification operation requires in-
tensive computing power which typically cannot be fulfilled
by using single machine even with the help of multi-
core and hyper-threading technology. Therefore, distributed

traffic processing becomes popular recently. HTCondor is a
high throughput computing framework suited for processing
a large job in distributed manner. With HTCondor, a large
job can be split into multiple small jobs, and submitted
to the Central Job Manager using Job Submitter. Each
job binds to a job description file which specifies the
path of binary program (e.g., classification program) that
executes the job, the path of file (e.g, LTE traffic trace
file) to be processed and the environmental requirements
to execute the jobs. Central Job Manager is a matchmaker
which assigns the job to a computing machine that fulfills
the execution requirement. Each job is then executed by
the computing node, and the results are reported to an
aggregation node.

With considering the corresponding solutions for resolving
the bottleneck in each classification phase, we design a new
distributed architecture tailored to VOLTE traffic classification.
The detailed design is depicted in Fig. 2. The LTE traf-
fic is captured at sl point, and distributed to multiple RX
queues using RSS. Each RX queue is directly accessed by
an application thread using PF_RING. The application thread
is in charge of 1) generating the job description file and
transferring to Job Submitter, and 2) storing the received LTE
traffic into the computing machine where the classification job
will be executed. To correlate the LTE traffic trace with the
classification job, we generate a random id and assign it to the
LTE traffic trace and job description file.

The resulting architecture indeed sounds, however, in order to
exploit it to real-world VoLTE traffic classification, we need
to further resolve three technical issues as follows:

e Inefficient Job Scheduling: the Central Job Manager re-
ceives the classification jobs from Job Submitters, and
assigns them to the most appropriate computing machine.
The job assignment is realized using bin-packing algorithm
with default configuration. The key idea of bin-packing is to
pack multiple jobs into the minimum number of computing
machines. Since many jobs are simultaneously executed in
a single machine, we may experience drastic performance

degradation. To avoid this, we implement the load balancing
logic inside job scheduler to make the Central Job Manager
assign the jobs as even as possible.

e Dependencies Between Split Traffic Trace: the RSS based
trace splitting scheme only takes into account the packet
index number, rather than the SIP session state. Such trace
splitting scheme makes the RTP packets with the same SIP
session split into different traffic trace, and this in turn
results the low classification accuracy. To resolve this issue,
we classify the VOLTE SIP traffic from each RX queue in
advance, and periodically aggregate and append it to each
split traffic trace. By doing so, each traffic trace preserves
full SIP traffic information, which in turn ensures that each
computing machine has the complete SIP session infor-
mation. Hence, no matter how the traffic is distributed in
different machines, the system can always correctly classify
the VOLTE RTP traffic. Note that SIP traffic classification
only relies on port based traffic classification technique
(e.g., UDP 5060 port), thus the classification overhead is
fairly moderate.

e Multiple Simultaneous HDD Access: although we can
resolve the computational bottleneck by utilizing the HT-
Condor framework, the HDD I/O may still remain as a
bottleneck with multiple simultaneous access. The reason is
that with multiple CPU cores and single HDD architecture,
multiple concurrent classification jobs compete each other
on accessing the traffic trace which resides in a single HDD.
To resolve this issue, we proportionally scale the number of
HDDs to that of CPU cores, so that each job independently
accesses the HDD without sharing.

V. EVALUATION

In this section, we present the dataset as well as tesbed
setup for evaluating the distributed VoLTE traffic classification
architecture. An exhaustive evaluation on the classification
speed is conducted by varying the number of concurrent
classification jobs with different experiment parameter setup.
We also show the classification result on VOLTE SIP and RTP
traffic at the end of this section.

A. Dataset and Testbed Setup

We exploited the real-world trace captured from a commercial
LTE core network, specifically at the sl interface. The trace
contains around 2 minutes of LTE traffic which has around
19.91 GB traffic volume in total, stored in pcap binary format.
In order to preserve the user privacy, the trace has been gone
through the anonymization procedure in advance. Since it is
infeasible for us to directly integrate our classification program
into LTE operator’s network to perform the evaluation, we
conducted the experiment in off-line manner.

We implemented the proposed classification method using C
language to maximize the classification performance. We uti-
lized 7 high performance machines to conduct the experiments.
All machines were equipped with Intel Xeon X5650 CPU (2.66
GHz, 6 cores with Hyper-threading support) with 24 GB RAM
and six 500 GB HDD. HTCondor 8.2.2 was installed in 7
machines, and one machine worked as a master node (Job
Submitter + Central Job Manager), while 6 machines worked
as analysis node which executes the classification job. Since

each CPU has 6 cores with Hyper-threading capability, each
analysis node can execute up to 12 jobs simultaneously.

B. Experiment Result

We performed three sets of experiments, and each experiment
was repeated 5 times. In all experiments, the classification
throughput and job completion time were measured, and
the averaged result was computed. Moreover, in each set of
experiments, we differed the parameters including the number
of machines, number of HDDs embedded in each machine and
job scheduling algorithm, to figure out how those parameters
can affect the overall classification performance.

In the first set of experiments, we executed the classification
job using single machine with one and six HDDs, while
gradually increased the number of concurrent jobs up to 6.
The results have been shown in Fig. 3(a) and Fig. 3(b).
With one HDD case, no matter how we changed the number
of concurrent jobs, the overall throughput was not increased
accordingly. However, with 6 dedicated HDDs case, the clas-
sification throughput was increased in accordance with the
number of concurrent jobs. Such discrepancy was induced due
to the HDD bottleneck. With single machine and a shared
HDD, we achieved around 0.7 Gbps throughput, while with
single machine and 6 dedicated HDDs, we achieved around 4
Gbps throughput which is almost 6 times faster than the shared
HDD case.

In the second set of experiments, we compared overall classi-
fication performance using different scheduling schemes with
small number of concurrent jobs (e.g., up to 12). The results
are depicted in Fig. 3(c) and Fig. 3(d). In single machine case,
the classification throughput was rapidly increased until the
number of concurrent jobs reached 6. With 7 concurrent jobs,
the overall throughput was dramatically decreased. The reason
was that with the bin-packing scheme, because the 7th job
had to share one of the HDD with the other existing jobs,
HDD I/O became bottleneck. Contrarily, the overall classifica-
tion throughput improved proportionally with the number of
concurrent jobs using load balancing scheme. This was because
with load balancing scheme, 12 concurrent jobs were evenly
distributed to 6 machines, and by doing so, each machine
only needed to execute 2 concurrent jobs, so that we cannot
experience any performance degradation. Overall, in the latter
case, we achieved around 8 Gbps classification throughput.

In the third set of experiments, we further enlarged the number
of concurrent jobs up to 72. Similar to the second set of
experiments, we compared the classification performance using
different scheduling schemes, and the results are shown in Fig.
3(e) and Fig. 3(f). In bin-packing case, we observed that the
throughput increased linearly in the range of [12n + 1,12n +
6],n € {0,1,2,3...}, while the increasing trend was relatively
gentle in the range of [12m—>5,12m],m € {1,2,3,4...}. With
bin-packing scheme, since the first 12 jobs were all assigned
into the single machine, only the first 6 jobs could access the
HDDs without sharing (increasing section in graph), while
from the 7th arriving job had to share the HDD resource
(standstill section in graph). Whereas, using load balancing
scheme, the linearly increasing trend lasted up to 36 concurrent
jobs, and performance improvement became sluggish after
37th concurrent job arrival. Although there were large discrep-
ancies between two scheduling schemes in terms of throughput

TABLE 1I: VOLTE Traffic Classification Results

Total Trace Packets Ratio

VoLTE RTP | VoLTE SIP || VoLTE RTP | VoLTE SIP

Volume (Bytes) || 20,882,089,648 20,588,426 357,861 0.098 % 0.0017 %

Number of packets 26,548,792 142,348 251 0.536 % 0.0009 %

1.2 " " 500 6 , , , , , 250 35 . " " " — 50
--e- - Throughput g - -e- - Throughput 5 /j - -@-- Throughput 0
- 1.0r —m— Job completion time | | 400 @2 - 5r 1 —m— Job completion time | {200 g/ 728 o —m— Job completion time | {40 &
g . [} Syl \ ° © & ° ol
0.8 ~— £ 1) \ ! 1150 E 0 21 130 E
N ° — = IS5 . = = o =
= 3 \’ 1300 ¢ 330\ \ ' s 3 N o -e S
206t o/ 2 2 ‘%2 ., ° 000" 7100% 214 N 20 2
2 W _e--e.__ " o D2r Du = = | 2L o
204l °- -® 1200 £ 5 . -, £ o 7 o e e 110 €
}-E § |'E 1 o .o .\/ = 150 8 |4_: °-e ¥) = gy E
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1) ‘ ‘ ‘ ‘ ‘

025 2 4 6 103 % 2 4 6 8 10 129 S8 % 15 30 45 60 75° S

Number of jobs
(a) Single machine with a shared HDD using bin-
packing scheme

Number of jobs
(c) Single machines with 6 dedicated HDDs
using bin-packing scheme

Number of jobs
(e) 6 machines, 6 dedicated HDDs for each

machine, using bin-packing scheme

6 . . 250 10 , , , , 250 35 : : . : 45
sl = ‘ --e--Throughput g o |- - Throughput g - --®--Throughput 3
= —m— Job completion time | {200 £ - 8f —=— Job completion time | o 1200 &2 728} —m— Job completion time | {36 &
gal °) g \ %) I ° o)
o . /1150 £ O 6 o 1150 £ 021t e ey e 12T E
= 3l / = = I *E = ,’. ® ® - =z
g . o lowd Ea o {1002 214} = ® 18 2
< - ° < [] ° < . v
2 2 o ’=\- %' g \.x.' %] E'\ %—
o - o L o 1 u
E 1 e S~ 150 g E 2 o ¢ .\-71\.\.\.\. . 50 § E 7 ./’. .y E-E-m-E-E ° 5
a e B a a
% 2 4 6 ° 3 0 2 4 8 10 12 = S % 45 30 45 60 75° 3

Number of jobs
(b) Single machine with 6 dedicated HDDs de-

fault bin-packing scheme

Number of jobs
(d) 6 machines, 6 dedicated HDDs for each

machine, using load balancing scheme

Number of jobs
(f) 6 machines, 6 dedicated HDDs for each ma-
chine, using load balancing scheme

Fig. 3: Throughput and Job Completion Time of the Distributed Traffic Classification

increasing trend, however, in both cases the system shown
23.689 Gbps classification throughput which is approximately
35 times faster than the system without distributed processing.

We also compared the number of classified SIP and RTP
packets as well as the volume of classified SIP and RTP traffic
with and without the distributed architecture. In both cases, it
showed the identical classification results (Table I). As we can
notice from the results, the VOoLTE traffic occupies quite small
portion among overall LTE traffic. The reasons are as follow:
1) only recently released smartphones support VOLTE feature;
2) in most of VOLTE enabled smartphones, the VOLTE function
is disabled by default; and 3) VOoLTE phone call only can be
established between two VoLTE enabled smartphones. Overall,
we can conclude that our distributed architecture significantly
improves the classification throughput without sacrificing the
classification accuracy.

VI. CONCLUSION

In this paper, we proposed a VOLTE traffic classification
method and its distributed architecture. Among various types
of classification methods, we chose the DPI based application
classification method as a reference, generated the SIP payload
signature of the VOLTE application, and classified the SIP as
well as RTP traffic using the synthesized payload signature.
Moreover, to improve the RTP traffic classification speed,

we introduced a VoLTE RTP session table, with which no
additional reference to the SIP payload is required within the
same session. We applied the proposed classification method
to the trace captured from real-world LTE core network, and
achieved around 0.718 Gbps classification speed. To further
enhance the classification speed, we presented a HTCondor
based distributed architecture and its solution for VOLTE traffic
classification. We deployed our solution over a small scale
cluster to evaluate the classification throughput. Our solution
scales well, and with 6 computing node, we achieved around
23.689 Gbps throughput, which was approximately 35 times
faster than the result without the distributed processing.

By far, to the best of our knowledge, there is only one type
of VOLTE application traffic (for voice call) delivered through
each telco’s LTE network; hence, as long as we have the correct
payload signature of VOLTE application, we can achieve very
high classification accuracy. We did not perform quantitative
evaluation on the accuracy of VOoLTE traffic classification in
this work, due to the difficulties on collecting ground truth
data from LTE core network. Therefore, as a future work,
we will find a way to synthesize the VoLTE traffic marked
with ground truth information to evaluate the accuracy of the
proposed VOLTE classification method as well as its distributed
architecture. We also plan to deploy the entire solution into
LTE core network to perform the evaluation in on-line manner.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]
[22]

[23]

[24]

REFERENCES
Cisco, “Global mobile data traffic forecast update, 2010-2015,” Cisco
Visual Networking Index (VNI) Forecast, 2011.

T. Yildirim and P. Radcliffe, “VoIP traffic classification in ipsec tunnels,”
in Electronics and Information Engineering (ICEIE), 2010 International
Conference On, vol. 1, Aug 2010, pp. 151-157.

R. Birke, M. Mellia, M. Petracca, and D. Rossi, “Experiences of

VoIP traffic monitoring in a commercial isp,” International Journal of

Network Management, vol. 20, no. 5, pp. 339-359, 2010.

T. Sinam, I. T. Singh, P. Lamabam, N. N. Devi, and S. Nandi, “A
technique for classification of VoIP flows in udp media streams using
VoIP signalling traffic,” in Advance Computing Conference (IACC),
2014 IEEE International, 2014, pp. 354-359.

B. Li, M. Ma, and Z. Jin, “A VoIP traffic identification scheme based
on host and flow behavior analysis,” Journal of Network and Systems
Management, vol. 19, no. 1, pp. 111-129, 2011.

I. Fauzia and A. K. Uzma, “A generic technique for voice over internet
protocol (voip) traffic detection,” International Journal of Computer
Science and Network Security, vol. 8, pp. 52-59, 2008.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “Rfc 3261: Sip: Session
initiation protocol,” IETF, Tech. Rep., 2002. [Online]. Available:
www.ietf.org/rfc/rfc3261.txt

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rfc 3550:
Rtp: A transport protocol for real-time applications,” IETF, Tech. Rep.,
2003. [Online]. Available: www.ietf.org/rfc/rfc3550.txt

S. Valenti, D. Rossi, A. Dainotti, A. Pescape, A. Finamore, and
M. Mellia, “Reviewing traffic classification,” in Data Traffic Monitoring
and Analysis, 2013, vol. 7754, pp. 123-147.

B. Park, Y. Won, J. Chung, M.-s. Kim, and J. W.-K. Hong, “Fine-grained
traffic classification based on functional separation,” International Jour-
nal of Network Management, vol. 23, no. 5, pp. 350-381, 2013.

M. sup Kim, Y. J. Won, and J. W. ki Hong, “Application-level traffic
monitoring and an analysis on ip networks,” ETRI Journal, vol. 27,
2005.

IP Multimedia Subsystem (IMS), 3GPP, 2013.

GPRS Tunnelling Protocol (GTP) across the Gn and Gp Interface,
3GPP, 1998.

Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
Universal Terrestrial Radio Access Network (E-UTRAN); Overall De-
scription; Stage 2, 3GPP, 2014.

D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, “Revealing
skype traffic: When randomness plays with you,” in Proceedings of the
2007 SIGCOMM, 2007, pp. 37-48.

D. Adami, C. Callegari, S. Giordano, M. Pagano, and T. Pepe, “A real-
time algorithm for skype traffic detection and classification,” in Smart
Spaces and Next Generation Wired/Wireless Networking, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2009, vol.
5764, pp. 168-179.

P. A. Branch, A. Heyde, and G. J. Armitage, “Rapid identification of
skype traffic flows,” in Proceedings of the 18th International Workshop
on Network and Operating Systems Support for Digital Audio and
Video, ser. NOSSDAV °09, 2009, pp. 91-96.

R. Alshammari and A. N. Zincir-Heywood, “An investigation on the
identification of VoIP traffic: Case study on gtalk and skype.” in CNSM,
2010, pp. 310-313.

“L7-filter,” http://17-filter.sourceforge.net/protocols/.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107—
113, 2008.

“Hadoop,” http://hadoop.apache.org/.

Y. Lee and Y. Lee, “Toward scalable internet traffic measurement and
analysis with hadoop,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 1, pp. 5-13, 2013.

“RIPE Hadoop PCAP,” https:/labs.ripe.net/Members/wnagele/
large-scalepcap-data-analysis-using-apache-hadoop.

“High Throughput Computing Framework - HTCondor,” http://research.
cs.wisc.edu/htcondor/.

[25]

[26]

L. Deri, “Improving passive packet capture: Beyond device polling,” in
In Proceedings of SANE 2004.

“Msdn: Introduction to receive-side scaling,” http://msdn.microsoft.
com/en-us/library/windows/hardware/ff556942(v=vs.85).aspx.

