
Catching the Response Time Tail in the Cloud

Sebastiano Spicuglia∗, Mathias Björkqvist†, Lydia Y. Chen†, Walter Binder∗
∗Università della Svizzera italiana (USI) – Faculty of Informatics
†IBM Research Zurich – Cloud & Computing Infrastructure

Abstract—As modern service systems are pressured to provide
competitive prices via cost-effective capacity planning, especially
in the paradigm of cloud computing, service level agreements
(SLAs) end up becoming ever more sophisticated, i.e., fulfilling
targets of different percentiles of response times. However, it
is no mean feat to predict even the average response times of
real systems, or even abstracted queueing systems that typically
simplify system details, and it gets even more complicated when
trying to manage SLAs defined by various percentiles of response
times. To efficiently capture these different percentiles, we first
develop a novel and autonomic methodology – termed Burst Based
Simulation, which combines burst profiling on real systems with
complex, state-dependent simulations. Moreover, based on our
methodology, we construct an analysis on SLA management: the
prediction of SLA violations given a certain request pattern. We
evaluate our approach on two types of service systems, virtualized
and bare-metal, with wide ranges of SLAs and traffic loads. Our
evaluation results show that our methodology is able to achieve
an average error below 15% when predicting different response
time percentiles, and accurately capture SLA violations.

I. INTRODUCTION

While computing clouds are becoming the standard plat-
forms for service systems due to their advantages of ease-
of-management, service providers also encounter new chal-
lenges such as fast workload dynamics and the complex cost
structures of clouds [1, 2]. To provide competitive services
in terms of price-quality ratios, providers increasingly develop
sophisticated service level agreements, SLAs, for users, i.e.,
guaranteeing certain percentiles of service response times by
target values [3]. Typically, violating SLAs can result in
immediate financial loss, as well as long term user churn [4].
As a result, it is very important for providers to dimension their
resources in the most cost effective way without causing SLA
violations. The very first step in managing such sophisticated
SLAs is to capture the response times of different percentiles
accurately and efficiently.

Predicting response times has long been a research chal-
lenge for real systems [5, 6, 7] and synthetic queueing sys-
tems [8, 9, 10, 11] . On the one hand, the former addresses the
overall system complexity, e.g., parallelism of applications and
various hardware specifications, by collecting a large number
of low level statistics [12, 13], with a focus solely on the
average response time. Overall, the service response times
depend on the concurrency provided jointly by the paral-
lelism of system components and applications. On the other
hand, after greatly simplifying the system architecture and
application behavior, the latter can rarely tackle such difficult
problems exactly, especially for bursty requests. Approxima-
tion techniques are applied to derive the distribution of entire
response times, including all ranges of percentiles. Indeed,
bursty requests cause not only intractability, but also degrade
the tail response times tremendously for cloud systems [14].

Essentially, it is extremely challenging to predict the response
times of different percentiles specified in SLAs, especially for
real systems, and unfortunately existing methodologies only
provide partial solutions.

In this study, we address the question of how service
providers can efficiently predict SLAs based on response
time percentiles.Our objective is to develop a plug-and-play
methodology, which is accurate in predicting SLAs and is easy
to use for service providers with minimum system overhead.
We propose a two-phase approach combining profiling on
real systems with simulation-based predictive models. For
predicting SLA violations, we consider extensive combinations
of SLA definitions, i.e., w∗ is the target value of the αth

percentile of response times. To evaluate the efficiency of the
proposed methodology, we use two types of service systems,
namely spell check and wikipedia, deployed on different
architectures.

In particular, to capture the impact of concurrent and
bursty requests on response times, we first propose a novel
concept termed a Burst Profiling Set, which profiles systems
by sending concurrent bursts of requests in batches of different
sizes. Through the use of a burst profiling set, we are able
to understand how systems concurrently execute bursts that
are typically in the order of a few hundred ms in duration,
and further derive system execution rates that are shown to
be state-dependent. The second step is to develop a state-
dependent simulation model, which adopts the execution rates
derived from a burst profiling set to process requests taken
from synthetic or real traces. The response time percentiles
are then predicted via multiple simulation runs. Our exhaustive
evaluation results, both on virtualized and bare-metal systems,
show a high accuracy in predicting a wide range of response
time percentiles, SLA violation, and maximum sustainable
throughput.

Our contributions are twofold: (1) we provide a novel and
easy-to-use methodology, which is able to predict response
times of different percentiles of real service systems. (2) We
derive a critical analysis for managing sophisticated SLAs,
i.e., SLA violations given w∗ as the target value of the αth

percentile of response times.

The rest of this paper is structured as follows: Through
experimental results, Section II shows the complex relation-
ships between arrival rates and response time percentiles. In
Section III we develop a methodology for estimating the
entire distribution of the response times of a system. Our
analysis on SLA violations is presented in Section IV. In
Section V we evaluate the proposed methodology with a set of
extensive experiments. Section VI presents the related work,
and Section VII concludes the paper.



II. MOTIVATION

In this section we illustrate the challenges of understanding
the complex relationship that exists between arrival rates and
the percentiles of the response times by running a set of
experiments. We consider two different systems: sys1, a remote
spell-checking service based on an event-driven architecture,
and sys2, a multi-threaded web server running a clone of
Wikipedia (see Section V-A for further details of the setup).
We load both systems with request arrival rates of increasing
intensity. For each load condition, we measure the 75th, 80th,
90th and 95th percentiles of the response time, and plot the
results in Figures 1a and 1b. From the data, we see that the
relationship between the request arrival rates and response time
percentiles is highly system dependent and non-linear. For sys1
there is a 2.5-fold increase in the percentile at high rates with
respect to low rates, while for sys2 it is possible to see a 16-
fold increase. This effect can be due to a multitude of causes,
e.g., different software architectures for the two systems, or
the resources required for processing a request. In cloud
environments, the predictability can be further obscured by
e.g., virtualization or heterogeneity of the underlying hardware.
As confirmed by our experiments, the event-driven architecture
of sys1 provides more robust performance than the multi-
threaded architecture of sys2 at high load [15]. Moreover,
Figure 1a shows how difficult the estimation of the percentiles
is. In the range [150, 180] req/s there is a highly non-linear
behavior that is hard both to predict and explain.

III. METHODOLOGY

In this section we first introduce the concept of Burst
Profiling Set: a data set, containing the outcome of request
bursts of different sizes, that captures the complex nature of
a real system. Then, we develop a predictive model that takes
as input a workload (defined as inter-arrival times between
requests) and outputs the estimated empirical distribution of
the response times. Finally, we outline the structure of a state-
dependent simulator that can be used to run the proposed
model. Figure 2 outlines the architecture used to implement
our methodology.

The rest of the section is structured as follows: Subsec-
tions III-A and III-B describe the two phases; and Subsec-
tion III-C highlights the limitations of our approach.

A. Burst Performance Set

We use bursts of requests (i.e., requests hitting the system
all at the same time) to characterize the system and consolidate
all its properties (e.g., service demand, scheduling policy,
request parallelism level, number of cores, thrashing effects)
in a format easy to store and process. For each burst of size
n, we save the completion time of all its n requests as a tuple:

burstn =< t1, t2, ..., tn >

where ti is the completion time of the ith request. To stress the
system with different load conditions (i.e, different number of
simultaneous requests), we send bursts of different sizes. We
use a threshold on the completion time to find the maximum
size N (e.g., a completion time 5x higher than the service de-
mand). Moreover, to accommodate fluctuations in the behavior
of the system, we send each burst size r times. We refer to

the ith repetition of a burst of size n as burstn,i. We refer to
the collection of all the bursts as the Burst Performance Set:

< burst1,1, ..., burst1,r, ...burstN,1, ..., burstN,r >

The information contained in a burst performance set reveals
many of the properties of a system. Figures 3a and 3b show
the burst performance set for two different systems, providing
an example of the information contained in such sets (see
section V-A for the details of the systems). A burst of size
1 can be seen as the service demand of the system: 25ms
for sys1 and 270ms for sys2. Analyzing the relationship
between completion time and burst size, it is possible to
estimate the parallelism level of the system: for sys1 there
is a significantly increase in the execution time after size = 6,
whereas for sys2 this already occurs after size = 4. Moreover,
comparing size = 7 and size = 8 for sys1, it is possible
to glimpse a limited processor-sharing level of 4. The higher
burst sizes quantify both the queuing time of the requests and
the thrashing effects due to the contention. Another interesting
property of a burst performance set is that it can be collected
very quickly. The time to gather a burst depends both on the
size and the completion time of the requests: The average time
to send a burst of 25 requests is 134ms for sys1 and 933ms
for sys2.

B. Predictive model
To estimate the distribution of the response times, we

develop a predictive model that takes as input a stream of
inter-arrival rates and a burst performance set, and outputs a
stream of response times. Internally, the state of the model
is defined by the set of requests currently being executed.
In the model, requests are processed with a rate that de-
pends on the number of concurrent requests. In more de-
tail, the state of each request is defined by following tuple:
< start, demand, executed, rate >, where:

• start is the time when the request joins the system.

• demand represents the number of seconds needed by
that request to complete its execution. When a request
arrives, this field is set to the value of a randomly
chosen burst of size 1.

• executed keeps track of the time spent executing
the request. When executed = demand, the request
leaves the system and the model outputs a response
time sample equal to now − start, where now is the
current simulator time.

• rate is a number in the range [0, 1] and represents the
slowdown experienced by the request, e.g., overhead
due to thrashing. If during an interval of length ∆
the rate has a constant value r, the executed field is
updated with the following statement:

executed = executed+ ∆ ∗ rate (1)

The novel part of the model is how the rates are computed from
a burst performance set, shown in Algorithm 1. To explain
the algorithm, we use an example of a burst of size 7 from
Figure 3a. As a first step the simulator randomly draws one
burst of size n = 7 out of r samples (Line 2), with the
values < 30ms, 42ms, 30ms, 42ms, 30ms, 30ms, 30ms > in
our example. In this burst, the first request leaves the system



 20

 30

 40

 50

 60

 0  35  70  105  140  175  210

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

rate [req/s]

75 pct
80 pct
90 pct
95 pct

(a) sys1

 0

 1000

 2000

 3000

 4000

 5000

 0  5  10  15  20  25  30

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

rate [req/s]

75 pct
80 pct
90 pct
95 pct

(b) sys2

Fig. 1: Relationship between load intensity and percentiles of the response time for two systems.

load gen

system

burst
completion

times

BPS Phase Simulation Phase

BPS

simulator

Workload

Response
times

Fig. 2: Architecture employed to estimate response times

after 30ms, meaning that the state ”7 requests are running
simultaneously” has a duration of 30ms (Lines 3 and 4).
The rates can be computed considering how many seconds of
execution the system processed for each request during such
a state. From a burst of size one (Line 5), we know that the
service demand of the system is 25ms. Therefore the first 4
requests have a rate of 25/30. The situation is different for the
last two requests: They complete in 42ms, meaning that after
the first 30ms, they run for a further 12ms (variable extra at
Line 7). Since the service demand of this system is 25ms, we
can conclude that during the first 30ms, the system processed
at least 13ms for these two requests. Therefore their rate is
13/30 (Line 8). In the algorithm all the requests are analyzed
in the same way by the for loop. In our example, the first 5
requests are just a special case where extra = 0.

Algorithm 1 Rates of n concurrent requests.
1: function updateRates(n)
2: burst← draw burst(n)
3: sort(burst)
4: duration← burst1
5: demand← draw burst(1)
6: for i in 1..n do
7: extra← bursti − duration
8: requesti.rate← demand−extra

duration
9: if requesti.rate < 0 then

10: requesti.rate← 0
11: else if requesti.rate > 1 then
12: requesti.rate← 1
13: end if
14: end for
15: end function

Since the model described so far is easy to simulate, we
rely on a simulation-based approach to estimate the distribution
of the response times. In each state, the simulator computes
two numbers ∆forw and ∆back. The former determines the
time of the next arriving request and is drawn from the input
stream. The latter is the next completion time assuming that
no new request joins the system in the meantime. ∆back is
computed as minr∈requests( r.demand−r.executed

r.rate ). The simu-
lator updates the state of the model based on which event
(arrival or completion) happens next. Internally the executed
and rate fields of each request are updated as described by
Equation 1 and Algorithm 1, respectively. In the following of
the paper we refer to the approach described above as Burst
Based Simulation. We implemented such a simulator as a Java
application in less than one thousand lines of code.

C. Limitations
The approach we propose has two main limitations. The

simulator assumes that all the requests are equal, as the rate
depends solely on the number of requests and not also on
their mix [16, 17]. This could be a limitation for workloads
with different classes of requests. Currently we are limited
to handling a multi-class workload as a uniform workload
with very fluctuating requests. The other limitation is that
once we gather a burst performance set we can simulate
just a certain kind of stream of arrivals. In the case of very
high frequency arrivals, the simulator may reach a number of
the concurrent requests higher than the maximum burst size
contained in the burst performance set. In such a scenario,
the algorithm shown in Algorithm 1 would fail at Line 1. A
solution could be estimating the missing burst sizes based on
the value already stored in the burst performance set, but we
leave this exploration for future work.

IV. SLA VIOLATION FORECASTING

In this section we present an analysis enabled by our
approach - given a stream of arrivals and an SLA (i.e., a
threshold over a percentile of the response time), can we
predict if the system will violate it?

Our SLA violation forecasting is useful during the deploy-
ment of a new version of a system (e.g., hardware or software
changes). The analysis attempts to answer the following ques-
tion: given an SLA and a workload, will the system violate the
SLA? We define the SLA by the tuple < w∗, α >, where w∗
is a threshold over the response time, and α is a response time



 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8c
o
m

p
le

ti
o
n
 t
im

e
 [
m

s
]

burst size [req]

(a) sys1

 0

 100

 200

 300

 400

1 2 3 4 5 6 7 8c
o
m

p
le

ti
o
n
 t
im

e
 [
m

s
]

burst size [req]

(b) sys2

Fig. 3: Example of Burst Profiling Set for two systems (cut to burst size 8).

percentile. For such a tuple, the α-percentile of the response
time has to be less than w∗. Since a working version of
the system is already deployed, by simply feeding into the
simulator the workload extracted by the logs of the current
system and the burst performance set of the new system, we
can predict if the new system violates the SLA. In the case
of a true positive, the simulator correctly predicts that the
system will handle the rate. A true negative means that the
simulator accurately indicates that the system will violate the
SLA. In a false negative situation, the simulator will judge the
system not to be able to handle the workload, while in reality
it can. Finally, in the case of a false positive, the simulator will
incorrectly predict an SLA violation, when in fact the system
is successfully able to sustain the rate. From a practical point
of view, false positives would lead to dangerous situations
where an under-sized system is wrongly judged to be well
provisioned for a given workload. False negatives would lead
to a waste of resources because the system is already able to
meet the SLA, but the simulator suggests increasing capacity.

V. EVALUATION

We evaluate our methodology along two dimensions. As a
first step, we analyze the accuracy of the results provided by
our methodology. Then, we evaluate the results provided by
our approach for SLA forecasting analysis. We use a set of
extensive experiments performed on two real systems as the
baseline for our evaluation. The rest of this section is structured
as follow: in Subsection V-A we describe the two systems we
use for our experimental evaluation. Subsection V-B presents
both the baseline used to experimentally validate our results
and the burst performance set for the two systems. In subsec-
tion V-C we evaluate the accuracy of our methodology, and in
Subsection V-D, we show the results of the SLA forecasting
analysis we performed on the two systems.

A. Two systems

As the underlying architecture for both systems, we employ
a 6 dual-core CPU machine equipped with 64GB of memory.

The first system, sys1, is an application server that offers
a remote spell checking service. The server is implemented
in Java using an event-driven architecture. The service can be
queried through a Thrift interface. The algorithm used for the
spell checker is similar to the one proposed in [18], and it uses
a dictionary of about 150,000 English words.

The second system, sys2, is composed of several compo-
nents and is more complex than sys1. The system runs an
instance of the Mediawiki software running on a partial dump
of the Wikipedia database. As a web server we used an Apache
HTTP server version 2.4 with PHP version 5.5 as a script
engine. To store the data we used a MySQL server version
5.5. In order to reduce the load on the database server, we
configured Mediawiki to use a Memcached server. All the
components described above have been installed in a single
virtual machine. We employ KVM for the virtualization layer.

B. Baseline and profiling sets
We analyze both sys1 and sys2 with an extensive set of

performance tests. Particularly, we first select different arrival
rates ranging from low to high, and then we load the system
with those rates to collect response time samples. Each rate is
kept for at least 5 minutes. For sys1 we use 60 different rates
in the range [15, 206] req/s, for sys2 we use 28 rates in the
range [1, 28] req/s.

As explained in Section III, to predict the response time
percentiles we use a pre-collected set of performance exper-
iments. As a preliminary step, we create such a set for both
systems. For sys1 we send bursts with sizes in the range [1, 30],
while for sys2 the range is [1, 25]. We send each burst 100
times.

C. Accuracy

In this subsection we analyze the accuracy of the results
provided by our methodology using the baseline presented in
Subsection V-B. For each system, we select three arrival rates
in order to analyze three different conditions: low, medium
and high load. In particular, we select 16, 145 and 203 req/s
for sys1, and 3, 11 and 25 req/s for sys2. Each rate is fed
to the simulator, which produces a stream of response times
(sim); the corresponding stream produced by the real system
is named base. To evaluate the accuracy of the simulator we
compare different levels of percentiles (α) of the response
times generated by the simulator against the baseline. To
quantitatively compare the two results, the relative error is
computed as follows:

err = |pct(base, α)− pct(sim, α)

pct(base, α)
|



α Low rate Med rate High rate
sys1 err [%] sys2 err [%] sys1 err [%] sys2 err [%] sys1 err [%] sys2 err [%]

50 0.195 6.472 2.413 4.316 31.546 14.220
75 0.519 6.445 1.488 0.248 34.716 7.206
80 4.540 6.245 0.469 0.680 35.301 5.311
85 4.982 3.591 0.342 0.857 35.281 2.298
90 4.214 2.531 2.341 2.248 34.126 1.144
92 2.932 4.664 2.987 3.967 33.038 5.725
95 0.917 4.106 1.579 1.700 30.556 62.316
97 0.428 4.165 23.954 1.056 28.322 80.575

TABLE I: Accuracy of Burst Based Simulation for sys1 and sys2 under different loads.

 25

 26

 27

 28

 50  55  60  65  70  75  80  85  90  95  100

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

alpha

base
sim

(a) low load

 25

 30

 35

 40

 45

 50  55  60  65  70  75  80  85  90  95  100
re

s
p
o
n
s
e
 t
im

e
 [
m

s
]

alpha

base
sim

(b) med load

 30

 40

 50

 60

 50  55  60  65  70  75  80  85  90  95  100

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

alpha

base
sim

(c) high load

Fig. 4: Accuracy of Burst Based Simulation for sys1 under different loads.

 270

 300

 330

 360

 50  55  60  65  70  75  80  85  90  95 100

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

alpha

base
sim

(a) low load

 270

 300

 330

 360

 50  55  60  65  70  75  80  85  90  95 100

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

alpha

base
sim

(b) med load

 0

 500

 1000

 1500

 2000

 2500

 50  55  60  65  70  75  80  85  90  95 100

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

alpha

base
sim

(c) high load

Fig. 5: Accuracy of Burst Based Simulation for sys2 under different loads.

Table I summarizes the prediction error. Overall, the av-
erage error is 13.22 % for sys1 and 9.67 % for sys2. In
particular, the prediction is very accurate for low and medium
load, where the estimation error drops to 3.39 % for sys1 and
3.33 % for sys2. Instead, the performance of the estimation
degrades significantly for the high load case: 32.86 % error
for sys1 and 22.35 % for sys2. Estimating the percentiles of
the response time for high-load cases is inherently difficult
due to the unstable conditions of the system. Considering the
percentiles, the estimation error rises above 80% for the 97th-
percentile of sys2 under high load. The estimation error rises
significantly also for the 97th-percentile of sys1 under medium
load and for the 95th-percentile of sys2 under high load.
Other than the previous observations, there is no clear pattern
in the relationship between α and the prediction error. In
practice, however, the load of production systems is typically
low [19], suggesting that being able to accurately predict
the performance in these situations can be more valuable.
Figures 4 and 5 show the percentile of the response time as a
function of α both for the real system (base) and the simulator
(sim). Unfortunately, the simulator tends to under-estimate the
percentile of the response time (Figures 4a, 4c and 5a). This
reduces the waste of resources allocated to a system, but could
lead to dangerous conclusions. Finally, it is interesting to note
that although the two systems present very different behaviors

(see Figure 3), our methodology provides similar estimation
errors for both.

D. Analysis 1 - SLA violation forecasting

In this subsection we present the results of the SLA vio-
lation forecasting analysis. We first define different SLAs for
both systems. For sys1, we define all the possible combinations
resulting from drawing w∗ from the set { 25ms, 30ms, 35ms,
40ms, 45ms, 50ms, 55ms } and α from { 80, 85, 90, 95, 97 }.
For sys2 we draw w∗ from { 275ms, 290ms, 305ms, 320ms,
335ms, 350ms, 365ms, 380ms, 395ms } and α from the same
set used for sys1. This results in 35 SLAs for sys1 and 45 for
sys2.

Then, we select the six rates we used in Subsection V-C,
three for each system. This results in 105 scenarios for sys1
and 135 for sys2. We analyze all the scenarios with the
our simulator, and compare the outcomes with the baseline.
Table II shows the number of true/false positives/negatives for
both sys1 and sys2. We summarize these data with the classic
metrics used in the literature:

accuracy =
truepos+ trueneg

truepos+ trueneg + falsepos+ falseneg



sys1 sys2
Is rate sustainable? Is rate sustainable?
yes no yes no

Fo
re

ca
st yes 59 20 59 7

no 0 26 2 67

TABLE II: Result of the SLA violation forecasting analysis:
105 scenarios for sys1 and 135 for sys2.

precision =
truepos

truepos+ falsepos

The accuracy of the classification is 0.81 for sys1 and 0.93
for sys2. The precision is 0.75 and 0.89 for sys1 and sys2,
respectively. Zooming into the raw data, we see that for 18
out of the 20 false positive of sys1 occur in case of high
rates and 5 out of 7 false positive of sys2 occur in case of
low rate. This can be explained with the findings reported
in Subsection V-C: the simulator tends to under-estimate the
percentile of the response time. Figures 4 and 5 show how
the under-estimation is largest for the high load case for sys1
(Figure 4c) and the low load case for sys2 (Figure 5a).

VI. RELATED WORK

Many studies in the literature already address the prob-
lem of the distribution of the response times. The general
approach proposed in the literature is to model the behavior
of real systems using complex queueing network models.
For instance, the distribution of the response time is well
known for M/G/1/PS models [9, 8]. This family of models
considers systems without parallelism and with a processor
sharing discipline. Instead, other studies model the so-called
“neighboring effect” of cloud platforms, considering systems
where the computational capacity changes over the time due
to exogenous factors [20, 11, 21, 10]. Serazzi et al. rely
on simulation-based approaches to analyze complex queueing
networks [22]. Other authors [5, 7] focus on the prediction
of the average response time for multi-tier web applications.
Watson et al. [6] predict the percentiles of the response time
relying on little knowledge of the application. The novelty
of our work lies in a completely automatic empirical-based
approach that predicts the percentiles of the response time
treating the whole system as black-box.

VII. CONCLUSION

In this paper, we address the critical and challenging
question of how to predict SLAs associated with percentiles of
response times for service systems. To capture complex system
dynamics with a minimum overhead, we propose a two-phase
methodology, which combines a novel burst profiling phase
on real systems, and a state-dependent simulation model. Ex-
tensive evaluations on two types of bare-metal and virtualized
service systems, show an average error rate of less than 15%
when predicting a wide range of response time percentiles
under various system loads. Moreover, based on the proposed
methodology, we can accurately derive analysis on predicting

SLA violations for different combinations of target values and
response time percentiles.

VIII. ACKNOWLEDGMENTS

The research presented in this paper has been sup-
ported by the Swiss National Science Foundation (project
200021 141002).

REFERENCES

[1] M. Bjorkqvist, L. Y. Chen, and W. Binder, “Cost-driven Service Provi-
sioning in Hybrid Clouds,” in Proceedings of, ser. SOCA ’12, pp. 1–8.

[2] M. Bjorkqvist, L. Chen, and W. Binder, “Opportunistic Service Provi-
sioning in the Cloud,” in Proceedings of, ser. CLOUD ’12, June, pp.
237–244.

[3] J. Dean and L. A. Barroso, “The Tail at Scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[4] J. B. E Schurman, “The User and Business Impact of Server Delays,
Additional Bytes, and HTTP Chunking in Web Search,” in Proceedings
of Velocity, Web Performance and Operations Conference, 2009.

[5] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
Analytical Model for Multi-tier Internet Services and Its Applications,”
in Proceedings of, ser. SIGMETRICS ’05, pp. 291–302.

[6] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang,
“Probabilistic Performance Modeling of Virtualized Resource Alloca-
tion,” in Proceedings of, ser. ICAC ’10, pp. 99–108.

[7] W. Iqbal, M. N. Dailey, and D. Carrera, “SLA-Driven Dynamic Resource
Management for Multi-tier Web Applications in a Cloud,” in Proceedings
of, ser. CCGRID ’10, pp. 832–837.

[8] L. Kleinrock, Theory, Volume 1, Queueing Systems. Wiley, 1975.
[9] N. Gautam, Analysis of Queues: Methods and Applications, 1st ed. CRC

Press, Inc., 2012.
[10] J.-P. Dorsman, M. Vlasiou, and B. Zwart, “Parallel Queueing Networks

with Markov-modulated Service Speeds in Heavy Traffic,” SIGMETRICS
Perform. Eval. Rev., vol. 41, no. 2, pp. 47–49, Aug. 2013.

[11] G. Casale and M. Tribastone, “Modelling Exogenous Variability in Cloud
Deployments,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4, pp. 73–
82, Apr. 2013.

[12] L. Y. Chen, D. Ansaloni, E. Smirni, A. Yokokawa, and W. Binder,
“Achieving Application-centric Performance Targets via Consolidation
on Multicores: Myth or Reality?” in Proceedings of, ser. HPDC ’12, pp.
37–48.

[13] A. Peternier, W. Binder, A. Yokokawa, and L. Chen, “Parallelism
Profiling and Wall-time Prediction for Multi-threaded Applications,” in
Proceedings of, ser. ICPE ’13, pp. 211–216.

[14] G. Casale, N. Mi, L. Cherkasova, and E. Smirni, “Dealing with Bursti-
ness in Multi-Tier Applications: Models and Their Parameterization,”
Software Engineering, IEEE Transactions on, vol. 38, no. 5, pp. 1040–
1053, Sept 2012.

[15] M. Welsh, D. Culler, and E. Brewer, “SEDA: An Architecture for
Well-conditioned, Scalable Internet Services,” in Proceedings of, ser.
SOSP’01, 2001, pp. 230–243.

[16] S. Spicuglia, M. Björkqvist, L. Y. Chen, G. Serazzi, W. Binder, and
E. Smirni, “On Load Balancing: a Mix-Aware Algorithm for Heteroge-
neous Systems,” in Proceedings of, ser. ICPE’13, pp. 71–76.

[17] D. Ansaloni, L. Y. Chen, E. Smirni, and W. Binder, “Model-driven
consolidation of java workloads on multicores,” in Proceedings of, ser.
DSN ’12, pp. 37–38.

[18] W. A. Burkhard and R. M. Keller, “Some Approaches to Best-match
File Searching,” Commun. ACM, vol. 16, no. 4, pp. 230–236, Apr. 1973.

[19] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-
aware Cluster Management,” in Proceedings of, ser. ASPLOS ’14, pp.
127–144.

[20] S. R. Mahabhashyam and N. Gautam, “On Queues with Markov Modu-
lated Service Rates,” Queueing Syst. Theory Appl., vol. 51, no. 1-2, pp.
89–113, Oct. 2005.

[21] B. Zhang and B. Zwart, “Fluid Models for Many-server Markovian
Queues in a Changing Environment,” Operations Research Letters,
vol. 40, no. 6, pp. 573 – 577, 2012.

[22] M. Bertoli, G. Casale, and G. Serazzi, “JMT: Performance Engineering
Tools for System Modeling,” SIGMETRICS Perform. Eval. Rev., vol. 36,
no. 4, pp. 10–15, 2009.


