
Introducing Wireless Access Programmability using
Software-Defined Infrastructure

Thomas Lin, Hadi Bannazadeh, and Alberto Leon-Garcia
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada

Email: {t.lin, hadi.bannazadeh, alberto.leongarcia}@utoronto.ca

Abstract—Programmability in wireless access networks can
provide unprecedented flexibility in meeting the communications
needs of a diverse set of wireless devices under changing demand
and network conditions. Programmability also holds the promise
of enabling multiple simultaneous virtual operators providing a
variety of access networks that offer different services using
different business models. In this paper we present our work on
enabling wireless access network programmability in the SAVI
testbed. We introduce an architecture for Software-Defined
Infrastructure that offers virtualized heterogeneous resources in
support of services and applications. Central to this architecture is
the Janus SDI resource manager that can coordinate the actions of
a set of controllers, e.g. OpenStack, OpenFlow, and other
controllers such as a wireless access controller. We describe a
design where Janus is used to integrate the wireless access network
into a Smart Edge node. We introduce use cases that exploit the
flexibility offered by this design, and we present experimental
results from our implementation.

Keywords—Wireless Access; Virtualization; Software-Defined
Infrastructure (SDI); Software-Defined Networking (SDN)

I. INTRODUCTION
The flexibility and economies of scales that derive from

cloud computing are driving a revolution in the architecture and
operation of communication networks. Software-Defined
Networking (SDN) and OpenFlow [1] promise to reduce capital
expenses by exploiting the network resources offered by
commodity switches. SDN controllers promise a rich set of
network services that result from the programmability of flows
in the network. The network services, however, ultimately exist
to support applications, and so the network controller must
ultimately respond to the needs of applications. Thus, the
international activities on Network Function Virtualization
(NFV) are focused on the creation of network functions that can
be chained to provide network services.

With NFV it becomes immediately clear that the set of
resources under consideration must include computing as well
as networking, and this introduces the problem of how to
manage heterogeneous resources. While the initial NFV
activities focus on the exploitation of virtualized computing
resources to reduce cost and increase the flexibility of networks,
a case can be made that the set of resources should include
unconventional resources such as FPGA programmable
hardware, GPUs, and Software-Defined Radio (SDR) systems
and components. The virtualization and integrated control and
management of these diverse resources can provide high

performance and reduce costs in settings where cloud
computing approaches do not. To meet these challenges, the
SAVI research network has been exploring the role of a
Software-Defined Infrastructure [2] (SDI) in support of future
application platforms.

SAVI is a Canadian research network investigating future
application platforms [3]. A key goal of SAVI was to develop
an experimental testbed to support experimentation with future
network architectures, services, and applications [4]. SAVI’s
focus on future application enablement dictated that cloud
computing and virtual networking had to be investigated
jointly. This led SAVI to introduce the notion of SDI and to
design resource clusters with virtualized heterogeneous
resources under integrated control.

The SAVI testbed, first deployed in 2013, features a rich
array of available computational resources beyond that of
traditional virtual machines (VMs), all connected via an
OpenFlow-enabled network substrate. As the testbed contains
various types of resources, a key aim in the design was to
virtualize all aspects of the infrastructure. To meet the
management needs of the testbed, SAVI proposed SDI and
developed an SDI resource management system [5] to provide
converged control and management over heterogeneous
resources. SAVI’s SDI manager, codenamed Janus, offers a
top-level management system which has a global view over the
entire infrastructure and the state of all resources, both physical
and virtualized.

In this paper we focus on SAVI’s efforts to introduce
programmability into the wireless access network. While other
experimentation testbeds use OpenFlow to expand the research
potential for their users, what is still lacking in many is the
ability to tightly integrate and experiment with wireless devices.
Unlike OpenFlow, which was quickly and widely adopted as a
way to virtualize the network forwarding elements, there is a
lack of consensus on the best way to virtualize, and provide an
abstraction for, wireless networks and devices. The
proliferation of wireless-enabled devices, vehicles, sensors, and
etc. presents a potentially growing research field relating to how
to best manage the wireless spectrum and share the access
devices that bridge the wireless to the wired. To empower these
researchers on the SAVI testbed, the first steps are to extend
SDN and OpenFlow to the access networks, virtualize the
wireless access points, and integrate them with the Janus
management system. This would enable the connection of

wireless devices and open opportunities for the experimentation
and validation of novel applications.

This paper will present our ongoing work to introduce
programmability by integrating virtualizable wireless access
points into the SAVI testbed, managed within the Janus SDI
framework. The organization of this paper is as follows: Section
II presents background and related works regarding wireless
virtualization initiatives. A brief high level overview of the
SAVI testbed and SDI are then presented in Section III. This is
followed by Section IV, which describes our architectural
design to enable virtualized wireless access in the SAVI testbed,
as well as a discussion regarding use-cases. A summary of our
work to enable Wi-Fi access points in the SAVI testbed is then
documented in Section V. Section VI presents a preliminary
evaluation of our working access points, as well as a proof-of-
concept demonstration that ties in quality of service (QoS).
Future work is discussed in Section VII, which is followed by
the conclusion in Section VIII.

II. BACKGROUND & RELATED WORKS
Network virtualization is an active research topic that has

received much attention for at least the last twenty years [6]. A
subset of this topic is the area of wireless network virtualization,
which has attracted attention as wireless access has become the
default approach to accessing applications. The number of
wireless devices and sensors, as well as the traffic that they
generate, will grow at an incredible pace over the next several
years [7]. To meet this future demand, researchers have been
exploring ways to share the wireless space via virtualization. As
this concept of sharing is one of the core tenets of cloud
computing, it makes sense for a cloud-based experimental
testbed to include wireless technologies to facilitate the
exploration and testing of future wireless virtualization
concepts.

As early as 2006, the Global Environment for Network
Innovations (GENI) [8] initiative has explored the possibility of
utilization virtualization to support the sharing of wireless
resources amongst multiple concurrent experiments. The
authors of [9] studied various types of wireless networks, as
well as different potential techniques to achieving wireless
virtualization. The study included discussions on ways to map
those techniques to applications and experiments that may vary
in length from a few hours to several months, and ended with a
list of recommendations for different wireless network types on
how best to achieve virtualization and slicing.

In recognizing that future wireless network infrastructures
will be composed of different technologies working in tandem,
Nakauchi et al. proposed AMPHIBIA [10], a Cognitive
Virtualization Platform designed to virtualize wired and
heterogeneous wireless networks. The design of AMPHIBIA
was motivated by the desire to achieve end-to-end slicing from
the wired to the wireless domain. The authors suggest that this
platform will enable service providers the ability to dynamically
provision virtual network slices on-demand.

To empower wireless researchers, Yap et al. introduced
OpenRoads [11], a platform which enables SDN control over
wireless access points (WAPs). OpenRoads, also known as
OpenFlow Wireless, leverages the capabilities of the OpenFlow

protocol to enable control over the datapath while using SNMP
to configure the WAPs. Both OpenFlow and SNMP are then
exposed to applications through an OpenRoads management
interface, which provides users the ease of managing and
controlling various types of wireless technologies. The initial
deployment of OpenRoads into a production network, the
Stanford campus, was later reported in [12].

The research plan within SAVI includes an exploration of
wireless virtualization and its role in application platforms. In
its first phase, a SAVI team at McGill University has completed
the design of a wireless virtualization platform named Aurora
[13] [14]. The goal of Aurora is to become a unifying
framework to ease the deployment and implementation of
virtualized wireless networks in heterogeneous wireless
ecosystems. The current implementation of Aurora is able to
provide fully functional basic services for virtualizing IEEE
802.11/Wi-Fi access networks. Preliminary work exploring the
integration of Aurora into SAVI’s SDI management system has
been prototyped as an experiment on the SAVI testbed [14].

III. THE SAVI TESTBED AND SDI
The Canadian SAVI testbed is a multi-tier cloud application

platform. As seen in Fig. 1, the tiers of the infrastructure
comprise massive scale core datacentres, connected to various
smaller “Smart Edge” datacentres, which may additionally be
connected to access nodes that allows the inclusion of end-user
clients into the SAVI testbed. The core nodes primarily consist
of large numbers of traditional compute resources (i.e. virtual
machines) as well as large storage capacities. Conversely, the
Smart Edge nodes are smaller in scale and located closer to the
end-users for hosting services that may require low-latency. In
addition, the Smart Edges are able to offer non-conventional
computing resources including programmable hardware
(FPGAs), general purpose GPUs (GP-GPUs), and etc. The
access nodes are to provide end-user clients and personal
devices direct connectivity to the services in the testbed via
wireless access. As the SAVI testbed is built on a virtualized
infrastructure, it will enable experimenters and service-
application developers the ability to quickly deploy, maintain,
and retire their resources. This virtualized infrastructure thus
provides rapid repurposing of the infrastructure resources in an
elastic manner.

To manage and control such a diverse testbed, the SAVI
project conceived of Software-Defined Infrastructure as a way
to perform converged management of heterogeneous
infrastructures. An SDI resource management system has a
global view of the infrastructure and all its resources, both
physical and virtual. This global view is stored within a
topology manager (see Fig. 2), which stores the configuration
and topology information related to all the resources. The SDI
resource management system’s ability to control the

Fig. 1. SAVI multi-tier cloud

heterogeneous resources in the infrastructure relies on a set of
proxy resource controllers, one for each type of resource, that
act as actuators to affect the related resource type (e.g. network,
VMs, FPGAs, GPUs, sensors, etc.). Similar to how an SDN
controller provides an abstraction for network control
applications to run on top and define global network control
policies, the SDI resource management system offers a set of
open interfaces (i.e. a set of APIs) enabling external entities to
query information, provision resources, and manage their share
of the infrastructure. It is anticipated that applications built on
top of this set of open interfaces will enable novel integrated
resource management schemes that leverage the global view of
the infrastructure’s heterogeneous resources.

The SAVI testbed’s resource management system involves
an SDI manager codenamed Janus. For the compute and storage
resources of the testbed, Janus leverages OpenStack [15] as the
proxy resource controller. For network control, Janus uses the
Ryu OpenFlow controller [16] as its proxy. The use of proxy
controllers grants the SDI resource management system two
major benefits:

1. Specific resource controllers can be easily swapped,
while maintaining the same abstraction to the external
entities relying on the SDI’s northbound abstraction.
This may open up control and management capabilities
formerly inaccessible with the old controller, and in turn
allows the SDI manager to expose them in its
northbound abstraction interface;

2. New resource types can be more quickly integrated into
the existing testbed by finding an adequate controller for
that type of resource, and developing a simple RPC
method (e.g. RESTful APIs) to facilitate communication
between the controller and the SDI manager.

In summary, new resource controllers enable new
capabilities and new resource types to be added into the SAVI
testbed while Janus maintains its global view over the
infrastructure. This enables Janus to keep its place as a
converged control and management framework over all sets of
resources. In turn, this benefits the owners of experiments and
applications that build upon Janus’ northbound interfaces, and
supports the ongoing innovation of future technologies.

IV. WIRELESS ACCESS ON THE SAVI TESTBED
The enablement of wireless access in the SAVI testbed will

allow users of the testbed to engage in novel end-to-end
experiments involving mobile devices. This will open many

possibilities in regards to applications and experiments related
to mobility and handover, as well as support other innovations
related to wireless technologies. In order for Janus, the SDI
manager, to control and manage the access points themselves,
it requires a resource controller capable of interfacing with
various access point technologies. It is our intention to integrate
the Aurora wireless virtualization framework as a new resource
controller working under Janus. This integration would expose
wireless-related management options, and offer application
developers and experimenters the ability to dynamically
configure virtual wireless networks, create virtual bridges,
create virtual interfaces, and etc. in a programmatic fashion.

This section will describe the high-level architectural design
for integrating wireless access points into the SAVI testbed. The
first subsection will provide a description of how we extend SDI
control over the access points of the testbed, followed by the
second subsection which contains a brief discussion regarding
the potential use-cases of virtualized wireless access nodes.

A. SDI Control of Access Points
An access point’s role is not simply limited to bridging the

wired and wireless networks. As we envision all resources to be
virtualizable and sharable amongst many tenants, the access
points used within the SAVI testbed must enable dynamic
reconfiguration of its wireless networks and their related
parameters. In addition, they must support the ability for the
SDI manager to control their traffic via SDN principles. Thus,
we require that the access points be OpenFlow-enabled. This
allows the SDI manager to configure the flow table entries
within the access points via its proxy SDN controller, and thus
manage the traffic entering and leaving the testbed through the
wireless network. Managing the traffic directly at the access
points opens the door for introducing NFV capabilities at the
edge of the network, prior to the traffic entering the wired
portion of the testbed. The configuration of the access point
devices themselves require a new access point (AP) controller
capable of interfacing with them in order to adjust their wireless
settings and parameters on-the-fly. This high-level architecture,
presented in Fig. 3, will enable the ability to create new virtual
wireless networks, each with different parameters (e.g. channel,
quality of service level, signal strength, etc.).

As the SAVI testbed supports multiple tenants (projects that
include at least one user), this allows us the ability to create a
unique virtual wireless network per tenant. Users with a
wireless-enabled device will be able to choose which tenant
they would like to connect their mobile device to. To secure the

Fig. 2. High-level architecture of SDI resource management system

Fig. 3. High-level architecture for wireless access integration w/ SDI

wireless access, the mobile clients who connect to a specific
virtual wireless network must be registered with Janus before
their traffic is allowed to enter the testbed. Once registered, a
user’s mobile device will essentially become another end-host
resource in the testbed. We note that the flexibility afforded by
the ability to dynamically spawn new virtual wireless networks
enables the possibility of virtualizing at granularities finer than
a per-tenant basis. A tenant running multiple wireless services
may create several virtual wireless networks, each associated
with their own unique set of parameters.

B. Mobile Wireless Access Points
For the access points to be integrated into the SAVI testbed

and controlled by Janus, they need not require a physical
connection. It is possible to interface an access point device
with the testbed by creating a network tunnel between the two.
This opens the door for the possibility to have an SDN-enabled
access network which is remotely managed and controlled by
Janus. For example, if an access point device was connected to
a publicly accessible IP address in a public setting (e.g. free
internet at a café, satellite connection, etc.), then it can set up a
tunnel over the internet to connect to the SAVI testbed. This
remote connection of the access point would enable mobile
clients within its proximity to access existing services,
applications, and experiments hosted on the testbed.

A mobile SAVI access point opens the door for many use-
cases and applications. We list a few potential use-cases and
elaborate on them:

• Disaster Areas: In regions where the civil infrastructure
has been heavily affected by natural, social, or
technological catastrophes, the regular communication
infrastructure that services the area may be damaged.
Emergency response units who are sent into the area may
need access to applications which are hosted on Smart
Edges. Dynamically creating access nodes that enable
mobile devices to access these Smart Edge resources
would benefit and aid first responders in their tasks. Such
a system would similarly be beneficial for people
working in remote locations who require access to data
and services within the Smart Edge.

• Large Social Congregations: Events involving large
gatherings of people in a social setting such as concerts
or sport events often involve many individuals using
smartphones to communicate with others in real time.
The assembly of many mobile devices into a relatively
small geographical area may strain the existing wireless
access infrastructure in place. The creation of dynamic
wireless access networks, coupled with an access point
coordination strategy to control associations [17], would
alleviate the burden created by the sudden increase in
wireless traffic.

• Differentiated Service Levels: A single tenant may host
several services, each of which may involve their own
unique virtual access network. Each virtual access
network can also be associated with different wireless
attributes (e.g. guaranteed bandwidth, traffic priorities,
etc.). A service provider may further associate these
wireless attributes with business metrics such as cost for

the purpose of charging users. The dynamic creation of
differentiated wireless access networks within a single
physical infrastructure allows users to receive their
preferred service irrespective of location.

V. ENABLING WI-FI ON THE SAVI TESTBED
In this section we present our work to integrate Wi-Fi-based

access points into the SAVI testbed. While this integration
effort is related to [18] [14], the efforts presented in this paper
concentrate on the full utilization of OpenFlow to control the
traffic and provide tenant isolation. The current WAPs used are
PC Engine Alix3d2 boards with support for IEEE 802.11b/g.
For customizability of the WAPs, we utilize OpenWrt [19], an
open source Linux-based embedded operating system for
wireless routers. OpenWrt provides the ability to broadcast
multiple SSIDs, with each SSID mapped to a different virtual
interface within the operating system. This ability is a simple
virtualization technique in that end-users will get the illusion of
multiple WAPs when in fact there is only one physical WAP.
As we create a unique SSID per tenant, we are able to map the
wireless traffic from each tenant to a single virtual interface.

The use of a Linux-based operating system allows us to
compile and employ Open vSwitch [20] (OVS), a software-
based OpenFlow switch, for use within the WAPs. Inside the
OpenWrt operating system, each of the virtual interfaces may
then be connected to an OVS. Thus, the traffic traversing
through the access points can be controlled by the SAVI
testbed’s central SDN application, which runs on the Janus SDI
manager [21]. When the virtual interfaces (which are each
mapped to a unique SSID/tenant) are connected to the OVS, the
port number associated with the interface must be registered
with Janus to indicate which tenant it belongs to. Similarly,
mobile clients who connect to a specific tenant SSID must have
their MACs registered with Janus before their traffic is
permitted to enter the testbed. Fig. 4 shows a sequence diagram
indicating the steps required for a mobile client to successfully
connect to the SAVI testbed and acquire a useable IP address.

When a mobile client attempts to negotiate a connection
with the WAP, this association process is handled by a local
software process running within OpenWrt. Upon the successful
association of a new client device, a local script is responsible
for automatically registering the MAC address of the mobile

Fig. 4. Mobile client connection & disconnection sequence diagram

client with the SDI manager. Without this explicit registration
of the MAC address, the client will still be able to connect to
the WAP, but its DHCP requests will be dropped by the SDI
manager, thus leaving it with no IP address. Once this step has
been completed, the mobile client is able to communicate with
the rest of the resources within the same tenant.

Disconnecting from the testbed follows a similar process.
When a mobile devices disassociates from the WAP, a local
script is executed which will notify the SDI manager to un-
register the client’s MAC address from the tenant and the
testbed. Optionally, we can also choose to send an explicit
DHCP release message. However, we currently avoid doing so
in the event that the mobile client re-connects a short time later
(i.e. within the DHCP lease time), it may re-acquire its old IP
address.

As the WAPs are running a Linux-based operating system,
they come with the Linux tc traffic control tool. In addition,
OVS itself comes with support for configuring multiple queues
per port with different QoS parameters associated with each
queue. Thus, OVS is able to provide basic traffic policing,
classification, queueing, and bandwidth guarantees by
leveraging tc under-the-hood. The OpenFlow protocol also
supports an action to enqueue an outgoing packet on a certain
queue of an output port. Thus, with each SSID represented as a
port on the OVS, the SDI manager has the option to enforce
QoS on either a coarse grain scale (i.e. individualized traffic
parameters per port/SSID) or on a fine grain scale (i.e. creating
multiple queues per port and using OpenFlow to map specific
flows to each queue).

VI. EVALUATION AND USE-CASE
At the time of writing this paper, we have successfully

enabled wireless access within a SAVI node located at the
University of Toronto wherein the SDI manager is responsible
for controlling and isolating the traffic entering and leaving the
WAP. We first present a preliminary evaluation on the
bandwidth of the WAP. Afterwards, we validate its practicality
by presenting a simple experiment designed as a proof-of-
concept to demonstrate the ability to use the SDI manager to
enforce quality of service for wireless clients.

A. Preliminary Evaluation
In order to determine the throughput provided by the WAPs,

we conducted a series of measurements to find the uplink and
downlink bandwidths. We employed iperf, a bandwidth
measurement tool, to run a series of measurements and
collected data for both uplink and downlink. The measurements
were conducted for both UDP and TCP traffic, and the averages
of the sessions were then calculated. TABLE I summarizes our
findings.

Our first observation is that the UDP throughput is generally
higher for all three columns, but the range between minimum
and maximum is greater as well. This was expected as UDP
lacks the flow control mechanisms of TCP. We note that the
average throughput of both UDP and TCP appears to be slightly
higher than those observed by Yap et al. in [12] for the single
SSID case, while running the same type of hardware access
point. We believe that this is likely due to the lack of packet
encapsulation in our setup. These results show that our current

wireless bandwidth is a very limited resource. Thus, even
simple applications can easily act as a contender for bandwidth
and degrade the quality of concurrently running applications
and experiments. The next section showcases our work to
implement quality of service within the wireless access points.

B. Video Streaming Use-Case
Envision a scenario in which a user’s experiment, which

requires some level of guaranteed bandwidth, finds itself short
of the bandwidth it requires. Using the knowledge provided by
the SAVI topology manager on the SDI resource management
system, as well as the SAVI monitoring and measurement
system [22], the user can either route their traffic around the
bottleneck region(s) of the network, or utilize traffic priority
queueing. While both are feasible solutions, for the purpose of
observing the traffic control capabilities of the integrated
WAPs, we opt to run a simple experiment involving the latter.

An experiment was set up wherein a single VM running
within the testbed serves as a streaming video source. A mobile
device in the form of a laptop was connected to the testbed via
a WAP, and serves as a client for the streaming video.
Simultaneous with the video streaming, another server within
the testbed will be conducting a “separate experiment”, called
Experiment X, with a secondary laptop, also connected to the
same WAP as the first laptop. This setup is illustrated in Fig. 5.
Experiment X will involve large amounts of traffic, with the
goal of consuming bandwidth on a best-effort basis. This will
be done in the form of maximum-size ICMP packets (i.e. 65507
bytes) sent at a rate of up to 40 packets per second, resulting in
traffic that consumes roughly 20 Mbps of bandwidth. Based on
the throughput measurements of the previous subsection, it is

Fig. 5. Setup of video streaming w/ QoS demonstration

TABLE I. WIRELESS ACCESS POINT BANDWIDTH MEASUREMENTS

 Min. (Mbps) Avg. (Mbps) Max. (Mbps)

UDP Uplink 15.5 23.15 27.2

UDP Downlink 13.2 17.59 22

TCP Uplink 10.4 16.538 19.6

TCP Downlink 13.3 16.01 17.2

expected that the bottleneck for the experiment will be the WAP
itself as the SAVI wired network provides a minimum of 1 GE
bandwidth. Furthermore, the experiment was conducted on an
isolated region of the testbed, ensuring that no extraneous traffic
from other experiments will contest the bandwidth.

For the OVS running within OpenWrt on the WAP, we
created two queues for the egress traffic: one high priority
queue that enforces a minimum bandwidth guarantee and a
default queue for everything else. This configuration was
enforced via the Linux Hierarchical Token Bucket [23] queuing
discipline. Upon detection of traffic related to the video
streaming experiment, the network controller installs a rule into
the flow table of the OVS to enqueue packets of the video flow
into the higher priority queue. Fig. 6 shows the video’s unique
profile under optimal operating conditions (i.e. without
Experiment X running). When the video is streamed alongside
Experiment X, the ICMP packets congest the bandwidth of the
WAP thus resulting in a degradation of the video. This can be
visualized when observing the bandwidth usage for both
experiments in Fig. 7. When queueing is utilized to provide the
video stream a minimal bandwidth guarantee, we observe in
Fig. 8 is that the bandwidth utilization of the video returns to its
normal state, similar to Fig. 6.

These results show that a WAP running the OpenWrt system
coupled with OVS is able to correctly enforce QoS parameters
specified by the controller. Users and applications building
upon the infrastructure abstraction provided by the SDI
manager will greatly benefit from its ability to dynamically
specify QoS levels for specific flows and leverage OVS to
enforce them.

VII. FUTURE WORK
The work presented in this paper represents the first step

towards realizing a fully virtualized, programmable wireless
access infrastructure. Moving forward, we wish to work
towards the full integration of the Aurora wireless virtualization
framework into the SAVI SDI resource management system. In
regards to the throughput of our existing WAPs, we believe that
careful tuning of the wireless parameters in OpenWrt will result
in better performance. As the SAVI testbed currently includes
other wireless resources such as software-defined radios and
cellular base stations, research into how to best virtualize and
share these resources will be required. Further coordination
between the Toronto and McGill SAVI teams are expected in
order to ensure that Aurora continues to evolve such that it can
virtualize these access technologies.

VIII. CONCLUION
The SAVI testbed currently offers a mix of virtualizable

computing and networking resources which are controlled in an
integrated fashion by an SDI resource management system.
Janus, the SAVI SDI manager, utilizes proxy controllers to
affect the state of infrastructure resources, while exposing a
programmatic interface for external users to provision and
manage their share of the resources. This paper reported on our
work towards introducing virtualizable wireless access
resources into the SAVI testbed. We proposed a design which
interfaces Janus with a wireless access controller capable of
virtualizing access points, thus opening further opportunities for

application developers and experimenters on the testbed. The
programmatic interface on Janus enables users to dynamically
create multiple virtual wireless networks on access points, in
which each network may be associated with individualized
parameters. We included descriptions of use-cases where
virtualized wireless access points may be mobilized while
remaining connected to the SAVI testbed, and controlled by
Janus. We then presented our implementation which integrated
Wi-Fi access points into the SAVI testbed, wherein a different
virtual wireless access network was created for each tenant.
This integration work enabled Janus to control the incoming
and outgoing wireless traffic. An experiment was shown as a
proof-of-concept showcasing the ability of the SDI manager to
enforce different QoS parameters onto flows within the
virtualized wireless access points.

ACKNOWLEDGMENT
The authors would like to acknowledge the contributions of

Michael Smith, Kevin Han, Heming Wen, and the rest of the
McGill SAVI team for their support bringing up the wireless
access points.

This work and all the published papers which follow are
funded in part or completely by the Smart Applications on
Virtual Infrastructure (SAVI) project, funded under the
National Sciences and Engineering Research Council of
Canada (NSERC) Strategic Networks grant number
NETGP394424-10.

Fig. 6. Video clip profile

Fig. 7. Video clip profile (No traffic control)

Fig. 8. Video clip profile (With OpenFlow/OVS traffic control)

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker and J. Turner, "OpenFlow: Enabling Innovation
in Campus Networks," ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69-74, 2008.

[2] J.-M. Kang, H. Bannazadeh, H. Rahimi, T. Lin, M. Faraji and A. Leon-
Garcia, "Software-Defined Infrastructure and the Future Central
Office," in 2013 IEEE International Conference on Communications
Workshops (ICC), Budapest, Hungary, 2013.

[3] Smart Applications on Virtual Infrastructure, "Smart Applications on
Virtual Infrastructure," [Online]. Available:
http://www.savinetwork.ca/. [Accessed 15 August 2014].

[4] J.-M. Kang, H. Bannazadeh and A. Leon-Garcia, "SAVI Testbed:
Control and Management of Converged Virtual ICT Resources," in
2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), Ghent, Belgium, 2013.

[5] J.-M. Kang, T. Lin, H. Bannazadeh and A. Leon-Garcia, "Software-
Defined Infrastructure and the SAVI Testbed," in 9th International
Conference on Testbeds and Research Infrastructures for the
Development of Networks & Communities (TRIDENTCOM 2014),
Guangzhou, People's Republic of China, 2014.

[6] G. Woodruff, N. Perinpanathan, F. Chang, P. Appanna and A. Leon-
Garcia, "ATM Network Resources Management using Layer and
Virtual Network Concepts,," in IEEE Symposium on Integrated
Network Management, 1997.

[7] Cisco, "Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2013-2018," 2014. [Online]. Available:
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white_paper_c11-520862.pdf.
[Accessed 25 September 2014].

[8] Global Environment for Network Innovations, "Global Environment for
Network Innovations," [Online]. Available: http://www.geni.net/.
[Accessed 15 August 2014].

[9] S. Paul and S. Seshan, "Technical Document on Wireless
Virtualization," 15 September 2006. [Online]. Available:
http://groups.geni.net/geni/raw-
attachment/wiki/OldGPGDesignDocuments/GDD-06-17.pdf. [Accessed
28 September 2014].

[10] K. Nakauchi, K. Ishizu, H. Murakami, A. Nakao and H. Harada,
"AMPHIBIA: A Cognitive Virtualization Platform for End-to-End
Slicing," in IEEE International Conference on Communications (ICC),
Kyoto, 2011.

[11] K.-K. Yap, M. Kobayashi, R. Sherwood, N. Handigol, T.-Y. Huang, M.
Chan and N. McKeown, "OpenRoads: Empowering Research in Mobile
Networks," ACM SIGCOMM Computer Communication Review, vol.
40, no. 1, pp. 125-126, 2010.

[12] K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian
and N. McKeown, "The Stanford OpenRoads Deployment," in 4th
ACM International Workshop on Wireless Network Testbeds,
Experimental Evaluation and Characterization (WiNTECH), Beijing,
2009.

[13] P.-K. Tiwary, K. Han, H.-P. Truong, Q.-H. Ho and T. Le-Ngoc,
"Aurora: A Virtualization and Software-Defined Infrastructure
Framework for Wireless Networks," in SAVI 2014 Annual General
Meeting (AGM) Student Posters, Toronto, SAVI Project, 2014, pp. 73-
74.

[14] H. Wen, "Virtualization and Software-Defined Infrastructure
Framework for Wireless Access Networks," Montreal, Canada, 2014.

[15] OpenStack, "OpenStack," [Online]. Available:
http://www.openstack.org/. [Accessed 17 August 2014].

[16] NTT DoCoMo, "Ryu SDN Framework," [Online]. Available:
http://osrg.github.io/ryu/. [Accessed 17 August 2014].

[17] M. Derakhshani, X. Wang, Le-Ngoc, Tho, Leon-Garcia and Alberto,
"Improving Throughput and Fairness in Virtualized 802.11 Networks

through Association and Airtime Control," IEEE Transactions on
Wireless Communications, Submitted for publication, 2015.

[18] H. Wen, K. Han, M. Smith, P. K. Tiwary and T. Le-Ngoc, "802.11
Wireless Access Point Virtualization Testbed," in SAVI 2013 Annual
General Meeting (AGM) Student Posters, Toronto, SAVI Project, 2013,
pp. 56-57.

[19] OpenWrt, "OpenWrt: Wireless Freedom," [Online]. Available:
https://openwrt.org/. [Accessed 21 August 2014].

[20] Open vSwitch, "Open vSwitch," [Online]. Available:
http://openvswitch.org/. [Accessed 17 August 2014].

[21] T. Lin, J.-M. Kang, H. Bannazadeh and A. Leon-Garcia, "Enabling
SDN Applications on Software-Defined Infrastructure," in IEEE
Network Operations and Management Symposium (NOMS), Krakow,
Poland, 2014.

[22] J. Lin, R. Ravichandiran, H. Bannazadeh and A. Leon-Garcia,
"Monitoring and Measurement as a Service in SDI Deployed on SAVI
Testbed," in SAVI 2014 Annual General Meeting (AGM) Student
Posters, Toronto, SAVI Project, 2014, pp. 91-92.

[23] M. D. (devik), "HTB Linux queuing discipline manual - user guide,"
[Online]. Available:
http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm. [Accessed 21
August 2014].

