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Abstract—Programmability in wireless access networks can 
provide unprecedented flexibility in meeting the communications 
needs of a diverse set of wireless devices under changing demand 
and network conditions.  Programmability also holds the promise 
of enabling multiple simultaneous virtual operators providing a 
variety of access networks that offer different services using 
different business models.  In this paper we present our work on 
enabling wireless access network programmability in the SAVI 
testbed.  We introduce an architecture for Software-Defined 
Infrastructure that offers virtualized heterogeneous resources in 
support of services and applications. Central to this architecture is 
the Janus SDI resource manager that can coordinate the actions of 
a set of controllers, e.g. OpenStack, OpenFlow, and other 
controllers such as a wireless access controller.  We describe a 
design where Janus is used to integrate the wireless access network 
into a Smart Edge node.  We introduce use cases that exploit the 
flexibility offered by this design, and we present experimental 
results from our implementation. 

Keywords—Wireless Access; Virtualization; Software-Defined 
Infrastructure (SDI); Software-Defined Networking (SDN) 

I. INTRODUCTION 
The flexibility and economies of scales that derive from 

cloud computing are driving a revolution in the architecture and 
operation of communication networks.  Software-Defined 
Networking (SDN) and OpenFlow [1] promise to reduce capital 
expenses by exploiting the network resources offered by 
commodity switches. SDN controllers promise a rich set of 
network services that result from the programmability of flows 
in the network.  The network services, however, ultimately exist 
to support applications, and so the network controller must 
ultimately respond to the needs of applications.  Thus, the 
international activities on Network Function Virtualization 
(NFV) are focused on the creation of network functions that can 
be chained to provide network services. 

With NFV it becomes immediately clear that the set of 
resources under consideration must include computing as well 
as networking, and this introduces the problem of how to 
manage heterogeneous resources.  While the initial NFV 
activities focus on the exploitation of virtualized computing 
resources to reduce cost and increase the flexibility of networks, 
a case can be made that the set of resources should include 
unconventional resources such as FPGA programmable 
hardware, GPUs, and Software-Defined Radio (SDR) systems 
and components. The virtualization and integrated control and 
management of these diverse resources can provide high 

performance and reduce costs in settings where cloud 
computing approaches do not.  To meet these challenges, the 
SAVI research network has been exploring the role of a 
Software-Defined Infrastructure [2] (SDI) in support of future 
application platforms. 

SAVI is a Canadian research network investigating future 
application platforms [3].   A key goal of SAVI was to develop 
an experimental testbed to support experimentation with future 
network architectures, services, and applications [4]. SAVI’s 
focus on future application enablement dictated that cloud 
computing and virtual networking had to be investigated 
jointly. This led SAVI to introduce the notion of SDI and to 
design resource clusters with virtualized heterogeneous 
resources under integrated control. 

The SAVI testbed, first deployed in 2013, features a rich 
array of available computational resources beyond that of 
traditional virtual machines (VMs), all connected via an 
OpenFlow-enabled network substrate. As the testbed contains 
various types of resources, a key aim in the design was to 
virtualize all aspects of the infrastructure. To meet the 
management needs of the testbed, SAVI proposed SDI and 
developed an SDI resource management system [5] to provide 
converged control and management over heterogeneous 
resources. SAVI’s SDI manager, codenamed Janus, offers a 
top-level management system which has a global view over the 
entire infrastructure and the state of all resources, both physical 
and virtualized. 

In this paper we focus on SAVI’s efforts to introduce 
programmability into the wireless access network. While other 
experimentation testbeds use OpenFlow to expand the research 
potential for their users, what is still lacking in many is the 
ability to tightly integrate and experiment with wireless devices. 
Unlike OpenFlow, which was quickly and widely adopted as a 
way to virtualize the network forwarding elements, there is a 
lack of consensus on the best way to virtualize, and provide an 
abstraction for, wireless networks and devices. The 
proliferation of wireless-enabled devices, vehicles, sensors, and 
etc. presents a potentially growing research field relating to how 
to best manage the wireless spectrum and share the access 
devices that bridge the wireless to the wired. To empower these 
researchers on the SAVI testbed, the first steps are to extend 
SDN and OpenFlow to the access networks, virtualize the 
wireless access points, and integrate them with the Janus 
management system. This would enable the connection of 



wireless devices and open opportunities for the experimentation 
and validation of novel applications. 

This paper will present our ongoing work to introduce 
programmability by integrating virtualizable wireless access 
points into the SAVI testbed, managed within the Janus SDI 
framework. The organization of this paper is as follows: Section 
II presents background and related works regarding wireless 
virtualization initiatives. A brief high level overview of the 
SAVI testbed and SDI are then presented in Section III. This is 
followed by Section IV, which describes our architectural 
design to enable virtualized wireless access in the SAVI testbed, 
as well as a discussion regarding use-cases. A summary of our 
work to enable Wi-Fi access points in the SAVI testbed is then 
documented in Section V. Section VI presents a preliminary 
evaluation of our working access points, as well as a proof-of-
concept demonstration that ties in quality of service (QoS). 
Future work is discussed in Section VII, which is followed by 
the conclusion in Section VIII. 

II. BACKGROUND & RELATED WORKS 
Network virtualization is an active research topic that has 

received much attention for at least the last twenty years [6]. A 
subset of this topic is the area of wireless network virtualization, 
which has attracted attention as wireless access has become the 
default approach to accessing applications. The number of 
wireless devices and sensors, as well as the traffic that they 
generate, will grow at an incredible pace over the next several 
years [7]. To meet this future demand, researchers have been 
exploring ways to share the wireless space via virtualization. As 
this concept of sharing is one of the core tenets of cloud 
computing, it makes sense for a cloud-based experimental 
testbed to include wireless technologies to facilitate the 
exploration and testing of future wireless virtualization 
concepts. 

As early as 2006, the Global Environment for Network 
Innovations (GENI) [8] initiative has explored the possibility of 
utilization virtualization to support the sharing of wireless 
resources amongst multiple concurrent experiments. The 
authors of [9] studied various types of wireless networks, as 
well as different potential techniques to achieving wireless 
virtualization. The study included discussions on ways to map 
those techniques to applications and experiments that may vary 
in length from a few hours to several months, and ended with a 
list of recommendations for different wireless network types on 
how best to achieve virtualization and slicing. 

In recognizing that future wireless network infrastructures 
will be composed of different technologies working in tandem, 
Nakauchi et al. proposed AMPHIBIA [10], a Cognitive 
Virtualization Platform designed to virtualize wired and 
heterogeneous wireless networks. The design of AMPHIBIA 
was motivated by the desire to achieve end-to-end slicing from 
the wired to the wireless domain. The authors suggest that this 
platform will enable service providers the ability to dynamically 
provision virtual network slices on-demand. 

To empower wireless researchers, Yap et al. introduced 
OpenRoads [11], a platform which enables SDN control over 
wireless access points (WAPs). OpenRoads, also known as 
OpenFlow Wireless, leverages the capabilities of the OpenFlow 

protocol to enable control over the datapath while using SNMP 
to configure the WAPs. Both OpenFlow and SNMP are then 
exposed to applications through an OpenRoads management 
interface, which provides users the ease of managing and 
controlling various types of wireless technologies. The initial 
deployment of OpenRoads into a production network, the 
Stanford campus, was later reported in [12]. 

The research plan within SAVI includes an exploration of 
wireless virtualization and its role in application platforms.  In 
its first phase, a SAVI team at McGill University has completed 
the design of a wireless virtualization platform named Aurora 
[13] [14]. The goal of Aurora is to become a unifying 
framework to ease the deployment and implementation of 
virtualized wireless networks in heterogeneous wireless 
ecosystems. The current implementation of Aurora is able to 
provide fully functional basic services for virtualizing IEEE 
802.11/Wi-Fi access networks. Preliminary work exploring the 
integration of Aurora into SAVI’s SDI management system has 
been prototyped as an experiment on the SAVI testbed [14]. 

III. THE SAVI TESTBED AND SDI 
The Canadian SAVI testbed is a multi-tier cloud application 

platform. As seen in Fig. 1, the tiers of the infrastructure 
comprise massive scale core datacentres, connected to various 
smaller “Smart Edge” datacentres, which may additionally be 
connected to access nodes that allows the inclusion of end-user 
clients into the SAVI testbed. The core nodes primarily consist 
of large numbers of traditional compute resources (i.e. virtual 
machines) as well as large storage capacities. Conversely, the 
Smart Edge nodes are smaller in scale and located closer to the 
end-users for hosting services that may require low-latency. In 
addition, the Smart Edges are able to offer non-conventional 
computing resources including programmable hardware 
(FPGAs), general purpose GPUs (GP-GPUs), and etc. The 
access nodes are to provide end-user clients and personal 
devices direct connectivity to the services in the testbed via 
wireless access. As the SAVI testbed is built on a virtualized 
infrastructure, it will enable experimenters and service-
application developers the ability to quickly deploy, maintain, 
and retire their resources. This virtualized infrastructure thus 
provides rapid repurposing of the infrastructure resources in an 
elastic manner. 

To manage and control such a diverse testbed, the SAVI 
project conceived of Software-Defined Infrastructure as a way 
to perform converged management of heterogeneous 
infrastructures. An SDI resource management system has a 
global view of the infrastructure and all its resources, both 
physical and virtual. This global view is stored within a 
topology manager (see Fig. 2), which stores the configuration 
and topology information related to all the resources. The SDI 
resource management system’s ability to control the 

 
Fig. 1.   SAVI multi-tier cloud 

 
 

 

 



heterogeneous resources in the infrastructure relies on a set of 
proxy resource controllers, one for each type of resource, that 
act as actuators to affect the related resource type (e.g. network, 
VMs, FPGAs, GPUs, sensors, etc.).  Similar to how an SDN 
controller provides an abstraction for network control 
applications to run on top and define global network control 
policies, the SDI resource management system offers a set of 
open interfaces (i.e. a set of APIs) enabling external entities to 
query information, provision resources, and manage their share 
of the infrastructure. It is anticipated that applications built on 
top of this set of open interfaces will enable novel integrated 
resource management schemes that leverage the global view of 
the infrastructure’s heterogeneous resources. 

The SAVI testbed’s resource management system involves 
an SDI manager codenamed Janus. For the compute and storage 
resources of the testbed, Janus leverages OpenStack [15] as the 
proxy resource controller. For network control, Janus uses the 
Ryu OpenFlow controller [16] as its proxy. The use of proxy 
controllers grants the SDI resource management system two 
major benefits: 

1. Specific resource controllers can be easily swapped, 
while maintaining the same abstraction to the external 
entities relying on the SDI’s northbound abstraction. 
This may open up control and management capabilities 
formerly inaccessible with the old controller, and in turn 
allows the SDI manager to expose them in its 
northbound abstraction interface; 

2. New resource types can be more quickly integrated into 
the existing testbed by finding an adequate controller for 
that type of resource, and developing a simple RPC 
method (e.g. RESTful APIs) to facilitate communication 
between the controller and the SDI manager. 

In summary, new resource controllers enable new 
capabilities and new resource types to be added into the SAVI 
testbed while Janus maintains its global view over the 
infrastructure. This enables Janus to keep its place as a 
converged control and management framework over all sets of 
resources. In turn, this benefits the owners of experiments and 
applications that build upon Janus’ northbound interfaces, and 
supports the ongoing innovation of future technologies. 

IV. WIRELESS ACCESS ON THE SAVI TESTBED 
The enablement of wireless access in the SAVI testbed will 

allow users of the testbed to engage in novel end-to-end 
experiments involving mobile devices. This will open many 

possibilities in regards to applications and experiments related 
to mobility and handover, as well as support other innovations 
related to wireless technologies. In order for Janus, the SDI 
manager, to control and manage the access points themselves, 
it requires a resource controller capable of interfacing with 
various access point technologies. It is our intention to integrate 
the Aurora wireless virtualization framework as a new resource 
controller working under Janus. This integration would expose 
wireless-related management options, and offer application 
developers and experimenters the ability to dynamically 
configure virtual wireless networks, create virtual bridges, 
create virtual interfaces, and etc. in a programmatic fashion. 

This section will describe the high-level architectural design 
for integrating wireless access points into the SAVI testbed. The 
first subsection will provide a description of how we extend SDI 
control over the access points of the testbed, followed by the 
second subsection which contains a brief discussion regarding 
the potential use-cases of virtualized wireless access nodes. 

A. SDI Control of Access Points 
An access point’s role is not simply limited to bridging the 

wired and wireless networks. As we envision all resources to be 
virtualizable and sharable amongst many tenants, the access 
points used within the SAVI testbed must enable dynamic 
reconfiguration of its wireless networks and their related 
parameters. In addition, they must support the ability for the 
SDI manager to control their traffic via SDN principles. Thus, 
we require that the access points be OpenFlow-enabled. This 
allows the SDI manager to configure the flow table entries 
within the access points via its proxy SDN controller, and thus 
manage the traffic entering and leaving the testbed through the 
wireless network. Managing the traffic directly at the access 
points opens the door for introducing NFV capabilities at the 
edge of the network, prior to the traffic entering the wired 
portion of the testbed. The configuration of the access point 
devices themselves require a new access point (AP) controller 
capable of interfacing with them in order to adjust their wireless 
settings and parameters on-the-fly. This high-level architecture, 
presented in Fig. 3, will enable the ability to create new virtual 
wireless networks, each with different parameters (e.g. channel, 
quality of service level, signal strength, etc.). 

As the SAVI testbed supports multiple tenants (projects that 
include at least one user), this allows us the ability to create a 
unique virtual wireless network per tenant. Users with a 
wireless-enabled device will be able to choose which tenant 
they would like to connect their mobile device to. To secure the 

 
Fig. 2.   High-level architecture of SDI resource management system 

 
 
 

 
Fig. 3.   High-level architecture for wireless access integration w/ SDI 

 



wireless access, the mobile clients who connect to a specific 
virtual wireless network must be registered with Janus before 
their traffic is allowed to enter the testbed. Once registered, a 
user’s mobile device will essentially become another end-host 
resource in the testbed. We note that the flexibility afforded by 
the ability to dynamically spawn new virtual wireless networks 
enables the possibility of virtualizing at granularities finer than 
a per-tenant basis. A tenant running multiple wireless services 
may create several virtual wireless networks, each associated 
with their own unique set of parameters. 

B. Mobile Wireless Access Points 
For the access points to be integrated into the SAVI testbed 

and controlled by Janus, they need not require a physical 
connection. It is possible to interface an access point device 
with the testbed by creating a network tunnel between the two. 
This opens the door for the possibility to have an SDN-enabled 
access network which is remotely managed and controlled by 
Janus. For example, if an access point device was connected to 
a publicly accessible IP address in a public setting (e.g. free 
internet at a café, satellite connection, etc.), then it can set up a 
tunnel over the internet to connect to the SAVI testbed. This 
remote connection of the access point would enable mobile 
clients within its proximity to access existing services, 
applications, and experiments hosted on the testbed. 

A mobile SAVI access point opens the door for many use-
cases and applications. We list a few potential use-cases and 
elaborate on them: 

• Disaster Areas: In regions where the civil infrastructure 
has been heavily affected by natural, social, or 
technological catastrophes, the regular communication 
infrastructure that services the area may be damaged. 
Emergency response units who are sent into the area may 
need access to applications which are hosted on Smart 
Edges. Dynamically creating access nodes that enable 
mobile devices to access these Smart Edge resources 
would benefit and aid first responders in their tasks. Such 
a system would similarly be beneficial for people 
working in remote locations who require access to data 
and services within the Smart Edge. 

• Large Social Congregations: Events involving large 
gatherings of people in a social setting such as concerts 
or sport events often involve many individuals using 
smartphones to communicate with others in real time. 
The assembly of many mobile devices into a relatively 
small geographical area may strain the existing wireless 
access infrastructure in place. The creation of dynamic 
wireless access networks, coupled with an access point 
coordination strategy to control associations [17], would 
alleviate the burden created by the sudden increase in 
wireless traffic. 

• Differentiated Service Levels: A single tenant may host 
several services, each of which may involve their own 
unique virtual access network. Each virtual access 
network can also be associated with different wireless 
attributes (e.g. guaranteed bandwidth, traffic priorities, 
etc.). A service provider may further associate these 
wireless attributes with business metrics such as cost for 

the purpose of charging users. The dynamic creation of 
differentiated wireless access networks within a single 
physical infrastructure allows users to receive their 
preferred service irrespective of location. 

V. ENABLING WI-FI ON THE SAVI TESTBED 
In this section we present our work to integrate Wi-Fi-based 

access points into the SAVI testbed. While this integration 
effort is related to [18] [14], the efforts presented in this paper 
concentrate on the full utilization of OpenFlow to control the 
traffic and provide tenant isolation. The current WAPs used are 
PC Engine Alix3d2 boards with support for IEEE 802.11b/g. 
For customizability of the WAPs, we utilize OpenWrt [19], an 
open source Linux-based embedded operating system for 
wireless routers. OpenWrt provides the ability to broadcast 
multiple SSIDs, with each SSID mapped to a different virtual 
interface within the operating system. This ability is a simple 
virtualization technique in that end-users will get the illusion of 
multiple WAPs when in fact there is only one physical WAP. 
As we create a unique SSID per tenant, we are able to map the 
wireless traffic from each tenant to a single virtual interface. 

The use of a Linux-based operating system allows us to 
compile and employ Open vSwitch [20] (OVS), a software-
based OpenFlow switch, for use within the WAPs. Inside the 
OpenWrt operating system, each of the virtual interfaces may 
then be connected to an OVS. Thus, the traffic traversing 
through the access points can be controlled by the SAVI 
testbed’s central SDN application, which runs on the Janus SDI 
manager [21]. When the virtual interfaces (which are each 
mapped to a unique SSID/tenant) are connected to the OVS, the 
port number associated with the interface must be registered 
with Janus to indicate which tenant it belongs to. Similarly, 
mobile clients who connect to a specific tenant SSID must have 
their MACs registered with Janus before their traffic is 
permitted to enter the testbed. Fig. 4 shows a sequence diagram 
indicating the steps required for a mobile client to successfully 
connect to the SAVI testbed and acquire a useable IP address. 

When a mobile client attempts to negotiate a connection 
with the WAP, this association process is handled by a local 
software process running within OpenWrt. Upon the successful 
association of a new client device, a local script is responsible 
for automatically registering the MAC address of the mobile 

 
Fig. 4.   Mobile client connection & disconnection sequence diagram 

 



client with the SDI manager. Without this explicit registration 
of the MAC address, the client will still be able to connect to 
the WAP, but its DHCP requests will be dropped by the SDI 
manager, thus leaving it with no IP address. Once this step has 
been completed, the mobile client is able to communicate with 
the rest of the resources within the same tenant. 

Disconnecting from the testbed follows a similar process. 
When a mobile devices disassociates from the WAP, a local 
script is executed which will notify the SDI manager to un-
register the client’s MAC address from the tenant and the 
testbed. Optionally, we can also choose to send an explicit 
DHCP release message. However, we currently avoid doing so 
in the event that the mobile client re-connects a short time later 
(i.e. within the DHCP lease time), it may re-acquire its old IP 
address. 

As the WAPs are running a Linux-based operating system, 
they come with the Linux tc traffic control tool. In addition, 
OVS itself comes with support for configuring multiple queues 
per port with different QoS parameters associated with each 
queue. Thus, OVS is able to provide basic traffic policing, 
classification, queueing, and bandwidth guarantees by 
leveraging tc under-the-hood. The OpenFlow protocol also 
supports an action to enqueue an outgoing packet on a certain 
queue of an output port. Thus, with each SSID represented as a 
port on the OVS, the SDI manager has the option to enforce 
QoS on either a coarse grain scale (i.e. individualized traffic 
parameters per port/SSID) or on a fine grain scale (i.e. creating 
multiple queues per port and using OpenFlow to map specific 
flows to each queue). 

VI. EVALUATION AND USE-CASE 
At the time of writing this paper, we have successfully 

enabled wireless access within a SAVI node located at the 
University of Toronto wherein the SDI manager is responsible 
for controlling and isolating the traffic entering and leaving the 
WAP. We first present a preliminary evaluation on the 
bandwidth of the WAP. Afterwards, we validate its practicality 
by presenting a simple experiment designed as a proof-of-
concept to demonstrate the ability to use the SDI manager to 
enforce quality of service for wireless clients. 

A. Preliminary Evaluation 
In order to determine the throughput provided by the WAPs, 

we conducted a series of measurements to find the uplink and 
downlink bandwidths. We employed iperf, a bandwidth 
measurement tool, to run a series of measurements and 
collected data for both uplink and downlink. The measurements 
were conducted for both UDP and TCP traffic, and the averages 
of the sessions were then calculated. TABLE I summarizes our 
findings. 

Our first observation is that the UDP throughput is generally 
higher for all three columns, but the range between minimum 
and maximum is greater as well. This was expected as UDP 
lacks the flow control mechanisms of TCP. We note that the 
average throughput of both UDP and TCP appears to be slightly 
higher than those observed by Yap et al. in [12] for the single 
SSID case, while running the same type of hardware access 
point. We believe that this is likely due to the lack of packet 
encapsulation in our setup. These results show that our current 

wireless bandwidth is a very limited resource. Thus, even 
simple applications can easily act as a contender for bandwidth 
and degrade the quality of concurrently running applications 
and experiments. The next section showcases our work to 
implement quality of service within the wireless access points. 

B. Video Streaming Use-Case 
Envision a scenario in which a user’s experiment, which 

requires some level of guaranteed bandwidth, finds itself short 
of the bandwidth it requires. Using the knowledge provided by 
the SAVI topology manager on the SDI resource management 
system, as well as the SAVI monitoring and measurement 
system [22], the user can either route their traffic around the 
bottleneck region(s) of the network, or utilize traffic priority 
queueing. While both are feasible solutions, for the purpose of 
observing the traffic control capabilities of the integrated 
WAPs, we opt to run a simple experiment involving the latter. 

An experiment was set up wherein a single VM running 
within the testbed serves as a streaming video source. A mobile 
device in the form of a laptop was connected to the testbed via 
a WAP, and serves as a client for the streaming video. 
Simultaneous with the video streaming, another server within 
the testbed will be conducting a “separate experiment”, called 
Experiment X, with a secondary laptop, also connected to the 
same WAP as the first laptop. This setup is illustrated in Fig. 5. 
Experiment X will involve large amounts of traffic, with the 
goal of consuming bandwidth on a best-effort basis. This will 
be done in the form of maximum-size ICMP packets (i.e. 65507 
bytes) sent at a rate of up to 40 packets per second, resulting in 
traffic that consumes roughly 20 Mbps of bandwidth. Based on 
the throughput measurements of the previous subsection, it is 

 
Fig. 5.   Setup of video streaming w/ QoS demonstration 

 
 

TABLE I.          WIRELESS ACCESS POINT BANDWIDTH MEASUREMENTS 

 Min. (Mbps) Avg. (Mbps) Max. (Mbps) 

UDP Uplink 15.5 23.15 27.2 

UDP Downlink 13.2 17.59 22 

TCP Uplink 10.4 16.538 19.6 

TCP Downlink 13.3 16.01 17.2 

 



expected that the bottleneck for the experiment will be the WAP 
itself as the SAVI wired network provides a minimum of 1 GE 
bandwidth. Furthermore, the experiment was conducted on an 
isolated region of the testbed, ensuring that no extraneous traffic 
from other experiments will contest the bandwidth. 

For the OVS running within OpenWrt on the WAP, we 
created two queues for the egress traffic: one high priority 
queue that enforces a minimum bandwidth guarantee and a 
default queue for everything else. This configuration was 
enforced via the Linux Hierarchical Token Bucket [23] queuing 
discipline. Upon detection of traffic related to the video 
streaming experiment, the network controller installs a rule into 
the flow table of the OVS to enqueue packets of the video flow 
into the higher priority queue. Fig. 6 shows the video’s unique 
profile under optimal operating conditions (i.e. without 
Experiment X running). When the video is streamed alongside 
Experiment X, the ICMP packets congest the bandwidth of the 
WAP thus resulting in a degradation of the video. This can be 
visualized when observing the bandwidth usage for both 
experiments in Fig. 7. When queueing is utilized to provide the 
video stream a minimal bandwidth guarantee, we observe in 
Fig. 8 is that the bandwidth utilization of the video returns to its 
normal state, similar to Fig. 6. 

These results show that a WAP running the OpenWrt system 
coupled with OVS is able to correctly enforce QoS parameters 
specified by the controller. Users and applications building 
upon the infrastructure abstraction provided by the SDI 
manager will greatly benefit from its ability to dynamically 
specify QoS levels for specific flows and leverage OVS to 
enforce them. 

VII. FUTURE WORK 
The work presented in this paper represents the first step 

towards realizing a fully virtualized, programmable wireless 
access infrastructure. Moving forward, we wish to work 
towards the full integration of the Aurora wireless virtualization 
framework into the SAVI SDI resource management system. In 
regards to the throughput of our existing WAPs, we believe that 
careful tuning of the wireless parameters in OpenWrt will result 
in better performance. As the SAVI testbed currently includes 
other wireless resources such as software-defined radios and 
cellular base stations, research into how to best virtualize and 
share these resources will be required. Further coordination 
between the Toronto and McGill SAVI teams are expected in 
order to ensure that Aurora continues to evolve such that it can 
virtualize these access technologies. 

VIII. CONCLUION 
The SAVI testbed currently offers a mix of virtualizable 

computing and networking resources which are controlled in an 
integrated fashion by an SDI resource management system. 
Janus, the SAVI SDI manager, utilizes proxy controllers to 
affect the state of infrastructure resources, while exposing a 
programmatic interface for external users to provision and 
manage their share of the resources. This paper reported on our 
work towards introducing virtualizable wireless access 
resources into the SAVI testbed. We proposed a design which 
interfaces Janus with a wireless access controller capable of 
virtualizing access points, thus opening further opportunities for 

application developers and experimenters on the testbed. The 
programmatic interface on Janus enables users to dynamically 
create multiple virtual wireless networks on access points, in 
which each network may be associated with individualized 
parameters. We included descriptions of use-cases where 
virtualized wireless access points may be mobilized while 
remaining connected to the SAVI testbed, and controlled by 
Janus. We then presented our implementation which integrated 
Wi-Fi access points into the SAVI testbed, wherein a different 
virtual wireless access network was created for each tenant. 
This integration work enabled Janus to control the incoming 
and outgoing wireless traffic. An experiment was shown as a 
proof-of-concept showcasing the ability of the SDI manager to 
enforce different QoS parameters onto flows within the 
virtualized wireless access points. 
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Fig. 6.   Video clip profile 

 
 

 
Fig. 7.   Video clip profile (No traffic control) 

 
 

 
Fig. 8.   Video clip profile (With OpenFlow/OVS traffic control) 
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