
Ontology Integration for Advanced Manufacturing
Collaboration in Cloud Platforms

Shravya Ramisetty1, Prasad Calyam1, J. Cecil2, Amit Rama Akula1, Ronny Bazan Antequera1, Ray Leto3
1University of Missouri-Columbia, 2Oklahoma State University, 3TotalSim USA

Email: calyamp@missouri.edu; {srd6c, ar442, rcb553}@mail.missouri.edu; j.cecil@okstate.edu; rleto@totalsim.us

Abstract—Advances in the field of cloud computing and net-
working have led to rapid development and market growth in
areas such as online retail, gaming and healthcare. In the field
of advanced manufacturing however, the impact has been signif-
icantly lesser than expected due to limitations in cloud platforms
for fostering community engagement. To address this problem, we
study a new cloud-based architecture that provides Platform-as-
a-Service (PaaS) management capabilities to the manufacturing
community for delivering Software-as-a-Service (SaaS) “Apps”
to their customers. Our architecture aims at supporting an
“App Marketplace” that thrives on agile development, organic
collaboration and scalable sales of next generation manufacturing
Apps requiring high-performance simulation and modeling.

Towards realizing the vision of the above architecture, our
paper involves investigation and implementation of an Ontology
Service that interoperates with other common web services
related to resource brokering and accounting. Our Ontology
Service uses principles of mapping and merging to translate
a manufacturing App’s collaboration requirements to suitable
resource specifications on public cloud platforms. Integrated
resultant ontology can be queried to provision the required
resource parameters such as amount of memory/storage, number
of processing units, and network protocol configurations needed
for deployment of an App. We validate the effectiveness of
our Ontology Service using the Protégé framework in a pilot
testbed of a real-world “WheelSim” App in the NSF GENI Cloud
platform. Our ontology integration results show benefits to an
App developer in terms of: optimal user experience, lower design
time and lower cost/simulation.

Keywords-Integrated Cloud Management, Advanced Manufac-
turing, Ontology Service, App Marketplace

I. INTRODUCTION

Advances in the field of cloud computing and networking
have led to rapid development and market growth in areas such
as online retail, gaming and health care. These advancements
have helped in creating economic benefits by transforming
investment in infrastructure. Enterprises can now rent infras-
tructure on-demand without the hassle of frequent maintenance
or upgrades. They can also access high performance com-
puting and elastic resources to collaborate with their peers
and improve service delivery to customers [1]. An exemplar
use case of cloud services adoption can be seen in a health
care industry study [2], where a secure cloud environment
was leveraged to manage information and foster collaboration
between emergency health care professionals.

In the field of advanced manufacturing however, the adop-
tion and benefits of cloud computing have been significantly

This material is based upon work supported by the City of Dublin,
Mozilla Foundation and National Science Foundation under award numbers
CNS-1347889, CNS-0714770. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the City of Dublin, Mozilla Foundation
or National Science Foundation.

Fig. 1. App Marketplace Cloud architecture

lesser than expected. This is due to limitations in cloud
platforms that are not capable of fostering community engage-
ment for advanced manufacturing design (e.g., fluid/thermal
analyses), which typically requires collaborative work among
multi-site engineering experts. To leverage cloud services
and minimize cost, there is also a need to transform tradi-
tional workflows that feature data-intensive computation and
networking during design and development of new domain
applications.

To address these problems, the advanced manufacturing
community should adopt a new cloud-based architecture that
provides Platform-as-a-Service (PaaS) management capabili-
ties, for delivering Software-as-a-Service (SaaS) “Apps” to
their customers. Such an architecture should aim at supporting
an “App Marketplace” that thrives on agile development,
organic collaboration and scalable sales of new manufactur-
ing Apps requiring easy access to simulation and modeling
resources.

Our envisioned cloud architecture is broadly illustrated in
Figure 1 that enables client requests to be provisioned from
any one of the cloud providers such as Amazon, IBM, Google
or GENI [3]. To deploy an App development environment, we
need to be able to gather requirements, allocate resources and
provide a means for the clients to keep track of resource usage.
We identify three core platform services that are essential
to perform these tasks, namely: (i) Ontology Service, (ii)
Resource Brokering Service, and (iii) Accounting Service.
These services can deploy a development environment for

engineers to collaborate with their clients, and allow them to
use this environment for agile development of manufacturing
Apps. When multiple Apps that work together are developed
(e.g., WheelSim that needs to work with TruckSim), they can
be integrated within an App Marketplace.

Towards realizing the vision of the above architecture, this
paper focuses mainly on the investigation and implementation
of an Ontology Service that interoperates with other common
App marketplace services. Our Ontology Service uses princi-
ples of mapping and merging [4] to translate manufacturing
App collaboration requirements to suitable resource specifi-
cations on public cloud platforms. We construct ontologies
based on the domain and related abstractions that are: (a)
manufacturing domain specific, and (b) span generic App
resource requirements.

One of the challenges that need to be addressed in our
approach is the problem of constant ontology evolvement; new
understanding of an existing concept or a new concept itself
might be required to be included into the ontology through a
versioning method. Hence, we incorporate a ‘feedback loop’
in our workflow steps to trace and maintain the ontologies as
“Spec Templates” in a consistent and coherent manner to cope
with the dynamic nature of related information.

For the study purposes of this paper, we show how a custom
App viz., “WheelSim” can be realized with our ontology
integration approach that uses the Protégé framework [4]. We
describe how a WheelSim App was successfully built on the
development and deployment environment created within the
NSF-supported Global Environment for Network Innovations
(GENI) public cloud using our approach. In our Ontology Ser-
vice effectiveness validation, we use a publicly available GENI
ontology and App platform requirements of WheelSim to
create ontologies that could be integrated and queried. Lastly,
we validate the effectiveness of our Ontology Service through
our ontology integration results that show benefits to an App
developer in terms of: optimal user experience, lower design
time and lower cost/simulation. Overall, our work in this paper
helps bridge the collaboration gap between manufacturing App
developers and the cloud platform engineers.

The remainder of this paper is organized as follows: Sec-
tion II details related work. Section III discusses the research
problem and our proposed architecture solution. Section IV
discusses the Ontology Service. Section V discusses the
experiments conducted and the validation results obtained.
Section VI concludes the paper.

II. RELATED WORK

There are several cloud-based manufacturing works whose
primary focus often is on specific areas of manufacturing
such as Machine Tools [7] [11], Micro Assembly [12], and
Assembly Modeling systems [13]. Domain ontology which
provides the ontology specification for machine tools was used
in [7]. However, the domain ontology approach is specific to
App requirements, and does not take into account resource
brokering aspects. Our approach is to develop a generic
method for capturing ontologies for integration in diverse
advanced manufacturing App use cases, and select a pertinent
cloud service composition through resource brokering.

Authors in [9] study service-oriented ontology learning
which is based on text understanding and automatic process-
ing. In this approach, the limitation is that there is lack of inter-
action in ontology learning process between users. Prior work

on cloud-based resource brokering is abundant [14] - [17].
However, only few works focus on ontology-based resource
brokering [18] [19] through the use of ontology specification,
and most of them use single ontology specifications. In our
ontology-based resource brokering, we cover multiple aspects
relating to Apps and related resources, and handle merging
and mapping of multiple ontologies [4].

There have been earlier successful trials to use cloud infras-
tructure for meeting advanced manufacturing design needs.
In [20], we setup a testbed to explore remote collaboration
and access of advanced manufacturing resources using the
GENI infrastructure. Other cloud infrastructures have been
leveraged as development environments in [21] [22] for build-
ing software applications. There are also several cloud-based
marketplaces that exist [23] for different domains, and our
work builds on similar concepts in the context of advanced
manufacturing App collaborations to satisfy customer needs.

III. PROBLEM DESCRIPTION

In today’s dynamic and rapidly evolving cloud services mar-
ket, cloud platform providers employ proprietary technologies
for common service related tasks and operations. This trend
makes it challenging for an App developer to easily request
for a cost-effective and suitable resource configuration when
choosing between multiple providers. It is therefore critical
to develop cloud services with improved data processing
and resource customization with inclusion of semantics and
relationships for better knowledge exchange of user experience
and other performance requirements. Moreover, the ‘develop-
ment’ of the App may need a different service configuration
than the ‘consumption’ of the App by customers. For e.g.,
multi-expert collaboration for manufacturing design will need
higher remote access requirements to cloud-hosted software/-
data, versus the functional App will need to be consumed in a
scalable manner by customers with different end-devices (e.g.,
PC, tablet) accessing from distributed locations with mobility.

For addressing the above problems, an ontology-based
approach would be suitable to foster common understand-
ing of the platform requirements and enable mapping of
these requirements to the desired App’s underlying cloud
resource capabilities. Ontology-based approaches have been
successfully used in many application domains to bridge the
gap between heterogeneous concepts, and achieve the desired
level of semantic interoperability. However, one of the critical
requirements for successfully adopting an ontology approach
is to have commonly accepted and openly accessible ontology
trees within the application community. Unfortunately, cloud
service providers such as Amazon or even GENI do not have
fully developed ontologies, and their latest ontologies are
constantly evolving. New ontologies are being proposed and
are being developed such as WSMO (Web Service Modeling
Ontology) in the W3C community that aim to address use
cases in Amazon; GENI community also has published a
compute resources ontology [3] that is being refined in efforts
related to Resource Specification (RSpec) for Future Internet
experiments. Nevertheless, the challenge is to consistently
use both App as well as cloud resource ontologies such that
resource configuration can be made easier, and also users can
take advantage of market competition in inter-cloud scenarios
for more cost-effective resource access.

Fig. 2. GENI Resource Schema diagram from [3]

A. Ontology Integration

In our ontology creation phase, we assume that a manu-
facturing user is not necessarily an expert in cloud resource
configurations and will take assistance from a cloud engi-
neer for the actual service implementation. There are two
main Ontologies that are created to address the semantic
interoperability issue. The ‘App Spec Ontology’ describes the
requirements for meeting the development and hosting needs
of a given manufacturing App. For our study purposes, we
conceive the ‘App Spec Ontology’ in Section V-A based
on the use case of TotalSim, a small business advanced
manufacturing company with experts in the USA and UK.
Next, we consider a separate ‘Platform Capabilities Ontology’
that corresponds to the publicly available ontology from a
cloud provider. More specifically, Figure 3 shows the schema
diagram of the resources provisioned by GENI that we use to
create the ‘Platform Capabilities Ontology’. Hence these two
Ontologies will have to be integrated to generate a merged
Ontology which can be queried to extract specifications. These
specifications form the “Spec Template” which is useful to
deploy the App environment.

B. Need for Ontology Update

The ontology integration methodolgy described earlier re-
sults in a merged Ontology which is then queried to generate a
“Spec Template” that is used to deploy the App environment.
This may lead to an assumption that the ontology is static.
However as discussed earlier, ontologies need to handle dy-
namic information and need to constantly evolve to remain
useful. Specifically, at any stage of this process, a change
in App’s requirements or in the Cloud Service Provider’s
resource capabilities would render the merged ontology useless
because querying it would present unreliable and inaccurate
results.

To overcome this issue, we incorporate a ‘feedback loop’
in our final workflow step to update the templates. This
feedback would also enable reusing or recycling successfully
used prior ontologies for either integration or provisioning of
new Apps. As the ontologies are updated, the Spec Templates
are versioned and stored for future use of the App or for
adaptation to provision new Apps.

IV. PROPOSED FRAMEWORK FOR ONTOLOGY SERVICE

In this section, we describe the Ontology Integration Service
and discuss its various components.

Fig. 3. Ontology Integration Workflow Components

A. Ontology Integration Service Components

This Ontology Integration Service essentially converts the
requirements of the App developers into a usable App-
Resource ontology. It accomplishes this using two primary
functions: (i) combining the App’s ontology and Infrastruc-
ture Service Provider’s ontology to a App-Resource ontology
which consists of a taxonomy of concepts of different cloud
services to comply with the App-specific requirements, and
(ii) finding the best PaaS service options. Figure 5 illustrates
how the requirements are gathered from App developers
and recorded in the App-specific requirement file which is
forwarded to the service components that work together to
generate the App ontology. This is then merged with the
Service Provider’s ontology and ultimately the unique App-
Resource ontology is output. The cloud platform engineer can
enter queries through a web portal containing the service name
and App requirements. The ontology may then be updated
if necessary by the cloud engineer based on performance
engineering experiments in co-ordination with the App de-
veloper. The components of the Ontology Integration Service
are shown in Figure 5, which we now describe in detail.

1) Query Processor (QP): The Query Processor parses the
query to read the App-specific requirements. It analyzes
the requirements and creates the suitable App ontology
from existing Spec Templates or Catalog of ontologies
specific to the particular manufacturing domain. The
resultant App ontology output is forwarded to the In-
tegration Engine.

2) Integration Engine (IE): The Integration Engine analyzes
App and Service Provider ontologies and makes sug-
gestions for merging and mapping. It then aligns the
App ontology with the Service Provider’s ontology using
one of the many ontology Mapping & Merging Tools
available such as the Protégé framework [4]. If conflicts
arise as a result of merging and mapping operations, the
service can fix conflicts automatically or prompt the user
for suggestion. The resultant App-Resource ontology is
next sent to the Filtering and Rating Agent.

3) Filtering and Rating Agent: The Filtering Agent sorts
through the results to eliminate any duplicate or non-
trivial configurations obtained from the result. It stores
the newly established ontologies into the database for
the Rating Agent to use it as part of a knowledge
base. The Rating Agent analyzes the merged ontology

and calculates a rating called “popularity score” based
on: (a) comparison of concept labels matching in the
given query, (b) success of the development environment
testbed, and (c) frequency of use of templates. Depend-
ing on the popularity score, it displays the ontology
templates in an order of priority. Some templates may
be less re-used, which does not necessarily reflect in
the quality of the ontologies but may indicate a less-
common App specification. The Rating Agent could also
consider user satisfaction with any resultant ontology,
which can be obtained through feedback obtained from
a cloud engineer or App developer.

With the help of the resultant integrated App-Resource
ontology, the cloud engineer can build the environment with
a Resource Brokering Service. Ontologies can be very time-
consuming and expensive to construct. As the use of ontolo-
gies for the representation of domain knowledge increases,
so will the need for an effective set of tools to aid the
discovery and re-use of existing knowledge representations.
This is because a major advantage of using ontologies is their
ability to be re-used as well as easily adapted to work with
new knowledge bases of Apps which may have unique testbed
requirements (compute, network, proprietary software etc.).

V. PERFORMANCE EVALUATION

In this section we discuss the requirements for the de-
velopment and deployment of an actual manufacturing App.
Next, we discuss the generation of Spec Template using the
Ontology Service and query mechanisms. Following this, we
discuss the testbed configuration of our manufacturing App.
Finally, we describe the experiments conducted to validate the
testbed of the App in the GENI public cloud and discuss the
results.

A. WheelSim App Requirements
For our use case, the WheelSim App being developed by

TotalSim is a simulation application used to learn about the
different lift and drag forces acting on a wheel in motion.
The workflow of the App is illustrated in Figure 7, where
the customers access the modeling and simulation output of
TotalSim experts by presenting familiar sets of inputs in a
web-portal. The web-portal uses the App customer input to
specify parameters for simulation, schedule and monitor jobs
at a cloud-based supercomputer and retrieve simulation results.
The requirements for developing and hosting this application
for users is to have on-demand access to pre-loaded virtual
machines (VMs) with the relevant compute, network and
storage environment.

Network connectivity with high-bandwidth is a requirement
among the collaboration sites of the WheelSim App that in-
clude a remote office in California, Supercomputer Center for
high-performance computing (HPC) and customers in North
Carolina. The HPC is required for simulation, modeling phases
and for storage of model data and results. Computer-Aided
Design (CAD) and other software licenses have to be acquired
from the TotalSim server at their remote office in Dublin, Ohio.
Keeping these requirements as the baseline, we designed an
ontology (refer to Figure 8) for the App specification.

Developing an ontology for resource specification of cloud
service providers is a very complex and laborious task. It
involves tasks such as information collection, resource ab-
straction, and categorization of data. Fortunately, we were

Fig. 5. Class hierarchy for Manufacturing Application Requirements
Ontology

Fig. 6. Service Provider Ontology-GENI

able to discover and use the GENI Compute ontology schema
available at [3]. For our study, we have designed a minimal
version of the basic ontology shown in Figure 10 and use it
for the resource specification.

B. Ontology Service and Query
For the use case with TotalSim, we have selected the

PROMPT tool (plugin for Protégé framework) in the Inte-
gration Engine shown in Figure 5. During the integration
process, the Integration Engine analyzes all the classes, their
properties, the relationships between them and the restrictions
on individual classes. Note that the resultant ontology needs
to be kept rational and consistent during the process. The
Ontology Service generates a single ontology in one subject
from the two existing and different ontologies of different
subjects. Since the subjects of these ontologies are related,
they can be merged into a single App-Resource ontology.

A cloud engineer can draw inferences from the knowledge
in the merged ontology and obtain recommendations of the
available options suitable for the App. The cloud engineer
should query in a way such that all the possible options
for the environment setup are displayed. From the obtained
query results, the optimal resources considering performance

Fig. 4. Workflow of WheelSim App

Fig. 7. Hybrid Cloud Testbed setup for TotalSim

versus cost trade-offs are chosen based on the priority. If
the resource brokering service is not able to procure the
resources for setting up the environment, the secondary options
obtained from the query results can be viewed instead. Thus,
querying the ontology for compute power, memory, storage
and network connectivity will generate the Spec Template for
the testbed. Thus, ontology by itself can provide individual
resource options and their details with the help of class
definitions and object properties and can also be queried to
output the various resource configurations. We remark that
this approach is better than finding the resource information
manually, and can save design time and cost for manufacturing
App developers.

C. Testbed Configuration

Assuming role of the cloud engineer, we set up the testbed
shown in Figure 14 for the WheelSim App based on the results
from Ontology Service. The testbed includes the following
components:

1) Public Cloud: A GENI Rack at Metro Data Center
(MDC) which acts as the resource broker and provides
a network overlay infrastructure

2) Elastic HPC backend at the Ohio Supercomputer Center
(OSC) to run jobs charged on a run-by-run basis only
making it a cost effective compute resource

3) Layer-2 connectivity established between the GENI
Rack, OSC, TotalSim’s office and remote collaborator
at Los Angeles (LA)

4) A web-portal accessible through Internet is hosted on
the GENI Rack to enable customers to run WheelSim
App that schedules batch jobs at OSC

The GENI Rack at MDC provides the network overlay in-
frastructure through a GENI slice. The slice reserved contains
a HP bare metal computer with 1 Intel Xeon X5650@2.67GHz
processor, 50 GB of RAM and 1 TB of disk capacity. The slice
along with a private network and VLAN have been initially
reserved for long-standing experiments over several months
timeframe. ESXi hypervisor is installed with VMware Horizon
as the provisioning management middleware. The installation
and administration are done remotely with SSH, RDP, or
through VMware tools such as VMware vSphere web-client.

D. Experiments and Results Discussion
1) Quantitative Results: The testbed for the WheelSim App

shown in Figure 14 was successfully deployed on GENI. Post
deployment of the testbed, remote collaborators used VMs
deployed on the testbed to access tools and software that
they use as a part of their daily work routines. However,
they faced performance issues when software such as Paraview
were run on the VMs. To assess and improve the performance
of the VMs, we conducted tests for three scenarios: System,
virtualization and model location. In the system scenario,
we altered the compute configurations (RAM & vCPU) of
the VMs. In the virtualization scenario, we measured the
performance of a physical machine versus a VM. In the data
location scenario, we measured the performance by placing
data at a remote location.

To quantify the performance results, we now define the
following terms we use:

1) Open Time: The time taken by the Paraview application
to open and load the model

2) Render Time: The time taken by the Paraview applica-
tion to render the model and display it on the screen

3) Running Time: This is the overall time taken by the
Paraview application to load and render the model

Trunning = Topen + Trender (1)

a) RAM and vCPU Effects: In this set of experiments,
we observed the options available for vCPU and RAM from
the query results of the resultant ontology. We varied the RAM
and vCPU of the VM through VMware Horizon environment
and then measured the Open Time followed by the Render
Time and calculated the Running Time.

It can be observed from the Figure 15 that as the number
of vCPUs increase, the Running Time is reduced by a few
seconds. However, an increase in RAM reduces the Running
Time considerably. The maximum variation in Running Time
is about 20 seconds from 1 vCPU and 2 GB of RAM to 8
vCPUs and 32 GB of RAM. This experiment allows us to
carefully tune the configuration of the VM to enhance user
experience.

Fig. 8. Performance results with varying vCPUs and RAM

b) Virtualization Effects: In this set of experiments, we
compared the performance of a physical machine versus a
VM. We compared the Open Time and Render Time between
physical machine and a VM for the same model. In this case
for machines with similar configuration, the Open and Render
Time for a VM were very close to the physical machine
thereby ensuring that user experience remains same whether
they use a VM or physical machine as shown in Table I.

TABLE I
PERFORMANCE COMPARISON OF PHYSICAL AND VIRTUAL MACHINES

Machine type Open Time Render Time
Native Physical machine 9.43s 3.61s

Virtual machine 10.13s 3.78s

c) Data Location Effects: The above results measure
the response when the model is at the same location as the
machine. There are cases where in a model is in a remote
location and will be accessed over the network. To test this
scenario, we used the GENI Rack as the remote storage and a
user accessed a very large model with file size of 3.8 GB from
both a physical system and a VM. The access time from the
physical system was high with 285 seconds in comparison to
the VM which only took 26 seconds. This could be attributed
to the fact that the VMs are located at the GENI Rack thereby
reducing the access time. Since the VMs provide the same
utility as the physical systems but provide better performance
in this context, they are suitable to be used for collaborating
remotely. Hence, our study helped us refine the specifications
of the ontology with the Ontology Service.

d) Discussion: We can observe from the results that by
provisioning a VM with an appropriate compute configuration
and by placing data adjacent to the VMs, the performance is
very similar and sometimes better than an actual workplace
desktop. These results not only enhance the user experience
and collaboration but also encourage manufacturing enter-
prises to migrate to the cloud. Additionally, the performance
study helped us to identify the optimal configuration for
specific scenarios to improve the user experience. The results
are hence used to update the ontology with more detailed rules
and modified axioms. The additional information updated into
the ontology makes it more precise, and this reverse feedback
helps in constructing robust Spec Templates.

2) Qualitative Results: If the entire process was done
following the traditional development life cycle of advanced
manufacturing, there would be several delays in the design
cycle, increased cost and overhead for productivity. In the tra-
ditional enterprise environment, collaboration is asynchronous

as screen capture/e-mail programs are used to communicate in-
formation. Data duplicity and version control management also
are arduous tasks. Connecting to external HPC resources and
transferring data over public Internet would be a slow process
due to network congestion and last-mile network bottlenecks.
Further, local cluster configuration is time consuming and
may lead to over provisioning, thereby resulting in inefficient
resource management.

The advantages of using our new proposed architecture
would enable an agile development lifecycle that ensures
quicker delivery, reduced cost and increased productivity. This
would be facilitated through synchronous collaboration and
smooth cross platform operation. Utilization of cloud storage
at OSC, Box.net prevents duplication of data common when
using e-mail programs for data exchange, and also ensures data
security and integrity. The elasticity of cloud platforms could
dynamically handle on-demand bursts for compute resources
when needs of App developers or customers changes. Lastly,
bulky data obtained from simulation results can be transferred
over extended VLANs with high-speed network connections,
which in turn saves time.

VI. CONCLUSION

A cloud architecture for advanced collaborative manufactur-
ing has been presented in this paper that allows agile methods
to be adopted in this domain. This architecture leverages
public cloud infrastructure to provide scalable and on-demand
resources in a cost-effective manner. It encompasses three
services at the platform level: Ontology Service, Resource
Brokering Service and Accounting Service.

In our study, we used ontology concepts to bridge the se-
mantic gap between manufacturing App developers and cloud
service providers. We developed an Ontology Service that
translates the App requirements of the manufacturing domain
to the development and hosting environment specifications.
The service functioned by merging the ontology of the App
requirements with the ontology of the cloud provider resulting
in the App-Resource ontology.

We successfully used the resultant ontology to generate a
testbed environment for a WheelSim App. We also discussed
a performance study that measures the performance of VMs
instantiated by the testbed. We identified core parameters that
improved the performance of the VM i.e. RAM, vCPUs and
data location when software such as ParaView are used in the
App design. We used results obtained from this performance
study to update the ontology, establishing a reverse feedback
loop which enhances the ontology resulting in construction of
robust templates for future re-use or adaptation in similar App
contexts.

As part of the future work, we plan to investigate how
multiple Apps in an App marketplace in the manufacturing
domain work can together in the form of plug-and-play
modules by forwarding results of execution from one App
to another. This would create a coherent environment for an
App Marketplace that uses our novel services suitable for
development and scalable sales of advanced manufacturing
related Apps. Ultimately, such App Marketplaces can allow
rapid innovations in manufacturing products in important
sectors such as automobiles and even pipes.

REFERENCES

[1] J. Yu, J. Ni, “Development Strategies for SME E-Commerce Based on
Cloud Computing”, International Conference on Internet Computing for
Engineering and Science (ICICSE), 2013.

[2] V. Koufi, F. Malamateniou, G. Vassilacopoulos, A. Prentza, “An Android-
enabled Mobile Framework for Ubiquitous Access to Cloud Emergency
Medical Services”,Symposium on Network Cloud Computing and Appli-
cations (NCCA), 2012.

[3] GENI Wiki - http://groups.geni.net
[4] H. Sun, W. Fan, W. Shen, T. Xiao, “Ontology Fusion in High-Level-

Architecture-Based Collaborative Engineering Environments”, IEEE
Trans. on Systems, Man, and Cybernetics: Systems, Vol. 43, No. 1, pp.
2-13, 2012.

[5] M. Saeki, “Ontology-based Software Development Techniques”, ERCIM
News, No. 58, 2004.

[6] NDL-OWL Models in ORCA - https://geni-orca.renci.org/trac/wiki/NDL-
OWL

[7] M. Hung, Y. Lin, H. Huang, M. Hsieh, H. Yang, F. Cheng, “Development
of an Advanced Manufacturing Cloud for Machine Tool Industry based
on AVM Technology”, Proc. of IEEE CASE, 2013.

[8] H. Lan, “A Web-based Rapid Prototyping Manufacturing System for
Rapid Product Development”, Collaborative Design and Planning for
Digital Manufacturing, 2009.

[9] T. Zhang, S. Ying, S. Cao, X. Jia, “A Modeling Framework for Service-
Oriented Architecture, Quality Software”, Proc. of QSIC, 2006.

[10] N. Gobinath, J. Cecil, T. Son, “A Collaborative System to realize Virtual
Enterprises using 3APL, Declarative Agent Languages and Technologies
IV”, Springer Lecture Notes in Artificial Intelligence, 2006.

[11] M. Hung, Y. Lin, T. Huy, H. Yang, F. Cheng, “Development of a
Cloud-Computing-based Equipment Monitoring System for Machine Tool
Industry”, Proc. of IEEE CASE, 2012.

[12] J. Cecil, R. Gunda, P. Calyam, S. Seetharam, “A Next Generation
Collaborative Framework for Advanced Manufacturing”, Proc. of IEEE
CASE, 2013.

[13] C. Wang, Z. Bi, L. Xu, “IoT and Cloud Computing in Automation of
Assembly Modeling Systems”, IEEE Trans. on Industrial Informatics,
Vol. 10, No. 2, pp.1426 - 1434, 2014.

[14] A. Prasad, S. Rao, “A Mechanism Design Approach to Resource
Procurement in Cloud Computing”, IEEE Trans. on Computers, Vol. 63,
No. 1, 2014.

[15] Y. Laili, F. Tao, L. Zhang, L. Ren, “The Optimal Allocation Model of
Computing Resources in Cloud Manufacturing Systems”, Proc. of Intl.
Conference on Natural Computation, 2011.

[16] S. Sotiriadis, N. Bessis, N. Antonpoulos, “Decentralized meta-brokers
for inter-cloud: Modeling brokering coordinators for interoperable re-
source management”, International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), 2012.

[17] B. Ray, S. Khatua, S. Roy, “Negotiation based service brokering
using game theory”, Applications and Innovations in Mobile Computing
(AIMoC), 2014.

[18] T. Han, K. Sim, “An Ontology-enhanced Cloud Service Discovery
System”, Intl. MultiConference of Engineers and Computer Scientists
(IMECS), 2010.

[19] A. Amato, G. Cretella, B. Martino, S. Venticinque, “Semantic and
Agent Technologies for Cloud Vendor Agnostic Resource Brokering”,
Intl. Conference on Advanced Information Networking and Applications
Workshops, 2013.

[20] A. Berryman, P. Calyam, J. Cecil, G. Adams, D.Comer, “Advanced
Manufacturing use Cases and Early Results in GENI infrastructure”, Proc.
of GENI Research and Educational Experiment Workshop (GREE), 2013.

[21] D. Nasui, V. Sgarciu, A. Cernian, “Cloud-Based Application Devel-
opment Platform for Secure, Intelligent, Interlinked and Interactive In-
frastructure”, IEEE International Symposium on Applied Computational
Intelligence and Informatics, 2013.

[22] L. Cocco, K. Mannaro, G. Concas, “A Model for Global Software
Development with Cloud Platforms”, Euromicro Conference on Software
Engineering and Advanced Applications, 2012.

[23] G. Modica, G. Petralia, O. Tomarchio, “Procurement Auctions to Trade
Computing Capacity in the Cloud”, Intl. Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), 2013.

