Data-Centric Service-Oriented
Management of Things

Marc-Oliver Pahl
Technische Universitit Miinchen
Email: pahl@net.in.tum.de

Abstract—With the Internet of Things, more and more devices
become remotely manageable. The amount and heterogeneity of
managed devices make the task of implementing management
functionality challenging. Future Pervasive Computing scenarios
require implementing a plethora of services to provide manage-
ment functionality. With growing demand on services, reducing
the emerging complexity becomes increasingly important. A
simple-to-use programming model for implementing complex
management scenarios is essential to enable developers to create
the growing amount of required management software at high
quality.

The paper presents how data-centric mechanisms, as known
from network management, can be utilized to create a service-
oriented architecture (SOA) for management services. The re-
sulting shift of complexity from access functionality towards
data structures introduces new flexibility and facilitates the
programming of management applications significantly. This is
evaluated with a user study on the reference implementation.

I. INTRODUCTION

The motto of IM2015 is big data. The Internet of Things
(IoT) is likely becoming an important source for big data.
Over their network interfaces, so-called smart devices offer
access to data sensed from their environment, and allow
actuating their environment. Processing data from IoT devices
is complex. Two major reasons for the complexity are interface
heterogeneity and distribution. Different smart devices typi-
cally provide and accept data via different software interfaces
(heterogeneity). Corresponding to their intended functionality,
smart devices are typically distributed in a space. The term
smart space describes a physical space equipped with sensors
and actuators that are remotely controlled by software.

The trend of more and more smart devices being available
and becoming installed in the real world increases the necessity
and complexity of managing them. Related to IoT, the term
management comprises not only network-related tasks such
as preserving optimal connectivity between smart devices, but
also implementing user defined higher-level goals such as
“energy saving” [1]. The term smart space orchestration is
introduced to describe such extended management of smart
devices via software. An example scenario for smart space
orchestration is implementing the management goal “energy
saving” in a service. To fulfill its purpose such a service
exchanges information with diverse smart devices. It may
evaluate data from presence, light, and power consumption
sensors to identify energy saving potential. When its logic
concludes that the managed smart space is not in use anymore,
it switches off all lights by controlling the corresponding
actuators.

The need for adding code for communication with dis-
tributed heterogeneous devices makes management services
complex. Reducing this complexity becomes more important
with the growing need for management in existing and espe-
cially in novel management domains such as [oT. A prominent
example for a domain with urgent need for new solutions to
reduce the management complexity is Pervasive Computing.
The complexity of smart space orchestration is identified as key
challenge that prevents Pervasive Computing from becoming
implemented in the real world [2]-[4].

This paper introduces how data-centric service coupling —
well known for managing network equipment, e.g. SNMP [5]-
can be used to create a Service Oriented Architecture (SOA).
The resulting SOA allows decomposing complex management
services into smaller, better manageable, and reusable service
building blocks. The network management concepts make
it simple-to-understand and simple-to-use. This paper uses
examples from the IoT and Pervasive Computing domain as
smart space orchestration consists of complex management
scenarios. However, the introduced concepts are not limited
to those domains but usable for implementing complex man-
agement tasks in general.

The introduced methods result in a service design that
separates application data and access functionality [6]. This
separation reduces the implementation complexity for software
developers as it allows them to focus on the logic of the
management scenario to be implemented instead of designing
interface logic that is needed for service interoperability. In
addition the separation fosters the reusability of services by
making abstract interfaces mandatory for each service. Such
reuse reduces the implementation complexity again as only not
previously implemented logic has to be developed.

Sec. II identifies requirements on a SOA for management
services. Sec. III reviews existing work that also targets modu-
larizing management functionality. Sec. IV introduces the use
of data models as abstract service interfaces. Sec. V discusses
how the architecture fulfills the identified requirements. The
section introduces several advantages of the new SOA design.
Sec. VI validates the targeted usability of the approach.

II. SERVICE-ORIENTED MANAGEMENT — REQUIREMENTS

To reduce the complexity a service developer perceives,
methods that are simple to understand and use are required.
The human brain typically solves complex problems by de-
composing them into smaller problems that it then solves
[7], [8]. The software design equivalent for that methodology
are so-called Service-Oriented Architectures (SOA). A SOA

implements methods to combine, reuse, and discover software
services to mash-up complex functionality from smaller ser-
vices [9]. Consequently, a SOA is a suitable methodology for
structuring and facilitating smart space orchestration.

This section briefly recaptures relevant requirements on a
SOA design (R0O-R3) [9], and adds two new requirements that
are important for service-oriented smart device management
(R4, R5). The presented requirements are referenced through-
out the remainder of the paper, e.g. (R1), to illustrate how the
presented methodology implements a SOA.

RO Compatible Functional Interfaces are required for
service composition.

The REST paradigm [10] with its implementation in the World
Wide Web illustrates RO.

R1 Abstract Service Interfaces are needed to enable reuse
and discovery of services.

Abstract interfaces separate the interface used to access a
functionality from its implementation. Web Services (WS)
exemplify this [9].

R2 Unique Interface Identifiers (UID) are required to
enable discovery and reuse of services.

A glossary exemplifies benefits of unique identifiers.

R3 Service Lookup and Discovery Mechanisms are needed
to enable composition.

The Universal Description, Discovery and Integration (UDDI)
of WS is an example for a directory that allows lookup and
discovery of services [9].

For being useful to implement complex management func-
tionality, a suitable SOA in addition requires support for low
latency service coupling and must be simple-to-use.

R4 Low Overall Latency is needed for enabling the de-
composition of time-critical management functions.

Sec. V-F presents how the presented design enables computing
the expected latency of mashed-up functions.

R5 Simple-to-use Concepts are needed for alleviating the
implementation of complex management scenarios.

The complexity should result from the logic of a management
scenario and not of the methodology to implement it in
software. The success of abstract domain specific languages
(DSL) such as BPEL [11] underlines this requirement.

III. RELATED WORK

As discussed in Sec. II, modularization is a familiar tool
for humans to structure and facilitate complex tasks. Mod-
ularization and composition of services are known software
architecture concepts. Early general implementations include
CORBA [12], or the ANSA trader [13]. A more recent
implementation is Web Services (WS) [9].

All three SOA implementations use function-based inter-
faces (see Sec. IV). This is problematic for interface compati-
bility (RO) as services can only be composed if they use com-
patible abstract interfaces. The missing of a global interface

directory and convergence mechanisms [14] are problematic
(R3) for the reusability of services. Finally the function-based-
interface programming methodology is difficult-to-use (RS5) as
different functionality —implemented in different services— is
invoked using different methods. This requires developers to
use function calls with diverse signatures in their code.

The previously introduced coupling mechanisms do
not provide entity-management-specific support functionality.
Therefore management frameworks typically introduce their
own service coupling mechanisms. Following, management
(middleware) frameworks are reviewed that share our goal of
providing high usability for developers. The later work comes
from the Pervasive Computing domain since smart space
orchestration was identified to require complex management
(Sec. I). To make a significant choice among the numerous
existing solutions, recent surveys are used [15]-[17]. The
work they contain dates back several years. The Pervasive
Computing community apparently did not identify relevant
new concepts in the meantime [2], [18].

The FOCALE framework [19], [20] shares the premise
of this paper that managing complex entities needs to be
structured in a modular way via tool support and autonomy.
FOCALE introduces abstract concepts for automated execu-
tion of business rules (Sec. II) on complex mobile operator
networks. It comprises automated, ontology-based integration
and management of distributed heterogeneous entities. The
semantic transformation between high-level goals and physical
network elements is implemented by hierarchically composed
management functions [7].

FOCALE and other frameworks such as [21] establish fixed
hierarchies to reflect high-level policies to low-level network
elements. While maintaining high usability, the methodology
proposed in this paper is more flexible by neither assuming a
hierarchical (relatively fixed) structure of space orchestration
functionality, nor making design choices such as the use of
policies, or the support of business rules. It is most likely well
suitable for implementing FOCALE.

The CASCADAS framework [22] creates a service-
oriented architecture of management (sub-) services similar
to this work. It provides dynamic service composition based
on predefined policies. Explicit interface modeling (R1) and a
service directory (Sec. IV) are missing in CASCADAS.

The CORTEX framework [23] enables dynamic commu-
nication between services targeting car-to-car communication.
Services consume and produce events exchanged over event
channels. Corresponding to our approach, the authors em-
phasize the facilitating aspects of modularization for service
development. In contrast to our work, CASCADAS does not
provide explicit abstract service interface definitions (R1).

The JCAF framework [24] implements services in so-
called containers. Containers store and automatically synchro-
nize data resulting in loose service coupling. JCAF does not
explicitly model service interfaces (R1) nor provide service
discovery functionality (R3).

One.World [25] uses event descriptions as abstract service
interfaces. A central registry enables services to discover
available events and to connect over those events. Like our
approach, One.World uses a fixed set of methods to access

variable data structures. Different to One.World, our solution
enables a distributed service discovery, supports convergence,
and is not limited to events.

A conclusion of this brief review of existing work is that
the general approaches bring most flexibility but miss support
for facilitating the implementation of complex workflows that
are composed of different services. Examples for such services
in the energy saving scenario would be gateway services
that interface smart devices, reasoning services that derive
knowledge from the data provided by (different) gateway
services, and orchestration services that implement high level
goals such as energy saving by orchestrating the other services.
The concrete frameworks that were developed for managing
smart spaces instead are in turn too restricted to the workflows
their designers had in mind. In addition they typically lack
support for reuse of services as they often do neither use
abstract service interfaces, nor provide directories for those.

IV. DATA MODELS AS
ABSTRACT SERVICE INTERFACES

In a classical SOA —such as a web service implementation—
abstract service interfaces typically consist of method signa-
tures [9]. An example is the interface shown in listing 1.

int getTemperature();

void setTemperature (int value);
int getLuminance () ;

void setLuminance (int value);

Listing 1. Classic SOA service interface.

To call a function, typically service instances that imple-
ment the defined interface are identified over a directory
(see Sec. II). A typical call to obtain data is [svclnstan-
celD].getTemperature(). The addressing of the desired man-
agement property happens in three steps: 1) the service in-
stance is identified (discovery), 2) the service instance is
addressed, 3) the desired function is addressed.

In network management (NM), information is often ex-
changed differently between services, using fixed methods and
variable data [6]. An example is the Simple Network Manage-
ment Protocol (SNMP) [5] that offers a fixed set of methods
(get, getnext, getbulk, set) to access data of any managed
element. The methods to access data of any SNMP agent
remain the same. The offered data differ between managed
elements. The structures of the varying data are made available
via data models. Data is stored in data model instances in the
Management Information Base (MIB) of a managed element
in SNMP.

The functional interface from listing 1 could represent
access to the data structure shown in listing 2. Data could
be accessed via generic get and set operations, e.g. [svcln-
stancelD].get(/temperature).

o
| -temperature
| -luminance

Listing 2. Graphical structure of a managed element’s data model.

Both concepts for accessing data are equally powerful as a
bidirectional mapping can easily be created by appending the
path in the data structure to the command name and vice versa,

e.g. temperature <> getTemperature(). From a caller’s perspec-
tive, in the first case the addressing of the targeted information
is in the method name, while in the in the second case, it
is in the argument. From a developer’s perspective, using a
fixed method (get) reduces the programming complexity as its
semantics are fixed and do not vary for obtaining different
management properties.

The principle of shifting functionality into the data ad-
dressing can be carried a step further by moving the service
instance identifier into the address as well. The resulting call
becomes get(/svclnstancelD/temperature). The advantage of
this additional shift is that instead of having to discover a
service first, the required data can be addressed directly. As
each service instance has a unique identifier, each node within
its data model instance has a unique address.

Fig. 1 shows a function signature on top, and its mapping
to a data model on the bottom left. This data model separates
between input and output parameters as the function signature
does. This distinction can be mapped to read and write
permissions on values of the data model. Therefore it can be
omitted as shown on the bottom right.

As an example, the service interface introduced in listing 1
is composed of the two sub nodes for temperature and lumin-
cance as shown in listing 2 in our approach.

returnType functionld(type1 paramldi, ..., typ%eN p%ramldN)

functionld context model| |
ype | [paramido ..z 1
@ ypeo N
paramid1 e
= typel @S
L | paramldN [T

typeN il

Fig. 1. Mapping between a classic function signature on top and a context
model (bottom left) that can then be transformed into the context model on
the bottom right as introduced in [14].

paramldN
typeN

paramldi
7t
O

A. Data Model Instance Management

In SNMP access to management properties is provided by
software agents. SNMP agents are typically device-specific
as they interface proprietary functionality. Our design can
be implemented in generic agent modules that are called
Knowledge Agent (KA). A KA manages instances of the
previously introduced data models for services. A KA can
either run stand-alone or be linked to a service.

In the reference implementation of our design the KAs run
as stand-alone components. This has the advantage that they
can provide access to the knowledge of a service independent
of the service running.

In both cases (module or stand-alone), the KAs can fully
manage the access to data model instance nodes including
security and remote access. The data node management in-
cludes authorization of data node accesses and authentication
of services. Though not covered in this paper, this can be done
using access groups for read and write access for instance. In
addition the KAs handle data exchange with remote KAs that
manage the data of other services. The resulting architecture is

a secure content-centric network [26]. The content addresses
are of the type knowledgeAgentld/serviceld/pathToValue [14].

Using the KAs enables developers to fully concentrate on
the implementation of the scenario logic [6].

B. Fixed Functions to Access Data Model Instances

A data model only structures the data that is exposed by
a service. As presented before with the mapping (Fig. 1),
in our approach the data model models the interface of a
service. When a service gets started its corresponding data
model gets initialized by the KA. Service interaction happens
then by accessing each others data model instances via the
local KAs. The supported coupling modes are defined by the
generic interface methods offered to access the data nodes. By
analyzing many scenarios, the following set of functions to
access nodes in data model instances emerged. Those methods
are fixed and used by each service in our architecture.

e get(address), to read a value from a node within a
data model instance.

e set(address, value), to write a value to a node within
a data model instance.

e (un-)lock/rollback(address) to lock a subtree
(Sec. IV) of a data model instance for exclusive use.

e (un-)subscribe(address, callback), to receive a change
notification for a value in a data model instance.

e (un-)registerVirtualNode(address, callback), to re-
ceive a callback on a value change at address.

Get and set are used to read and write data values. They
implement blackboard communication over the KAs (Fig. 2)
(271, [28].

Since properties of management interfaces often have to
be set in an atomic way (e.g. network address and network
mask [20]), transactions are necessary ((un-)lock/rollback). The
introduced hierarchical data model facilitates transactions as it
allows to model correlated properties in a common subtree that
can then be locked for exclusive access. In addition locking
any set of nodes must be supported for the diverse use cases
one can think of. As an example a service that opens the garage
door may want to gain exclusive access to automated things
in front of the door before opening it so that no other service
moves them to the door while opening.

Triggering another service is a very common interaction in
management. In case of smart space orchestration the initially
described energy saving action of switching the lights off
would typically be implemented by triggering the gateways
controlling the actual lights. More concrete the managing
service would set the node containing the state of each light
to off (e.g. set /lightld/isOn 0). To enable coupling on such
events, a subscription on a value change is supported on each
subtree (including leafs). Whenever a node’s value changes,
a notification is sent to all subscribers. This enables loose
coupling.

The previously described functionality is (partly) found in
most management architectures today [29]. A problem of using
data structures for service coupling is the typically missing

possibility of direct (temporal and referential) service coupling.
Therefore a novel coupling mode is introduced, so-called
virtual nodes. Accessing a virtual node is fully transparent
for a caller service but it results in an immediate service
invocation at the called service. As a concrete example, in case
of being implemented as virtual node, requesting the value of
the temperature node in listing 2 results in a computation of
which the value is immediately returned to the caller. This
mechanism may appear simple and yet it turns out to be
powerful as shown in Sec. V.

V. A SERVICE-ORIENTED MANAGEMENT ARCHITECTURE

This section discusses the SOA properties (Sec. II) of the
introduced architecture (Sec. IV).

The introduced service coupling methodology results in
a fundamental mental change of service invocation. Classic
SOA interfaces implement procedural thinking. Computational
processes are identified and invoked as functions. The proposed
use of data models as abstract service interfaces shifts the
coupling of services towards a descriptive task. Information —
represented as data— is identified and accessed not the construct
(function) that produces it. The coupling of services becomes
linking data — not functions.

Descriptive interfaces are simpler-to-understand and use
(R5) for humans than procedural ones [8]. Describing the prop-
erties that a managed entity offers is more straight forward than
defining message signatures. It does not require knowledge
about functional programming. Instead it is based in semantic
modeling where entities of the real world are represented as
virtual objects [14], [30], [31].

A. Service Interface Modeling

Using data models for services requires the definition of a
data model for each service. In [14] we introduced mechanisms
for intuitive data modeling and crowdsourced convergence of
the resulting models. To summarize the important points for
this paper, a Central Model Repository (CMR) was introduced
that contains all data models that were defined with a unique ID
(UID) each (R2). The UIDs in Fig. 1 are functionld, paramld0,

.., paramldN. The CMR implements a type system where
data models are the types, identified by their UID.

Data models can be composed to complex types as shown
on the rights of Fig.1 where type consists of sub nodes with one
type each (type0, ..., typeN). The types are again composed of
nodes of other types that are available from the CMR. In the
end, each node inherits from one of the few basic data types
(text, number, list). This inheritance is relevant for validation
of values and for interface compatibility (Sec. V-C).

Our approach makes abstract service interfaces mandatory
(R1). It does not result in additional implementation work
as the data structures to provide the data a service exposes
have to be designed in any case (R5). At the same time the
data modeling process is more intuitive than the definition of
function signature based interfaces.

As novel aspect that is typically missing in today’s SOAs,
the CMR provides functionality to converge abstract service in-
terface descriptions (data models) (RO). Interface convergence
is especially critical in the IoT domain where interoperability

is required to implement complex scenarios in different smart
spaces (service portability). As a concrete example the energy
saving service targets all lights independent of which kind and
from which vendor they are. Consequently all gateways to
lights should use compatible interfaces (data models) [14].

Finally the CMR acts as directory for abstract service
interfaces (data models). Developers can look up the type
identifiers that describe the data they require at run time to
provide the desired functionality of the service they implement
(R3).

B. Service Discovery

The discovery of services becomes the discovery of data.
This is intuitive as the logic of a service requires certain
input and output data. Each data model in the CMR has a
UID that can be used for identification (R2). At any time in
the life-cycle of a service (e.g. development time, run time),
other services can be referenced using their type UID. As an
example, the energy saving service can search for data nodes of
type “/lighting/light”. Its KA returns all instance addresses of
data nodes that have this type (R3). The type-identifier-based
discovery searches not only the root but all levels of a data
model.

Using the type identifier for search to identify service
instances implements a locator-id-split [32]. The type is used to
identify data. The location of services offering the data can re-
main transparent. This is important for dynamic environments
such as smart spaces where devices are added and removed at
run time. In the energy saving example new lights may occur
but can still be switched by the service as they are referenced
over the same type identifier and not their instance locator.

C. Interface Compatibility

All services use the same Application Programming In-
terface (API) as interface (Sec. IV-B). The use of common
data access functions inherently enables composing all services
(RO). This enables and facilitates (R5) the mash up of services.
In addition, the use of abstract data model interfaces allows
exchanging service implementations transparently.

The service compatibility goes beyond pure API compat-
ibility. The information model that is introduced in Sec. IV
bases all data nodes with values on the two data types fext
and number [14]. By implementing the semantics for those
two types, a service can access all data available over the KA
middleware. For more specific knowledge on the obtained data,
specific semantics have to be included into the service logic
by its developers. For supporting the semantic understanding
the UIDs in the CMR can be linked to external semantics such
as domain-specific ontologies [14], [31].

D. Interface Polymorphism

Service interfaces are called polymorphic if they inherit
from different abstract interfaces and can be used as each of
them [27]. This mechanism is also called subtyping [33].

A problem with subtyping is that in a classic function-
based SOA a new interface can only inherit from those existing
abstract interfaces that do not have function names in common.
Otherwise unintended shadowing occurs in the best case. Our

abstract interfaces do not have such a problem. Existing data
models can simply be composed by adding a named sub node
of the desired type in a new data model. As an example, a light
controller could contain the data model type /lighting/light
several times under different node names in its own data model.
Through the hierarchical structuring within the data models,
each node spans its own namespace identified by its name.

Via the discovery mechanism described in Sec. V-B each
node can be discovered as if it would be independent from the
others though all interfaces are offered via the same service.
The described polymorphism via hierarchical inheritance of
interfaces becomes possible since abstract service interfaces
are not service-centric but data-centric in our design. Each
subtree of a data model can be discovered independently of
the service implementing it. Which service implements a data
model is hidden by the locator-id-split that is introduced with
the search for type identifiers.

An interesting effect of the described possibility for sub-
typing is that an implementation of a service can remain
compatible with previous versions of its abstract interface
easily. Therefore the designer of the data model only has to
include a node with the type of the old abstract interface (data
model) and connect nodes to functionality. Via the data-centric
approach it is transparent for a calling service if it interacts
with a subtree of a newer service interface since only the
locator changes

In terms of portability the described subtyping results in
a significantly more powerful abstract interface compared to
classic function-based interfaces. The UIDs of a description of
a WS typically refer to the entire interface [9]. In our approach
coupling can happen on any level of the data model. Interfaces
automatically contain each other as they are constructed by
reusing existing interfaces (Sec. V-A). If a service wants to
couple with another service that offers data of a certain type it
can couple with any service that contains the type on any level
of its data model. In classic SOAs this would only work for
the top level. This enhanced service compatibility increases the
portability of services as it becomes more likely that a service
finds the data it needs in subtrees of data models of different
services in different smart spaces.

E. Semantic Polymorphism: Filter

The unified access to the data (Sec. IV-B) enables another
kind of polymorphism that enhances the usability of SOAs
following our proposed design: semantic polymorphism. The
term semantic polymorphism describes that the same data is
provided in different formats — possibly by different services.

As an example, a service A may offer a temperature
in Fahrenheit. Another service B may request a temperature
in Celsius. Typically service B’s dependency could not be
resolved as no temperature in Celsius is offered. Using the
synchronous coupling of the virtual nodes (Sec. IV-B), a ser-
vice C could simply be introduced that performs the translation
between the two representations of a temperature. It would
consume temperatures in Fahrenheit or Celsius and produce
temperatures in Celsius and Fahrenheit. With this service the
coupling can be realized now as service A — service C —
service B. Service C acts as a filter [34] that provides the
sensor data in another format (see red line in Fig. 2).

The described filtering is not only attractive for transfor-
mations between different representations of the same physical
phenomenon but also for providing information on different
levels of abstraction. In the energy saving scenario a service
may provide information if a sensor currently detects a move-
ment. Another service may provide information if someone
is likely to be in the room. Another service may produce
information if the lights can be switched off. Though being
very different, all information could be derived from the
readings of the same motion-detecting sensor. By introducing
semantic filters that include reasoning logic [19], semantically
incompatible services become compatible.

Enabling filtering facilitates the development of manage-
ment functionality (R5). It significantly enhances the interface
compatibility and thereby portability of service.

F. Latency

The novel coupling mode over virtual nodes (Sec. IV-B)
introduces direct service coupling over a descriptive interface.
This results in low latency enabling the decomposition of com-
plex and time-critical management functionality into different
modules (R4).

As all services use the identical components for com-
munication, the expected latency of a service cascade (see
Fig. 2) can be computed over a set S of services: (|S| — 1) x

tKA—Coupling + Zs tcomputation-

G. Simplicity, Security, Robustness

Having the management of the data model instances
wrapped in a module (KA, Sec. IV-A) that can simply be used
by a service developer allows focusing on the implementation
logic. Freeing service developers from implementing remote
access, and security facilitates not only the programming but
makes services more secure and robust since common compo-
nents are used (R5). Externalizing functionality makes services
smaller enabling the development of better understandable,
more robust code.

H. The whole picture

Fig. 2. A Data-Centric Service-Oriented Architecture for Managing Things.

Fig. 2 shows the layers of a classic management architec-
ture with managed devices at the bottom (1), managing agents
in the next layer (2a), and management services on top (2b).
The green layer (3) is typically not explicitly shown as it is
part of the services.

Our proposal is to make the data models on layer 3 the
explicit abstract service interfaces. The interfaces are shared
over and instantiated from the CMR on the right. As can
be seen, each service has exactly one data model as abstract
interface. From a service coupling perspective it does not
make a difference if a service interfaces a smart device or
not. Therefore the planes 2a and 2b become a single plane as
illustrated with the connecting lines in the back. All services
are equal in our architecture, and communicate using the
same methods to access the enhanced distributed blackboard
in layer 3 [27].

The red line shows a typical information flow when exe-
cuting a functionality. The top right service may be the user
interface of the energy saving service. It uses data that is
preprocessed by different other services (Sec. V-D, Sec. V-E)
and finally originates at the smart device on the bottom left.

VI. USABILITY EVALUATION

The presented SOA architecture is fully implemented as
Java peer-to-peer system [35]. The implementation was used to
evaluate the usability of the proposed approach. The following
user study results were collected with 8 computer science
students in early 2014, and confirmed with 22 students in late
2014/ 2015. The study tasks comprise building a smart device,
writing its firmware, creating the corresponding data model
(Sec. 1V), writing an adaptation service, and implementing
management with modular services (Sec. V).

The students defined their own scenarios such as corre-
lating the load of a PC with the room temperature and the
logged in users for giving warnings over a speaker. The upper
observed time bounds were: data model creation (Sec. IV)
<90min, adaptation service <180min, and management ser-
vices <120min. There is no evaluation of this exact use case
in literature. However, the authors of [25] made a user study of
apparently comparable complexity with their One.World sys-
tem. Their measured overall time for the software implementa-
tion is 256h. The implementation of all described functionality
from scratch using our SOA management mechanisms took
each of our student teams below 6.5h overall.

The study shows that our proposed approach is feasible
and provides good usability (R5). This assumption from the
quantitative analysis of the teams is confirmed by a qualitative
evaluation using a questionnaire. Though not having previous
knowledge in the domain, all participants reported a very good
usability of the proposed data-centric SOA approach.

VII. CONCLUSION

This paper introduced a data-centric service-oriented ar-
chitecture for implementing services for managing things. The
core proposal of this paper is using data models as abstract
service interfaces and keeping the methods to access the data
fixed. A major difference to existing NM approaches is that
this paper’s SOA introduces a simple-to-use way to mash-up
complex management functionality via hierarchical cascading
of management (sub-) services.

Following Perlis’ epigram that “simplicity does not precede
complexity, but follows it” [36], this work hopefully facilitates
and enables implementing complex management tasks in cur-
rent and future domains such as IoT or Pervasive Computing.

ACKNOWLEDGMENT

This research has been supported by the German Fed-

eral Ministry of Education and Research (BMBF) (reference
01IS13019G) within the EUREKA ITEA 2 project Building
as a Service (BaaS) (ITEA2 No. 12011), the EU FP7 Network
of Excellence in Internet Science EINS (Project No. 288021),
and the German Federal Ministry of Education and Research,
projects IDEM (reference 01LY1217C).

[1]

[2]

[3]

[4]

[5]

[6]

[8]
[9]
[10]

[11]

(12]

[13]

[14]

[15]

[16]

REFERENCES

K. Lyytinen and Y. Yoo, “Issues and Challenges in Ubiquitous Com-
puting ,” Communications of the ACM, 2002.

G. D. Abowd, “What next, ubicomp?: celebrating an intellectual disap-
pearing act,” in UbiComp '12. ACM, 2012.

M.-O. Pahl and G. Carle, “Taking Smart Space Users Into the De-
velopment Loop,” in HomeSys 2013 (UbiComp 2013 Adjunct), Ziirich,
Switzerland, 2013.

M. Weiser, “The Computer for the 21st Century,” Scientific American,
Sep. 1991.

D. Harrington, R. Presuhn, and B. Wijnen, “An Architecture for De-
scribing Simple Network Management Protocol (SNMP) Management
Frameworks,” RFC 3411, Internet Engineering Task Force, 2002.

R. Grimm, J. Davis, and B. Hendrickson, “Systems Directions for
Pervasive Computing,” Hot Topics in Operating Systems, 2001.

J. Famaey, S. Latre, J. Strassner, and F. De Turck, “A hierarchical
approach to autonomic network management,” NOMS Workshops, 2010.
P. N. Johnson-Laird, The Computer and the Mind: An Introduction to
Cognitive Science. London: Fontana Press, 1993.

G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services:
Concepts, Architectures and Applications, 1st edition, 2004.

R. Fielding, “Principled design of the modern Web architecture,” ACM
Transactions on Internet Technology, 2002.

M. Hertis and M. B. Juric, “An Empirical Analysis of Business Process
Execution Language Usage,” Software Engineering, IEEE Transactions
on, vol. 40, no. 8, pp. 738-757, 2014.

Object Management Group, “The Common Object Request Broker:
Architecture and Specification,” Tech. Rep., 1991.

J. P. Deschrevel, “The ANSA model for trading and federation,”
Architecture Report APM, 1993.

M.-O. Pahl and G. Carle, “Crowdsourced Context-Modeling as Key to
Future Smart Spaces,” in NOMS 2014, 2014.

M. Knappmeyer, S. L. Kiani, E. S. Reetz, N. Baker, and R. Tonjes, “Sur-
vey of Context Provisioning Middleware,” Communications Surveys &
Tutorials, IEEE, 2013.

P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A survey of
context data distribution for mobile ubiquitous systems,” Computing
Surveys, 2012.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang, “Middleware for
pervasive computing: A survey,” Pervasive and Mobile Computing,
2012.

Y. Liu, J. Goncalves, D. Ferreira, S. Hosio, and V. Kostakos, “Identity
crisis of ubicomp?: mapping 15 years of the field’s development and
paradigm change,” in UbiComp ’14 Adjunct, 2014.

J. Strassner, N. Agoulmine, and E. Lehtihet, “FOCALE: A Novel
Autonomic Networking Architecture,” 2006.

J. Strassner, J. W. K. Hong, and S. van der Meer, “The design of an
Autonomic Element for managing emerging networks and services,” in
ICUMT 09, 2009.

Z. Movahedi, M. Ayari, R. Langar, and G. Pujolle, “A Survey of
Autonomic Network Architectures and Evaluation Criteria,” IEEE Com-
munications Surveys & Tutorials, 2012.

L. Baresi, A. D. Ferdinando, A. Manzalini, and F. Zambonelli, “The
CASCADAS Framework for Autonomic Communications,” in Auto-
nomic Communication, 2009.

C.-F. Sgrensen, M. Wu, T. Sivaharan, G. S. Blair, P. Okanda, A. Friday,
and H. Duran-Limon, “A context-aware middleware for applications in
mobile Ad Hoc environments,” in MPAC ’04, 2004.

J. E. Bardram, “The Java Context Awareness Framework (JCAF) — A
Service Infrastructure and Programming Framework for Context-Aware
Applications,” in Pervasive Computing, 2005.

R. Grimm, “One.world: Experiences with a Pervasive Computing Ar-
chitecture ,” Pervasive Computing, 2004.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT09, 2009.
A. S. Tanenbaum and M. Van Steen, Distributed Systems Principles
and Paradigms. Prentice Hall, 2002.

D. Gelernter, “Generative communication in Linda,” ACM Transactions
on Programming Languages and Systems (TOPLAS), 1985.

H.-G. Hegering, S. Abeck, and B. Neumair, “Integrated Management
of Networked Systems,” 1999.

U. ABmann, S. Zschaler, and G. Wagner, “Ontologies, Meta-models, and
the Model-Driven Paradigm,” in Ontologies for Software Engineering
and Technology. Springer, 2006.

C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, and D. Riboni, “A survey of context modelling and reasoning
techniques,” Pervasive and Mobile Computing, 2010.

W. Ramirez, X. Masip-Bruin, M. Yannuzzi, R. Serral-Gracia, A. Mar-
tinez, and M. S. Siddiqui, “A survey and taxonomy of ID/Locator Split
Architectures,” Computer Networks, vol. 60, pp. 13-33, 2014.

L. Cardelli, “A semantics of multiple inheritance,” Semantics of data
types, 1984.

L. Bergmans and M. Aksit, “Composing crosscutting concerns using
composition filters,” Communications of the ACM, 2001.

“Website of the Distributed Smart Space Orchestration System,”
accessed 2015-02-02. [Online]. Available: http://www.ds2o0s.org/

A. J. Perlis, “Special Feature: Epigrams on programming,” SIGPLAN
Notices, vol. 17, no. 9, Sep. 1982.

