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Abstract—Cloud service providers (CSP) strive to effectively
provision their cloud resources to ensure that their hosted
distributed applications meet their performance guarantees.
However, accurately provisioning the inter-data centers network
resources remains a challenging problem due to the cloud hosted
applications’ workload fluctuation. In this paper, we propose
a novel approach that enables a CSP to offer Elasticity-as-a-
Service (EaaS) for inter-data centers communication in order to
guarantee the performance of distributed cloud applications. The
contributions of the proposed work are two fold; first, we develop
an efficient approach that enables the CSP to estimate and reserve
the pool of network resources needed to fulfill the demands
imposed by the network workload fluctuations of applications
subscribing to this service. The approach allows the CSP to offer
communication EaaS at differentiated levels based on the degree
of bandwidth-sensitivity of the distributed cloud applications.
In order to capture the inter-data centers network activity of
hosted applications, we model their workloads using Markovian
modeling. The second contribution is a novel dynamic pricing
mechanism for network EaaS offerings that can be employed
by the CSP to maximize the expected long-term revenue, and to
regulate network elastic demands. Performance evaluation results
demonstrate the efficiency of our proposed approach, the higher
accuracy of our prediction method, and the increase in the CSPs
net profit.

Index Terms—cloud elasticity; distributed cloud computing;
network virtualization; inter-data centers communication; re-
source pricing.

I. INTRODUCTION

The ability of cloud computing environments to offer scal-
able and cost-efficient computing and networking resources
has contributed to the growth of large-scale geographically
distributed applications. These applications are hosted on
clouds and use dedicated virtual machines (VMs) residing on
physical servers that are dispersed throughout multiple data
centers [1], [2]. To facilitate the communication among these
distributed VMs, CSPs own or lease a high-capacity backbone
network! to carry the tenants traffic between data centers
[2]-[4]. Network virtualization techniques [5], [6] are then
employed for the network resource management as shown by
Fig. 1. Unfortunately, the majority of current distributed cloud-
based applications are long-lived services and characterized
by a high degree of workload fluctuation. In turn, these
applications require a continuous down- or up-scaling of the
amount of allocated resources to accurately reflect the time-
varying application’s needs [7]-[9]. This fluctuation is largely
attributed to the nature of the offered services and/or other
external events that may result in incremental growth or
sudden variation in popularity (e.g., releasing of a new movie,

IThroughout this paper, whenever we mention network/communication
resources, we refer to inter-data centers network/communication resources.
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Fig. 1. An example of an inter-data centers backbone network

publishing of an article about a particular company on a highly
visited news site, popularity participating in a conference).

Cloud service elasticity refers to the ability of the CSP
to dynamically allocate the resources according to the cloud
application needs. Nonetheless, one of the limitations of
the current cloud resource provisioning techniques is that
they mainly focus on efficient and dynamic allocation of
computational and network resources within data centers
[10], [11], without paying much attention to inter-data
centers network provisioning which highly affects the
performance of these distributed applications. Moreover, VMs
replication/migration and internal background processes (e.g.,
periodical data backup, data indexing, database distribution
and synchronization, video encoding and caching, and
MapReduce jobs) result in a huge amount of data being
transferred among different data centers [8]. Therefore, the
inter-data centers traffic load varies significantly, which
stresses the need for inter-data centers network EaaS,
a value-added service where the CSP allows the hosted
applications to down- or up-scale its consumed resources
in a continuous manner. Existing approaches are limited
to either provisioning unbounded network resources, or
statically provisioning the expected peak-traffic value. Both
solutions lead to inefficient resource utilization resulting in
performance degradation. So far, however, very few inter-data
centers dynamic network provisioning techniques have been
developed (e.g., [12]-[14]). Nonetheless, these techniques do
not suggest a way that guarantees the availability of network
resources in response to workload changes. Moreover, these
techniques either assume that the time-varying probability
distribution of cloud applications is well known, or ignore the
repetitive behavior of long-lived cloud applications, resulting
in inefficient provisioning approaches.

To overcome the aforementioned problems, we propose a



novel inter-data centers network resource management ap-
proach that dynamically re-sizes the inter-data centers band-
width pool in order to ensure the availability of network
resources. This enables the CSP to offer the promised network
EaaS.

The CSP decides for all the distributed applications that
have the same traffic workload patterns and similar degree
of bandwidth-sensitivity, a pre-defined elasticity level that
ensures their performance objectives. Based on the decided
elasticity level and the expected traffic workload fluctuation,
the CSP estimates the amount of network resources needed to
be reserved for the next time interval®. After estimating the
required EaaS pool size, the CSP either sets apart a portion
of the network resources, if available, or it can outsource
cloud resources across multiple CSPs [16]. In order to have
an accurate prediction, we model the inter-data centers traffic
workload using a Markov chain model, taking advantage of
the temporal variability of workload fluctuations [17]. Also,
this model can easily and accurately capture the repetitive
workload behavior of long-term stationary applications (e.g.,
Netflix) in a straight forward manner and within a reasonable
time [9], [17], [18]. The remainder of this paper is organized
as follows. In Section II, related work and existing cloud
elasticity techniques are briefly discussed. Sections III and
V discuss our proposed network elasticity model and EaaS
pricing mechanism, respectively. Simulation and performance
evaluation results are discussed in Section VI. Finally, Section
VII concludes this paper.

II. RELATED WORK

To date, the majority of the existing techniques in the liter-
ature that target elasticity for the infrastructure-as-a-service
(IaaS) model, focus on computing, storage, and network
resources within the same data center, with little attention to
inter-data center network resources elasticity. Several com-
mercial and academic elasticity approaches offer elasticity
features that can be categorized as either rule-based reactive
approaches, or predictive approaches. The former defines the
set of actions that should be taken when one or multiple
observed parameters (e.g., CPU usage, network traffic, disk
access) exceed/fall-behind a pre-defined threshold. The latter
adjusts the allocated resources based on the prediction of
future violations and workload forecasts. Auto-Scaling offered
by Amazon web services (AWS) [19] is based on a rule-based
reactive approach that adds/releases cloud instances based
on monitored parameters. Lim et al. [20] proposed a rule-
based reactive approach where elasticity actions take place
according to a target resource demand range, rather than a
single target value, to avoid resource thrashing (i.e., constantly
adding/releasing cloud instances). Dawoud et al. [21] proposed
a dynamic resource provisioning approach that aims at min-
imizing the resources required to handle the future workload
by following a linear prediction approach that decides the next

2The duration of the time intervals is specified by the CSP and depends on
the nature of the hosted distributed cloud applications [15]

allocation based on the the last allocation and consumption.
Roy et al. [22] proposed a predictive approach for workload
forecasting that aims at minimizing the resource provisioning
costs while guaranteeing the application QoS. Gong et al. [9]
proposed PRESS, a predictive elasticity scheme that is based
on resource demand patterns prediction through Fast Fourier
Transform (FFT), to minimize the unused resources while
preventing service level objectives (SLO) violations. Sharma
et al. [23] proposed Kingfisher, an elasticity provisioning
approach that takes into consideration workload fluctuation
while trying to minimize the virtual resources costs. Kingfisher
computes the optimal resource provisioning based on the cost
of migrating and/or replicating VM instances, also considering
the transition time to allocate more resources. Rao et al. [7]
proposed a self-tuning fuzzy control rule-based multi-objective
resource allocation approach that guarantees the cloud appli-
cations QoS. Netflix is using Scryer [24], a predictive auto-
scaling engine to deliver the best quality of experience (QoE)
to Netflix customers. Scryer predicts upcoming workload
based on two prediction algorithms, namely, an augmented
linear regression-based and an FFT based algorithms. Li et al.
[8] proposed a resource management approach that consider
future demand fluctuations while provisioning the physical
machines and links capacities.

Research efforts that are related to data centers network
provisioning mainly focus on intra-data center network pro-
visioning. Guo et al. [25] proposed SecondNet, a low time-
complexity heuristics-based algorithm that allocates a virtual
data center using clustered neighboring servers. Current de-
mands are met by increasing or decreasing the bandwidth
reservation along existing paths or through migrating virtual
links to new paths. Benson et al. [26] proposed CloudNaasS,
a framework that supports the deployment and management
of cloud enterprise applications. The architecture supports
both best-effort and bandwidth reservation based services
among VMs. Nonetheless, the increase in the number of
paths with bandwidth reservation may lead to congestion,
starvation of other services in addition to an inefficient network
utilization. Another bandwidth allocation technique, termed
Seawall [10], performs end-to-end proportional sharing of the
network resources according to an associated weight with each
traffic source using congestion-controlled tunnels. Similarly,
Lam et al. [11] proposed Netshare, a statistical multiplex-
ing mechanism that proportionally allocates bandwidth for
the tenants. Divakaran et al. [27] proposed a probabilistic-
bandwidth model where bandwidth requirements are specified
with some probabilities to overcome the weakness of deter-
ministic models. Also, Niu et al. [12] proposed a bandwidth
allocation model which enables the service providers (SPs) to
simply specify a percentage of their demands to be allocated
with a certain guarantee level (i.e., guaranteed portion).To
date a small number of research efforts have addressed the
problem of dynamic resource provisioning of inter-data centers
connectivity. Of those efforts is the work of Ajay et al. [2] that
proposed an architecture to enable the dynamic configuration
of the inter-data centers network by offering a bandwidth-on-



demand service. Ghosh et al. [3] proposed a inter-data centers
traffic management design by optimizing the sending rates and
controlling the network routing, across multiple application
traffic classes. Carella el al. [16] proposed an elasticity engine
that is based on brokerage of cloud resources among multiple
CSPs, in order to optimally allocate the cloud resources in
federated cloud environments. In general, the aforementioned
approaches do not consider the problem of the availability
of inter-data centers network resources and how to estimate
the pool size that needs to be reserved in order to offer the
promised differentiated network EaaS. In addition, they do not
consider the case of differentiated applications sensitivity and
how to benefit from the demand repetitive patterns.

III. A NOVEL ELASTIC SERVICE OFFERINGS

One of the CSP’s objectives is to effectively manage the
underlying physical network by determining what portion of
the network resources should be reserved to offer the EaaS,
and the portion that may be sold to serve new cloud requests.
To answer this question, the CSP needs first to accurately
estimate the expected network elastic demands, then compares
the trade-off between the long-term revenue earned from the
EaaS, and the revenue from accepting new cloud requests. The
CSP must also take into consideration the penalties that may
be imposed due to the failure of meeting the elasticity service
level due to the unavailability of sufficient network resources.
Before describing our proposed approach, we will first propose
an inter-data centers communication EaaS model.

A. A Novel EaaS model

The CSP considers each inter-data centers link as a separate
network resource and estimates the bandwidth amount needed
to be reserved according to the expected fluctuation of
the virtual links mapped over it. To this end, the CSP’s
distributed cloud can be modeled as a weighted undirected
graph G(N, L), where N and L represent the sets of data
centers and inter-data centers links, respectively as shown by
Fig. 1. We use ¢, to denote the capacity of e € L, and z, to
denote the EaaS reserved bandwidth pool size of e € L. Each
distributed application v is hosted on a set of distributed VMs
connected through the inter-data centers network and can be
modeled as a weighted undirected graph GY(N?, EV), with
the sets of virtual nodes NV (i.e., VMs, virtual switches, and
virtual routers), and virtual edges EV hosted on an inter-data
centers link e. The elastic bandwidth demand of each link
e’ € EY is denoted by d" (i.e., d” is the requested excess
of bandwidth over the originally contracted values). Each
distributed application specifies its service level objectives
SLO which requires a specific level of network elasticity as
will be shown next. According to the SLO, the CSP allocates
the required resources needed to guarantee the application
performance objectives. Beside the elasticity of the allocated
distributed VMs resources (i.e., CPU, storage, and memory),
the CSP considers the elasticity of the inter-data centers
network to be able to deal with traffic workload fluctuations

of each virtual link hosted on the network.

Our proposed EaaS model allows the CSP to offer differenti-
ated elasticity services to its distributed cloud applications. The
offered elasticity levels vary from perfect elasticity (i.e., 100%
elasticity level means that the virtual link bandwidth appears to
be unlimited) to partial elasticity (i.e., resources are guaranteed
up to a certain level). The elasticity level is determined
based on the nature of the distributed cloud application and
the current stage of the application life-cycle. In general,
applications that belong to the same application type and
share the same time-varying behavior have the same network
workload demands [28] (e.g., distributed video streaming
cloud applications that serve the same area have the same
traffic fluctuation and distribution parameters). According to
that, all the distributed applications that have the same traffic
workload patterns and similar degree of bandwidth-sensitivity
are assumed to be categorized into the same class and are
assigned the same elasticity level. Then the CSP calculates the
required network resource pool size for this class according to
its elasticity level. For simplicity, we will focus our analysis
on a single EaaS class and leave the case of multiple classes
for future work. The CSP estimates the bandwidth pool size
x.(t) on each ¢ € L for the n cloud applications that belong to
the same class at a time. Each EaaS class is characterized by a
probability 1 —« which represents the probability of elasticity
service (i.e., a is the probability that one or more of the
applications in that class will request additional resources and
that the CSP will fail to satisfy the request). In other words,
the value « represents the probability that the total bandwidth
elasticity demands Z?:l dVi (t) for the n cloud applications
that belong to the same EaaS class, during a specific time
interval ¢ exceed the EaaS reserved pool z.(t) for that class
atec L, ie.,

Pr(} dU(t) > z.(t) =a Vec L (1)

j=1

Clearly, « is inversely proportional to the contracted EaaS
level. For instance, bandwidth-sensitive distributed cloud
applications (e.g., video streaming) need a high EaaS level,
while bandwidth-insensitive distributed cloud applications
(e.g., offline laboratory experiments), which are able to
tolerate bandwidth under-provisioning, may require a low
elasticity level.

B. Application Demand Modeling

Predicting the varying inter-data centers communication
demands of distributed cloud hosted applications is a necessary
step in order to enable the CSP to accurately reserve the
resources required to provide the required EaaS. The CSP can
determine the expected bandwidth demands by monitoring the
workload patterns over time of the distributed applications [9],
[17]. Accordingly, a discrete-time Markov chain model is built
based on historical network workload patterns to be able to
estimate the short-term bandwidth demands. The state model



is first derived by observing the application operation and
stages, and then converted into a Markov chain representation
in which each state of the model represents the time-varying
probability distribution of the inter-data centers traffic for a
given EaaS class. Long-term distributed cloud applications
are stationary and characterized by repeated patterns for the
demand fluctuation® which emphasize the suitability of using
Markov modeling [30]. We consider a Markov chain model
consisting of a finite set of states, S = {s1,S2,...,5k}
each state s; € S is characterized by a mean pu(s;) and a
variance o2(s;) that are considered as the main parameters
that describe the probability distribution of the traffic workload
of a given EaaS class at this state [12], [14], [17]. At each
period t = 1,2,..., the probability distribution parameters
can be inferred from the current state s; € S that follows
a Markov process characterized by a state transition matrix
IT = [m(si|s;)], where s;,s; € S. The process starts at a
specific state and moves gradually from one state s(t — 1) at
time ¢ — 1 to another state s(¢) at time ¢, with a probability
denoted by 7(s;|s;) as follows,

7(s5]s:) = Pr(s(t) = s|s(t = 1) = s:) @

The conditional probability 7 (s;|s;) follows a Markov process
since the next state s; is dependent only on the current
observed state s;, and is independent of the sequence of states
that preceded it. Formally, it can be written as,

Pr(s(t) =s;ls(t—1) =s;,...,8(1) = s1)
= Pr(s(t) =sjls(t—1) =s;) 3)

The state transition coefficients have the properties that
m(si|si) > 0 and Z?zl m(si]s;) = 1. The CSP estimates the
mean and the variance of the probability distribution of the
network traffic in discrete time intervals according to the state
transition matrix II given by the first-order Markov chain
model inferred from historical monitoring. Based on these
parameters, the CSP calculates the reserved bandwidth pool
size that is needed to provide EaaS for the hosted applications
at run-time.

IV. EAAS RESERVED RESOURCE POOL CALCULATION

At each time interval ¢ and for a given EaaS class, the CSP
derives the estimated state s(t) = s; of the Markov chain
process for each link e, and determines the mean pi(s;) and the
variance 02(s;) of the bandwidth demands distribution. The
bandwidth demand d% (t) for an application j, j = 1,...,n,
is considered as an independent and identically distributed
(i.i.d) random variable, with mean p = E(d%) and variance
0% = Var(d¥). According to the Central Limit Theorem [31],
since the number of hosted cloud applications n is sufficiently
large, the distribution of the arithmetic mean d,, (t) = (d" (t)+
dvz(t) + -+ + d’(t))/n of the bandwidth demand at state
s¢ can be approximated as a normal distribution with mean

3The CAIDA Equinix inter-data centers traces [29] show the repeated
behavior of inter-data centers traffic, as will be seen in section VI.

1(s¢) and variance 02 (s;)/n, regardless of the actual unknown
distribution of the bandwidth demand.

Hence, the distribution of the sum of the n random variables
Z;L=1 d¥i (t) can also be approximated by a normal distri-
bution with mean n(s;) and variance no?(s;). Formally,
let D(t) = 370, d%(t), up(t) = E[D(t)] = nu(s), and
ohuy = Var(D(t)) = no?(s;). The CSP calculates the
resource pool size x.(t) at each link e to be reserved at the
required elasticity level «, so that the probability that the total
bandwidth demands in that EaaS class may exceed the total
reserved pool is less than or equal the predefined value «,
ie., Pr(D(t) > z.(t)) < a. According to the Central Limit
Theorem, we have

D(t) —
PO 16 v, *
ID(t)

So the estimated pool size at state s; for each link e can be
calculated to satisfy the constraint:

D(t) — up() - Te(t) — ND(t)) “u
oD(t) - OD(t) -

Pr( VeeL (5)

N(0,1)

21—«

where z1_, is the 1 — « percentile of the Standard Normal
distribution. Thus, x.(t) can now be calculated as follows,

Te(t) = nu(se) + 21—a V10 (1) (6)

It is worth noting, that this calculation is carried out per each
state s; for each EaaS class.

V. PROPOSED EAAS PRICING MODEL

In this section, we propose an elasticity dynamic pricing
model that aims at maximizing the CSP expected long-term
revenue. In contrast to the traditional static pricing models
which are not tailored to the elastic behavior of cloud traffic
workload, the main goal of this model is to provide the
optimal price vector obtained from offering EaaS that max-
imizes the expected long-term revenue. Let the price vector
P. = (pe(s1),--.,pe(sk)) provides the prices of the EaaS
link e for each state s; € S. The CSP calculates the price
vector that maximizes its revenue during an operating time
cycle [0, T]. This price vector is updated periodically to reflect
any variations that have been occurred to the EaaS demands
patterns. Cloud applications are price-sensitive, in other words,
when the prices increase, cloud applications owners seek to
reduce the workload to the cloud which directly affects the
workload traffic distribution. On the contrary, when the prices
decrease, cloud applications owners will be encouraged to
move more of their workload to the cloud. At each period
t € [0,T], the bandwidth pool size x.(t) is reserved to
fulfill the total bandwidth fluctuation per EaaS class which
is calculated based on the current state s(¢) = s; as shown
in the previous section. A scaling-up in the link total demand
happens at time ¢, if dz.(¢t) > 0, while dz.(¢) < 0 indicates
a scaling-down (dz.(t) = 0 means no fluctuation). At any



time ¢ the total bandwidth demand should not exceed the link
capacity c. by satisfying this condition:

/0 dzo(t) € [~2(0), 0 — 2o(0)],  VEE[0,T], (T)

where, z.(0) represents the reserved bandwidth pool size at
the beginning of the interval [0, t]. Moreover, the prices should
be bound by a maximum and a minimum values, p"*** and
™ respectively, pe(s:) € [p7", pa®] vt € [0, T).

Since, the traffic workload fluctuates over the period T,
the CSP aims at finding the price vector that maximizes its
revenue. The long-term excepted revenue from a given EaaS

class at link e can be calculated by,

T
Re(T) = /0 pe(se) (1)t ®)

Now, the problem is to find the optimal price vector P that
maximizes the CSP revenue denoted by R:(T'), and at the
same time, reflects the link utilization level to prevent the
under-utilization/congestion by decreasing/increasing the price
vector of each link, respectively. The maximum CSP revenue
R:(T) can be considered as the least upper bound (lub) of
R.(T) that satisfies the prices boundary constraint. To search
for the optimal price vector, we continuously apply dynamic
programming algorithm backwards in time [32]. First, we
consider the revenue over the time interval 0t which denotes
the duration of one state s;. Then, recursively we will be able
to derive the maximum CSP revenue and hence the optimal
price vector. The probabilities to move to any state s;, where
j = 1,2,...,k given that the current state is s; at time ¢
can be derived from the state transition matrix II. Hence, the
long-term excepted CSP revenue can be defined as follows,

k
RE(T) = lublpe(se)we(1)t + > w(silse) 0t R (T — o))
€ N\ — e’

, =1
actual revenue at Ot J

expected revenue at T'— 9t

©)
where, the optimal expected CSP revenue R} (1) consists of
the actual revenue during time Ot, denoted by p.(s:)z.(t)0t,
where z.(t) is the actual pool size reserved to fulfill the
bandwidth demands, and the second term represents the
expected revenue from the remaining time 7" — 0t depending
on the probabilities of the workload distribution according
to the next state s;. The expected pool size at state s; can
be calculated as wz.(T — 0t) = nu(s;) + zi—av/no(s;)
following the results from the previous section. Thus, the
optimal revenue R} (T') and the optimal price vector P, can
be calculated by recursively substituting of the equivalent
expression of RX(T — Ot) into (9), and the boundary
conditions R.(0) = 0 Vz,(t) € [0, ce].

It is worth noting here that as Markov model is Learnt,
a tatonnement-like procedure is used to facilitate the cor-
responding rate of convergence of the prices. During this
process, the optimal prices are calculated based on the state

transition matrix until it converges to an equilibrium state
when the prices reflect the actual supply and demand. After
estimating the optimal long-term revenue R} (1") through
the operating time cycle [0,7], The CSP is able now to
compare the revenue of providing the EaaS, and the expected
income from selling the extra network capacities to new cloud
requests. In addition, the CSP can make the decision of either
saving the network capacities for EaaS demands, or selling
them.

VI. PERFORMANCE EVALUATION

To evaluate the accuracy of our proposed inter-data centers
EaaS approach, two paths are followed, namely through
real inter-data centers’ traces and simulations. The former
is performed based on the Equinix-Chicago traces [29],
[33]. The latter involves simulating a set of distributed
data centers network, where the links’ bandwidth values
are uniformly distributed between 250 and 300 Mbps. 30
distributed cloud applications were simulated, where each
inter-data center physical link is shared among them. The
simulated cloud applications may experience three possible
states of operation, which are characterized by three different
traffic workload parameters; state(1) 11 = 10 Mbps, 07 = 10
Mbps, state(2) us = 15 Mbps, a% = 20 Mbps, and state(3)
us = 25 Mbps, 02 = 30 Mbps. The Markov state transition
matrix between states was generated randomly from a normal
distribution and normalized to satisfy the transition matrix
properties. The experiments simulated two weeks of operation.

Estimated workload at different elasticity levels
Figures 2 presents the actual traffic according to Equinix traces
and the estimated fluctuation for four different application
types; namely HTTP, HTTPS, UDP and RTMP (the value
of a was set to 0.5). For simplicity, only the weekdays are
considered. The period needed to learn Markov states was six
weeks. It is clear that the repeated workload pattern enhances
the accuracy of the proposed EaaS model.

To analyze the impact of the elasticity level o on the amount
of reserved network resources for the EaaS demands. Fig. 3
depicts the simulated workload fluctuation and the reserved
bandwidth at three elasticity levels (i.e., « = 0.05,0.225,0.5).
We can easily see that at high elasticity level with a low
probability of unmet bandwidth demands (i.e., low « ), the
estimated workload and hence the reserved amount of network
resources are always more than then the actual workload to
prevent violating the EaaS level. However, at a lower elasticity
level (i.e., o = 0.5 ), the estimated workload can be close to
the actual fluctuation but with a high probability that the actual
demand exceeds the estimated one.

Furthermore, Fig. 4 presents the percentage of the met
service elasticity demands at different elasticity levels. It
can be seen that at high elasticity levels (i.e., 1 — a ~ 1),
the excess demand is met with high probability, however, at
medium elasticity levels (i.e., 1 —a ~ 0.5), about 50 percent of



Actual workload — — — Estimated warkload‘

Bandwidth (G bits's)

Bandwidth (G bitss)

Bandwidth (G bitsis)

Bandwidih (G bits/s)
RTM
Iy
9
!
Y
y
J
/
1
}
/
I
‘

0 50 100 150
Time (Hours)

Fig. 2. The actual workload vs the estimated (Equinix traces)

Actual workload Estimated workload|

300 T T T T

Bandwidth (M bits/s)

. .
0 50 100 150 200 250 300 350
Time (Hours)

Bandwidth (M bits/s

I 1 I 1 1
0 50 100 150 200 250 300 350
Time (Hours)

400 T

Bandwidth (M bits/s

1 I I I I
0 50 100 150 200 250 300 350
Time (Hours)

Fig. 3. Inter-data centers workload fluctuation

Percentage of met bandwidth demand (%)

05 05 06 065 07 075 08 08 09 095
Elasticity level 1-o

Fig. 4. The percentage of the met bandwidth demands at different EaaS levels

the excess elastic demands are met with the reserved pool size.

Estimated traffic workload accuracy
In order to evaluate the accuracy of our proposed approach
on deciding the amount of resources needed to be reserved
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for future demands elasticity, we have measured the Mean
Square Error MSE when different number of applications,
n, are being hosted as shown in section IV). The MSE is
defined as the expected sum of squared differences between the
estimated and the corresponding actual fluctuations. As can be
seen from Fig. 5, when the number of the applications sharing
the same class per link increases, the MSE becomes closer to
zero. This demonstrates the scalability of this model in cloud
environments. It also can be seen that when the number of
the cloud applications varies from 10 to 30, the MSE values
increase from 0.14 to 0.04 which still are acceptable values.

Fig 6 plots the CSP accumulated revenue, which is defined
as the profit from selling the EaaS at four elasticity levels
(i.e., &« = 0.05,0.1125,0.225, 0.5) minus the cost of reserving
extra resources. The plot shows that the CSP accumulated
revenue obtained from high elasticity class is higher since
more bandwidth demands are met at a higher price.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel approach which
enables the CSP to provide inter-data centers EaaS at differen-
tiated levels for geographically distributed cloud applications.
The approach accurately estimates the amount of resources
needed to be reserved to fulfill the future elastic inter-data
centers workload fluctuation. Moreover, we have proposed
a corresponding EaaS dynamic pricing model that aims at
maximizing the CSP expected long-term revenue. Experimen-
tal results have shown the accuracy of the model, and the
increase in the CSPs profit. In future work, we plan to consider
elastic network management for several classes of coexistent
heterogeneous distributed cloud applications.
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