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Abstract—Various online, networked systems offer a
lightweight process for obtaining identities (e.g., confirming a
valid e-mail address), so that users can easily join them. Such
convenience comes with a price, however: with minimum effort,
an attacker can subvert the identity management scheme in place,
obtain a multitude of fake accounts, and use them for malicious
purposes. In this work, we approach the issue of fake accounts
in large-scale, distributed systems, by proposing a framework
for adaptive identity management. Instead of relying on users’
personal information as a requirement for granting identities
(unlike existing proposals), our key idea is to estimate a trust score
for identity requests, and price them accordingly using a proof of
work strategy. The research agenda that guided the development
of this framework comprised three main items: (i) investigation of
a candidate trust score function, based on an analysis of users’
identity request patterns, (ii) combination of trust scores and
proof of work strategies (e.g. cryptograhic puzzles) for adaptively
pricing identity requests, and (iii) reshaping of traditional proof
of work strategies, in order to make them more resource-efficient,
without compromising their effectiveness (in stopping attackers).

Keywords—Identity management, peer-to-peer, fake accounts,
collusion attacks, proof of work, and sybil attack.

I. INTRODUCTION

Identity and access management infrastructures play an
important role in the digital era, enabling networked systems to
determine who has access to them, what permissions one has
to managed resources, how these resources can be accessed,
etc. [1]. These infrastructures support a variety of functions,
such as identity lifecycle management (e.g., creation, update,
and revocation of identities), authentication, and access con-
trol [2]. In our research, we focused on identity management.

In an ideal scenario, the identity management scheme in
place should allow only one identity per individual in a given
system. Depending on the system nature (e.g., peer-to-peer
and collaborative intrusion detection systems), this relationship
could be read as “one device, one identity”. The reality is
very far from that, however. Online systems such as Facebook,
Twitter, Digg, Skype, and BitTorrent (to mention a few) offer
a lightweight process for creating identities1 (e.g., confirming
a valid e-mail address), so that users can easily join them.
Such convenience comes with a price, however: with minimum

1The terms “account” and “identity” are used interchangeably to refer to an
informational abstraction capable of distinguishing users in a given system.

effort, an attacker can easily subvert the identity management
scheme in place and obtain a multitude of fake accounts2 (Sybil
attack [3]). These accounts can then be used to either perform
malicious activities (that might harm legitimate users) or obtain
unfair/illegal benefits. The corruptive power of sybils is widely
known, being the object of several investigations [4], [5], [6].

It is extremely challenging (if not impossible) to devise
a one-size-fits-all solution for identity management. As a
consequence, the research community has focused on the
design of system-specific solutions, in scenarios having a well-
defined set of purposes, requirements, and constraints. In the
thesis [7], we approached the issue of fake accounts in large-
scale, distributed systems. More specifically, we targeted those
based on the peer-to-peer paradigm and that can accomodate
lightweight, long-term identity management schemes [8] (e.g.
file sharing and live streaming networks, collaborative intru-
sion detection systems, among others); lightweight because
users should obtain identities without being required to provide
“proof of identity” (e.g., personal documents) and/or pay taxes;
and long-term because users should be able to maintain their
identities (e.g., through renewal) indefinitely.

In the scope of these systems, strategies such as certifica-
tion authorities [9], [10], [11], trusted computing [12], black-
listing [13], [14], reputation [15], [16], social networks [4],
[17], [6], [18], and proof of work (e.g., computational puz-
zles) [19], [20], [21], [22] have been suggested as promising
directions to tackle fake accounts or stop malice in general. In
spite of the potentialities, important questions remain (please
refer to the thesis [7] for an in-depth discussion of the merits
and drawbacks of existing classes of solutions). For example,
a number of investigations [23], [24] have shown that some of
the key assumptions on which social network-based schemes
rely (e.g., sybils form tight-knit communities) are invalid. More
importantly, social network-based identity verification might
violate user’s privacy, This is an extremely sensitive issue,
specially because of the growing concern and discussion about
privacy issues in social networks [25], [26], [27], [28].

Puzzle-based identity management schemes inherently pre-
serve users’ privacy (since puzzle-solving does not require
any personal information), and thus represent an interesting
approach to stop sybils. Existing schemes focus on the users’
computing power, and use cryptographic puzzles of fixed

2We use the terms “fake account”, “sybil”, and “counterfeit identity”
interchangeably to refer to those identities created and controlled by an
attacker, and which are used with malicious/illegal purposes.978-1-4799-0913-1/14/$31.00 c© 2014 IEEE
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complexity to hinder attackers [19], [20]. However, puzzle-
solving incurs considerable energy consumption, which in-
creases proportionally to the system popularity. Furthermore,
users waste computing resources when solving puzzles.

The main objective of the thesis was to propose a
framework for adaptively pricing identity requests (using
proof of work), as an approach to limit the spread sybils
in large scale distributed systems. We based our framework
on the hypothesis that “one can separate presumably legiti-
mate identity requests from those potentially malicious by
observing their source of origin and users’ identity request
patterns3”. Based on this hypothesis, our key idea is therefore
to estimate a trust score of the source from which identity
requests depart, calculated as a proportion of the number of
identities already granted to (the) user(s) associated to that
source, in regard to the average of identities granted to users
associated to other sources. The higher the frequency (the)
user(s) associated to a source obtain(s) identities, the lower
the trust score of that source and, consequently, the higher the
price that must be paid per identity requested.

The research agenda that led to the development of our
framework was consituted of three main items: 1) An in-
vestigation of a candidate trust score function for measuring
the likeliness they were part of an ongoing sybil attack. The
investigation involved a throughout analysis of users’ identity
request patterns in a large scale distributed system; 2) A
combination of trust scores with proof of work, to propose
the notion of adaptive puzzles. The goal is to adaptively
adjust the complexity of puzzles based on the measured trust
score. Therefore, those requests likely to be malicious will be
assigned puzzles of higher complexity, whereas presumably
legitimate will be assigned less complex ones; and 3) An anal-
ysis of resource-efficiency of existing proof of work strategies.
We proposed a direction for reshaping traditional puzzles, in
order to make them green (in terms of energy required to
solve them) and useful (by recycling the processing cycles
dedicated to puzzle-solving). In the end, our research led to the
proposal of a novel design for lightweight, long-term identity
management based on green and useful computational puzzles.

The research items mentioned above are approached in
Sections II, III, and IV, respectively. We then close the paper
in Section V with lessons learned and concluding remarks.

II. TRUST SCORE MODEL

The trust score model forms the basis of our framework for
adaptive identity management. Next we provide an overview
of the model. Then, we present a brief evaluation considering
traces of identity requests collected from BitTorrent.

A. From Users’ Recurrence Patterns to Trust Scores

In the scope of the thesis, we defined trust score [30], [31]
as an index that establishes the likeliness that some identity
request, originated from a certain source, is presumably legit-
imate or potentially part of an ongoing attack.

3In the context the thesis, “a source requests identities” means in fact
“user(s), from a certain source, request(s) identities”. Source may refer to a
user’s workstation, a local network, etc. (identified by an IP address or prefix).
In substitution or as a complement, source may be a network coordinate
provided by a system such as Veracity [29].

1) Analysis of Users’ Recurrence Patterns: Our research
for a trust score function was driven by the idea that a good
candidate should consider the dynamics of users’ recurrence
patterns in large scale distributed systems, and ensure that
they receive good reputation. To this end, it is important to
characterize users’ recurrence in these systems, and assess a
baseline regarded as “regular behavior”.

Our characterization basically consisted in evaluating as-
pects such as users’ time and frequency of arrivals. From the
files of users’ participation in torrent swarms analyzed, we
extracted traces that rebuild users’ identity request events4.

The analysis of collected traces revealed some important
aspects for our research. First, users’ arrival has shown to be
consistent over the week, with a few access peaks, and was
characterized by an increase in the number of joins during
daytime (UTC), and subsequent descrease overnight. Second,
various users left and re-joined the system within relatively
short time intervals. These two aspects indicated that our
candidate design for a trust score function should accomodate
sazonal changes in users’ behavior (within a window of hours,
days, or even weeks), and enable users to rejoin the system
with a certain frequency without being much penalized.

The most important aspect for our research was revealed
with the analysis of users’ recurrence. In one of the traces, the
average number of identities assigned per IP address was 2.5
(in a period of one week); the 9th and 10th deciles were 5 and
180, respectively.Figure 1 provides an overview of the results
achieved. In the traces studied, the majority of users joined the
system very few times a week; the distribution of recurrences
had the shape of either a power-law or exponential.
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Fig. 1. Distribution of users’ recurrences.

In summary, the trace analysis has shown that a vast
majority of users tend to access online systems with a relatively
low frequency, during a given period. Attackers on the other
hand shall present a discrepant behavior, by requesting a
higher number of identities from a limited number of sources.
Therefore, keeping track of sources’ recurrence becomes a
promising approach for the design of our trust score function.

2) Trust Score Function: The main input for computing
trust scores is the number of identities already granted to the
users associated to a given source. This number is defined as
φi(t) for the i-th source, at instant t (with φi(t) ∈ N). Based
on this information, we formally define the source recurrence
(∆φi(t)) and network recurrence (Φ(t), with Φ(t) ∈ R and
Φ(t) ≥ 1) metrics. The former, given by ∆φi(t) = φi(t) −
φi(t−∆t), represents the number of identities granted to users

4For ethical reasons, the traces collected have been fully anonymized a

priori, in order to make it impossible any sort of user identification/tracking.
We also assume that the traces contain legitimate identity request activity only,
since no evaluation of peer identity vs. address was carried out.
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associated to some specific source i, in the last ∆t units of
time. The latter corresponds to the average number of identities
that sources have obtained in the same period.

The network recurrence metric Φ(t) is computed using the
simple mean of the values of sources’ recurrence, according to
Equation 1. In this equation, n is the number of currently active
sources, i.e., those that have obtained at least one identity
within the interval ∆t. Note that when ∆φk(t) = 0 for some
source k, users associated to that source have not obtained any
identity (during ∆t); such a source can be safely ignored.

Φ(t) =







1 , if n = 0

1

n
×

n
∑

i=1

∆φi(t) , if n ≥ 1 (1)

Observe that ∆t serves as a bound for the portion of
identity grants considered when computing the sources’ (and
the network) recurrence metrics, thus functioning as a “sliding
window” that addresses the seasonality of users’ access pat-
terns. As the window slides forward, older identity grants are
gradually discarded, thus allowing room to newer ones which
are more representative of the current state of the system.

Recall from the trace analysis that a large fraction of users
presented a similar, consistent behavior (as evidenced by users’
recurrence metrics and distributions). For this reason, we use
the average behavior of the network as baseline for “normal
behavior”. In this context, by comparing the behavior of a
given source i (inferred from ∆φi(t)) and the network behavior
(inferred from Φ(t)), we calculate the relationship between
source and network recurrences (ρi(t), with ρi(t) ∈ R). When
negative, ρi(t) indicates how many times the recurrence of
the i-th source is lower than the recurrence of the network.
Equation 2 provides the value of ρi(t).

ρi(t) =















1−
Φ(t)

∆φi(t)
, if ∆φi(t) ≤ Φ(t)

∆φi(t)

Φ(t)
− 1 , if ∆φi(t) > Φ(t)

(2)

The relationship index ρi(t) serves then as input for com-
puting the trust score of the i-th source (θi(t)). It is calculated
at instant t according to Equation 3, and assumes values in the
interval (0, 1): on one extreme, values close to 1 denote a high
trust on the legitimacy of (the) user(s) associated to the i-th
source; on the other, values close to 0 indicate high distrust,
i.e., a high probability that source hosts an attacker.

θi(t) = 0.5−
arctan(Φ(t)× ρi(t)

3)

π
(3)

In addition to addressing the seasonality of users’ access
patterns, abrupt but momentarily changes in their behavior
should also be taken into account. For this reason, we compute
the smoothed trust score. Defined as θ′i(t) for the i-th source
in instant t, it is calculated as shown in Equation 4. The
smoothing factor β determines the weight of present behavior
in the calculation of the smoothed trust score, assuming values
in the interval (0, 1]. Thus, values of β close to 0 assign a
high weight to the historical behavior of the source under
consideration, and vice-versa. In Equation 4, θ′i(t

′) refers to
the last computed value of smoothed trust score.
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Fig. 2. CCDF of trust score of requests, under different sizes for ∆t.

θ′i(t) =

{

θi(t) , if t = 0
β × θi(t) + (1− β)× θ′i(t

′) , otherwise
(4)

B. Evaluation

For evaluating the concept of trust scores, we implemented
a bootstrap entity for use in a simulation environment; it
aggregates the functionalities of management of identity re-
quests from users interested in joining some system. We
considered in our evaluation various traces of identity requests
from BitTorrent file sharing communities. In summary, we
had the goal of assessing the efficacy and effectivenes of
our solution regardless of number of active users, amount of
identity requested, users’ behavior and seasonal effects, among
others. We refer the reader to the thesis [7] for a detailed
discussion of the results achieved. Due to space constraints,
next we focus on Trace A; it contains 203,060 requests from
44,066 distinct sources, during a period of one week.

We also considered scenarios with and without attack. In
the scenarios with attack, we considered two situations: one
in which the attacker controlled 1% (Mu = 1%) of sources
of identity requests, and another in which she controlled 10%
(Mu = 10%) of sources (proportional to the number of sources
seen in the traces used as input). The number of malicious
requests was also defined proportionally to the number of legit-
imate ones seen in the trace, 1/3. This factor was chosen since
it exceeds the proportion of fake accounts that sybil-resilient
solutions tolerate [32], [33]. It is important to emphasize that
these proportions represent extreme scenarios, favorable to the
attacker. Otherwise, should she control a higher proportion of
sources, she would have already outnumbered legitimate users,
and launching a sybil attack would be purposeless.

In Figure 2(a) we present an evaluation considering dif-
ferent sizes of ∆t: 8, 16, 24, 48, and 96 hours. Observe that
malicious requests were significantly affected, being assigned
extremely low values of trust scores for a majority of them,
regardless of the values for ∆t considered. For example, when
using ∆t = 8 hours, only 20.63% of malicious requests were
assigned a value of trust score higher or equal to 0.01; in other
words, over than 79.37% of requests were assigned extremely
poor values of trust scores. Only 13.38% of malicious requests
received values of trust score higher or equal to 0.1, and less
than 3.79% were assigned values of trust scores of 0.5 or
higher. No malicious requests were assigned a score higher
than 0.6. Such low trust scores may be explained by the
recurrence of each malicious source, which is comparatively
higher than the average recurrence of the network.

Observe also from Figure 2(a) that the higher the duration
of ∆t, the more restrictive our solution becomes for the
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Fig. 3. Trust score of requests, under different values for β.

attacker. For example, an increasing from ∆t = 8 to ∆t = 16
decreases from 11.7% to 7.75% the proportion of requests
that were assigned values of trust score of 0.5 or higher. The
reason is that a larger sliding window makes a higher fraction
of the history of sources to be considered when calculating
their recurrences ∆φ(t), and thus those sources involved in
an attack become more evident. With regard to legitimate
requests, Figure 2(b) shows that the measured values were
overall significantly high, regardless of ∆t. The majority of
identity requests from legitimate sources received a value of
trust score higher or equal to 0.5 (above 92% in all cases).

In Figure 3 we show the effect that varying values for the
smoothing factor β causes to the identity requests of these
sources. We concentrate on the following values of β: 0.125,
0.25, 0.5, 0.75, and 1. For this set of experiments, we used
∆t = 48. Focusing on Figure 3(a), observe that increased
values of β makes a larger fraction of malicious requests be
assigned lower values of trust score. For example, less than
3.8% of malicious requests received a value of trust score
higher or equal to 0.5, when using β = 0.125; this proportion
decreased to 2.2% when using β = 1.0. With regard to
legitimate users, Figure 3(b) evidences that lower values for β
decreases the overhead caused to legitimate requests. In spite
of this, the proportion of requests assigned with a trust score
higher or equal to 0.5 was above 76% in all scenarios, and
above 92% in the particular case of β = 0.125.

Finding an appropriate setting for ∆t and β is subjective,
and basically depends on the system nature (more specifically,
on how may identities are expected to be obtained per source
in a given period) and the desired conservativeness with those
sources potentially involved with an ongoing attack. In the
evaluation scenarios described in the remainder of this paper,
we chose a value of ∆t = 48 and β = 0.125; these parameter
settings make the concept of trust scores more robust to sources
that continuously request more identities than the network
average, whereas allows a legitimate user to request more
identities during a transient failure (e.g., unstable network
connectivity), without being (much) penalized for that.

III. ADAPTIVE IDENTITY MANAGEMENT

Proof of work has been long used in identity manage-
ment [9], [19], [20], and also for stopping abusing behavior
such as spamming [21], [22]. Although effective against sybils,
existing defense schemes do not distinguish between identity
requests from (presumably) legitimate users and attackers,
requiring both to afford the same price per request. Next we
discuss how we bridge this gap with adaptive puzzles [34].

A. Adaptive Pricing of Identity Requests

The mapping from trust score to puzzle complexity is given
by an abstract function γ : Θ → N

∗. An actual instantiation of
this function depends essentially on the nature of the adopted
puzzle; for being effective, the puzzle must belong to the
complexity class NP-complete. In the abstract function shown,
the trust score θi(t) ∈ Θ (of the i-th source) is mapped to a
puzzle having exponential complexity, equivalent to O(2γi(t)).
An example of mapping function is given in Equation 5; note
that the puzzle complexity is defined based on a maximum
possible complexity Γ. In this equation, the constant 1 defines
the minimum possible puzzle complexity.

γi(t) = ⌊Γ · (1− θi(t))⌋+ 1 (5)

To illustrate an actual instantiation of the function above,
consider the computational puzzle presented by Douceur in [3]:
given a sufficiently high random number y, find two numbers
x and z such that the concatenation x|y|z, after processed
by a secure hash function, leads to a number whose γ least
significant bits are 0. The time required to solve the proposed
puzzle is proportional to 2γ−1, and the time to assert the
validity of the solution is constant. Any puzzle having similar
characteristics can be employed with our solution. There are
other effective examples in the literature, such as [19], [20].

B. Evaluation

To evaluate the feasibility of using adaptive puzzles in
limiting the spread of fake accounts, we extended the bootstrap
entity and the simulation environment for implementing the
dynamics of puzzle assignment and resolution. In summary,
the extended entity aggregates the functionalities of managing
identity requests from users interested in joining some generic
system, assignment of puzzles for each identity request, vali-
dation of puzzle solutions received, and granting (or denial) of
requests (according to the correctness of received solutions).

In order to model the delay caused by solving computa-
tional puzzles, we considered the puzzle presented by Douceur
in [3] and described earlier. Further, for the sake of simplicity,
we considered that a puzzle having complexity γi(tk) takes
26 + 2γi(tk)−1 seconds to be solved in a standard device with
normalized computing power of 1, for reference; a device twice
faster takes half of this time to solve the same puzzle. For
the computing power of legitimate users, we analyze cases in
which it follows an Exponential (λcp ≈ 0.003) and Gaussian
(µcp = 1.2 and σcp ≈ 0.4). In both cases, it ranges from 0.1
to 2.5 times the computing power of the reference hardware.
We consider such settings since they reflect the distribution
of users’ computing power as reported in the literature [35],
[36], [37]. For the sake of comparison, we also included in
our evaluation an identity management scheme based on static
puzzles [19]; the complexity was defined as Γ = 9, which takes
between 5 minutes and 2 hours (approximately) to solve.

Figure 4 shows the results obtained for each solution, for
Trace A. For the sake of clarity and space constraints, only
the results obtained for attack scenario Mu = 1% are shown.
Observe that our solution outperforms both static puzzles [19]
and the absence of control in limiting the creation of fake
accounts. The proposed solution (curve “adaptive (mal.)”)
reduced in 84.9% the number of counterfeit identities granted,
in comparison to the “no control” scenario (curve “no control
(mal.)”). This represented an effective gain of 84.89% over
the scenario where static puzzles were used (curve “static

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper 1095



(mal.)”); the use of such puzzles reduced marginally the
number of granted counterfeit identities (0.05% only). Such a
performance of the static puzzles is because the time required
to solve them (five minutes, in the case of the attacker) was
overall smaller than the interval between identity requests. In
regard to the overhead caused to legitimate users, observe that
the curve “adaptive (leg.)” (and also “static (leg.)”) overlaps
with the curve “no control (leg.)”, thus indicating that the
imposed overhead was negligible.
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Fig. 4. Identities granted for each of the scenarios evaluated with Trace A.

Observe also that the results are marginally affected by the
distribution of users’ computing power considered. Comparing
for example the number of identities granted to legitimate
users and the attacker (Figures 4(a) and 4(b)), the difference
observed is marginal. These results evidence that our solution
is able to perform satisfactorily regardless of the environment
settings (e.g. distribution of users’ computing power) in place.

IV. GREEN AND USEFUL IDENTITY MANAGEMENT

Next we summarize our two-tiered solution for reshaping
puzzles and making them green and useful [38], [39].

A. Towards Green Puzzles

The effectiveness of cryptographic puzzles comes from the
fact that puzzle-solving is time-consuming. Puzzles that take
one second to solve will barely stop attackers; to keep them
away, it is important to assign puzzles that take longer to be
solved. The more time users spend solving puzzles, the more
energy is consumed, however. In a context of growing concern
with rational usage of resources, the investigation for “green
puzzles” becomes imperative.

In our proposal, we reduce the average puzzle complexity
and complement them with “wait time”. To illustrate, suppose
that an effective puzzle should take five minutes to solve, on
average. In our approach, instead of assigning such puzzle, we
assign one that takes one minute; as a complement, once the
user solves the puzzle, we “ask” him to wait four more minutes
to obtain an identity. The strategy we envisage for defining
the puzzle complexity depends on the process currently taking
place, which can be either an identity request or renewal.

1) Identity request process. We use as input the smoothed
trust score θ′i(t) to estimate the puzzle complexity. The
mapping function, defined abstractly as γ : Θ → N

∗,
depends essentially on the nature of the adopted puzzle.
In this function, θ′i(t) ∈ Θ is mapped to a computational
puzzle having complexity equivalent to O(2γ). In an
identity request process, the value of γi(t) is estimated
considering a differentiated, higher value of maximum
complexity, Γ = Γreq . The value of θ′i(t) is saved in the
identity (I〈θ〉), for later use during its renewal.

2) Identity renewal process. The value of θ′i(t) used to
estimate the puzzle complexity is computed based on
I〈θ〉, according to Equation 7. Once the renewal process
is complete, the bootstrap must save θ′i(t) in the identity,
for use in future renewal processes.

θ′i(t) = β · 1 + (1− β) · I〈θ〉 (6)

To renew an identity, the user must solve a puzzle
considering a lower value of maximum puzzle complexity,
Γ = Γrenew. If the identity has expired by the time the
user renews it, the bootstrap entity must use another value
of maximum puzzle complexity, Γ = Γreval. Note that
making Γrenew < Γreval < Γreq encourages users to
renew their identities before expiration.

Similarly to the puzzle complexity, the waiting time should
increase exponentially (e.g., proportionally to 2ω, where ω is a
wait factor), and be defined as a function of θ′i(t). The design
we consider for computing ω is given in Equation 7. In this
function, Ω represents the maximum waiting time factor.

ωi(t) = Ω · (1− θ′i(t)) (7)

B. Towards Useful Puzzles

There are several proposals of cryptographic puzzles in the
literature that can be used with our design to establish a cost
for the identity renewal process [3], [19], [20]. An important
characteristic of such puzzles is that their processing does not
result in actual useful information. Here we propose a different
type of puzzle, which takes advantage of the users’ processing
cycles to compute useful information.

To assign a puzzle to be solved, the bootstrap entity replies
to any identity request or renew messages (i) an URL that
contains a piece of software that implements the puzzle (which
can be a useful puzzle or a cryptographic one) and (ii) a set
J of jobs (where each job is comprised of a number of input
arguments to the downloaded piece of software). The puzzle
complexity is given by |J |.

An example of puzzle is a software that runs a simulation
and generates the results using plain text. In this context, J
contains a number of seeds, chosen by the bootstrap, that must
be used as input to the simulation. Supposing that γi(tk) = 4
(as computed from Equation 5), then |J | = 24 = 16.

C. Evaluation

Our evaluation was carried out using the BitTornado
framework on the PlanetLab environment. It had the goal of
assessing the technical feasibility of green and useful adaptive
puzzles, and also compare it with other approaches.

The parameter setting adopted in this evaluation attempted
to replicate, in a smaller scale, the scenarios considered in
our simulations. In summary, we considered an environment
having 240 legitimate sources and 20 malicious ones. The
legitimate users request 2,400 identities during one hour. The
first request of each user is uniformly distributed during this
period; their recurrence follows an exponential distribution,
varying from 1 to 15 minutes. The interval between arrivals
is also exponentially distributed, between 1 and 10 minutes.
The attacker requests 1,200 identities (1/3 of the requests
of legitimate users), making an average of 60 identities per
malicious source; their recurrence follows a fixed rate of one
request per minute. Our evaluation was defined observing the

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper1096



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  0.5  1  1.5  2

N
u

m
b

e
r 

o
f 
Id

e
n

ti
ti
e

s

Time (h)

No control
Our solution

Static, γ = 16
Static, γ = 20
Static, γ = 24

(a) Legitimate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  0.5  1  1.5  2

N
u

m
b

e
r 

o
f 
Id

e
n

ti
ti
e

s

Time (h)

No control
Our solution

Static, γ = 16
Static, γ = 20
Static, γ = 24

(b) Malicious

Fig. 5. Results achieved with the PlanetLab environment.

technical constraints imposed by the PlanetLab environment
(e.g., limited computing power, scarce and unstable nodes, and
volatile network connectivity); due to these constraints, the
identity renewal aspect of our solution could not be evaluated.

To make puzzles useful in our design, we used a software
that emulates a small simulation experiment; it receives a list
of random number generator seeds, and generates a single text
file containing the results (for all seeds informed). The puzzle
complexity is determined by the number of seeds informed,
which in turn is proportional to 2γi(t)−1. For the mechanism
based on static puzzles, we considered the one proposed by
Douceur [3] (discussed earlier).

The other parameters were defined as follows. For our
solution, ∆t = 48 hours, β = 0.125, Γreq = 22, and Ω = 10.
For static puzzles, we considered three scenarios: γ1 = 16,
γ2 = 20, and γ3 = 24. It is important to mention that the
difference in the puzzle complexity, comparing the simulation
model with the evaluation presented next, was necessary to
adapt the puzzle-based mechanisms to the computing power
constraints present in the PlanetLab environment.

Figure 5 shows that the dynamic of identity assignments
to legitimate users with our solution (curve “Our solution”) is
similar to the no control scenario (“No control”). In contrast, it
evidences the overhead/ineffectiveness of using static puzzles
for identity management. Focusing on the attacker, our solution
reduced significantly the number of fake accounts created
(compared to the no control scenario).

The energy consumption estimates obtained also indicate
the efficacy of our solution. While static puzzles with γ1 = 16,
γ2 = 20, and γ3 = 24 consumed 58.70 KJ, 533.85 KJ, and
803.92 KJ (respectively), our solution led to a consumption of
13.39 KJ only. It represents 22.81%, 2.41%, and 1.66% of the
estimated consumption with static puzzles.

Our PlanetLab experiments also confirmed the effective-
ness of using data processing jobs in replacement of cryp-
tographic puzzles, as an strategy to make puzzles useful. In
summary, the experiments carried out in the PlanetLab envi-
ronment evidenced the technical feasibility of using adaptive
puzzles, waiting time, and massive distributed computing for
green and useful identity management.

V. FINAL CONSIDERATIONS

In this paper, we provided a brief overview of the research
work carried out to develop a framework for adaptively pricing
identity requests as an approach to limit the spread of fake
accounts. Our framework explores the fact that sources in
hands of attackers launch a significantly higher number of
identity requests than those associated to presumably legiti-
mate users. Based on this request-to-source ratio observation,

we formulated a model that derives values of trust scores
based on the frequency that sources of identity requests obtain
identities, in comparison to the average number of identities
already granted to other sources in the network. The model
supports the concept of adaptive puzzles – a proof of work
strategy that undermines the attacker’s ability of controlling a
large fraction of fake accounts in the network. In our research,
we also reshaped traditional cryptographic puzzles in order
to propose a lightweight design for green and useful identity
management. An analytical evaluation of our framework [7]
provided evidence that it is scalable and suitable for busy
environments composed of millions of users.

A. Lessons Learned

In conclusion, the overall work presented in the thesis [7]
and summarized in this paper underscores the importance of
controlling the dissemination of fake accounts, and thus mit-
igating malicious behavior in networked, distributed systems.
In the absence of controlling mechanism, attackers can easily
control a large number of fake accounts, even outnumber-
ing legitimate users in some cases. Existing approaches that
achieve reasonable performance in stopping malice obligate
users to provide personal information and/or pay taxes to create
identities, which might not be desirable in many situations.

The combination of trust scores and adaptive pricing
through proof of work has shown effective to hinder attackers,
bounding the number of fake identities created, and increasing
the (monetary) cost per fake identity. In this context, our re-
search pushes the state of the art, by (i) providing a closer look
at the problem of fake accounts, (ii) characterizing identity
request patterns in the network, and (iii) introducing an identity
management solution that both preserves users’ privacy and
makes it more expensive to engage on successful sybil attacks.

B. Thesis Deliverables and Final Remarks

The full thesis can be downloaded from http://hdl.handle.
net/10183/90442. A subset of the thesis deliverables were
published at renowned conferences and journal, namely, IEEE
IM 2013 [39], Elsevier COMNET (2012) [34], IEEE CNSM
2011 [30], and SBRC 2014 (proceedings published in the IEEE
Digital Library) [40]. There were also other publications in
Brazilian conferences [31], [38], one of them awarded a best
paper. Finally, there are deliverables in process of submission:
one involving an in-depth analysis of identity request patterns
(see Section 3.3 of the thesis [7]), plus an analytical evaluation
of our framework (Section 6.4 [7]); and another involving an
strategy for improving the quality of traces of identity requests
(Sections 3.1 and 3.2 of the thesis [7]).

Our research was awarded a Microsoft Research Ph.D.
Fellowship [41], and also a Microsoft Azure Research Grant
(2014). A NOMS 2010 best student paper award was also
received, for a publication done with a Ph.D. colleague [42].
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