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Abstract—The ever increasing traffic demands and the current
trend of network and services virtualization calls for effective
approaches for optimal use of network resources. In the fu-
ture Internet multiple virtual networks will coexist on top of
the same physical infrastructure, and these will compete for
bandwidth resources. Link dimensioning can support fair share
and allocation of bandwidth. Current approaches however, are
ineffective at smaller timescales or require traffic measurements
that are not easy to obtain. In this thesis we focused on easy to
deploy and accurate link dimensioning approaches for the future
Internet. The start point of our work is a dimensioning formula,
proposed in 2006, built upon the assumption of Gaussian traffic.
This formula is able to accurately estimate required capacity
at very small timescales. To do so it requires traffic statistics
that can be obtained from packet captures. The contribution of
this thesis is threefold. First, we prove that the assumption of
Gaussian traffic holds for current Internet traffic and, hence,
the dimensioning formula can still be applied. Second, instead
of relying on costly packet captures, we develop and validate
link dimensioning approaches that estimate the needed traffic
statistics from measurement data obtained via technologies that
are largely found in today’s networks (namely, sFlow and
NetFlow/IPFIX). Our approaches are able to accurately estimate
required capacity at timescales as low as 1ms. Last, we propose
a link dimensioning approach that uses measured data from
the recent and already widely available OpenFlow. We also
investigate the quality of flow-level measurements in current
implementations of OpenFlow, and demonstrate that these are
not yet accurate enough for link dimensioning purposes.

Index Terms—Link dimensioning, bandwidth estimation,
Gaussian traffic, NetFlow, IPFIX, sFlow, OpenFlow.

I. INTRODUCTION

A significant increase on traffic demands has been observed
in the past decade1. Although the amount of bandwidth re-
sources will likely not become a problem in the future Internet,
the current trend on virtualizing services and networks will
add complexity to the management of such resources. This
will ultimately call for more sophisticated approaches to fairly
share and allocate available bandwidth resources.

In the future Internet we expect scenarios in which network
operators will still own and control most of the physical
infrastructure, but end users will be directly connected to
companies that control essential services and retain users’
content. These companies are often called the Internet big
players [12]. Virtual networks will enable transparent and
seamless connection between end users and big players. The

1https://ams-ix.net/technical/statistics/

added complexity on managing bandwidth resources will rise
from the coexistence of many virtual networks on top of
a single physical infrastructure. Efficient and accurate link
dimensioning approaches can certainly make the difference
on the proper management of bandwidth resources. Such
approaches can (i) support operators on the optimal allocation
of their bandwidth resources, while (ii) helping to meet the
Quality of Service (QoS) metrics agreed with the big players,
ultimately (iii) providing end users with good levels of Quality
of Experience (QoE).

A. Link dimensioning background

To accommodate increasing traffic demands, operators typ-
ically over-provision their networks. A common approach
to do so is to read interface counters via SNMP every 5
to 15 minutes and calculate the average bandwidth utiliza-
tion [13]. A safety margin is then added to the bandwidth
utilization. Usually, as a rule of thumb, this margin is defined
by a percentage of the bandwidth utilization [14]. The main
drawback of this whole approach is that traffic fluctuations that
happen at much smaller timescales (e.g., seconds or fractions
of seconds) are averaged within too large time bins, and
ultimately, network performance and user experience degrades
due to overlooked short-term traffic bursts.

Aiming at higher accuracy at shorter timescales, alternative
approaches have been proposed to properly dimension network
links. However, the higher accuracy of these link dimensioning
approaches often comes at the cost of higher demands on
efforts for measuring traffic. For example, the work in [15]
proposes a link dimensioning formula that requires traffic
statistics (i.e., traffic variance) usually calculated from packet-
level measurements. Although very accurate, approaches that
required packet captures are not adopted by network operators
mostly because today’s traffic rates make packet capturing
operationally and financially (almost) unfeasible. Therefore,
operators stick to the easy-to-use, though not reliable, SNMP-
based rules of thumb.

The main goal of this PhD thesis [1] was to develop
approaches for link dimensioning that are – almost – as
easy-to-use as SNMP-based rules of thumb, and – almost
– as accurate as packet-based approaches. Next, we briefly
introduce the dimensioning formula we use in our approaches
and then we set out the contributions of this thesis.
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B. Link dimensioning formula

The starting point of our work is the dimensioning approach
proposed in [15] and further validated in [16], [17]. Aiming
at link transparency, this approach aims at assuring that the
provided link capacity C satisfies P{A(T ) ≥ CT} ≤ ε, where
A(T ) denotes the total amount of traffic arriving in intervals
of length T , and ε indicates the probability that the traffic
rate A(T )/T is exceeding C at the timescale T . In [15] a
dimensioning formula is provided that requires that traffic
aggregates are Gaussian (i.e., A(T ) are normally distributed)
and stationary. The link capacity C(T, ε) needed to satisfy the
condition above can be calculated by

C(T, ε) = ρ+
1

T

√
−2 log (ε) · υ(T ) , (1)

i.e., the mean traffic rate ρ is added by a safety margin
that depends on the variance υ(T ) of A(T ). Relying on the
variance υ(T ) this dimensioning formula is able to take into
account the impact of possible traffic bursts on the required
link capacity. In addition, it is very flexible: network operators
can choose T and ε according to the QoS level they want to
provide to their customers. Although accurate, the dimension-
ing approach from [15] requires continuous packet capture to
calculate ρ and υ(T ). To eliminate the need of packet capture,
we developed approaches to estimate these statistics from
measurement data largely found at today’s networks, namely
sampled packets and flows. However, such data only provides
a summary or an aggregated view of the actual traffic. One of
the challenges in this thesis was, therefore, to properly estimate
ρ and υ(T ) from coarser measurement data than continuous
packet capture.

C. Contributions

The contribution of this thesis [1] can be divided in three
parts. In our first contribution we extensively assessed the
Gaussian character of current Internet traffic [2], [3]. Previous
works assessing traffic Gaussianity relied on old datasets, and
we believe that the advent and widely adoption of recent
online services (e.g., social networking, video streaming and
online storage) have changed the behavior of Internet users and
potentially reshaped important traffic characteristics. Among
other important findings, in this study we proved current traffic
is Gaussian and, hence, the dimensioning formula above can
still be applied.

Given the inaccuracy of the SNMP-based rule of thumb
approach, and the requirement for packet capture of the packet-
based approach from [15], in the second contribution of this
thesis we aimed at developing link dimensioning approaches
using largely available measurement technologies. In particu-
lar, we developed and validated approaches to estimate ρ and
υ(T ) for Eq. (1) using sampled packets from sFlow [4] and
flow-level data form NetFlow/IPFIX [5], [6]. These approaches
estimate required capacity with much higher accuracy than
SNMP-based rules of thumb, even at timescales as low as
1ms. In addition, our approaches use measurement data widely

TABLE I
MEASUREMENT DATASET

abbr. length # of hosts link capacity avg. use
A 24h 6.5k 2 × 1 Gb/s 15%
B 6h 886k 10 Gb/s 10%
C 84h45min 10.5k 155 and 40 Mb/s 19%
D 4h 1.8M 2 × 10 Gb/s 8%
E 5h 3M 2 × 10 Gb/s 10%
F 13h15min 4M n/a n/a

available at operators, what makes them more easy-to-use than
packet-based approaches such as [15].

Nowadays, OpenFlow is gaining lots of interest as being the
best known enabler of SDN (Software-Defined Networking)
architectures. Although OpenFlow primary task is packet
forwarding, in theory it can also measure traffic at the flow
level (NetFlow/IPFIX style). Given the increasing number of
OpenFlow-enabled network devices, in the third contribution
of this thesis we proposed an approach that uses the Open-
Flow protocol to retrieve flow data measured at OpenFlow
switches [7]. This data can later be applied to one of the flow-
based approaches for link dimensioning we proposed. How-
ever, in practice the flow data from OpenFlow lacks accuracy
and might not be reliable. Therefore, we have also assessed the
quality of per-flow data obtained from current implementations
of the OpenFlow protocol. We show that, right now, data
inaccuracies prevent its use for link dimensioning purposes.

D. Organization

The remainder of this paper is organized as follows. In
Section II we describe the measurement dataset used to
validate our proposed approaches, and we present results of
an extensive assessment of the Gaussian fit of current network
traffic. In Section III we present our proposed link dimen-
sioning approaches, as well as a quantitative assessment of
these approaches. In Section IV, we describe our OpenFlow-
based approach to retrieve flow data from switches, and show
pitfalls we have found on the quality of the measured data by
OpenFlow. Finally, in Section V we summarize our work.

II. NETWORK TRAFFIC DATASET

A. Description of Dataset

Our measurement dataset, summarized in Table I, consists of
548 15-minute packet traces, captured between 2011 to 2012
at six different locations around the globe. The trace duration
of 15 minutes has been chosen in accordance with [16], [17].
Longer time periods are generally not stationary due to the
diurnal pattern. The packet traces allowed for the reproducibil-
ity of experiments and for the comparison of different link
dimensioning approaches with the exact same input traffic.
Traffic from locations A, B and C were collected by us,
from a link between a university building to the university’s
gateway (A), and from the gateway of two universities (B and
C). The other three locations, D, E, and F , comprise traces
from ISP backbone links available at the public repositories
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of CAIDA [18] (D and E) and MAWI [19] (F ). For a
more detailed description of traffic characteristics from each
location, please refer to [2].

B. Traffic Gaussianity

The advent of many online services, e.g., Facebook, Drop-
Box, YouTube and NetFlix, has changed users behavior, what
potentially reshaped characteristics of Internet traffic. Impor-
tant to us is the Gaussian fit of traffic, since it is a major
requirement from Eq. (1). Traffic Gaussian fit was addressed
by few works in the past, such as [20], [21]. These works
relied on traffic data measured relatively long ago, even before
the aforementioned applications and services became highly
popular in the Internet. Therefore, it was important to once
again assess the traffic Gaussian fit, validating the use of
the dimensioning formula of Eq. (1) with current traffic. We
comprehensively studied the Gaussian fit for all traces in our
dataset, and our results were published in [2], [3].

We wanted to know if A(T ) ∼ Norm(ρ, υ(T )), where ρ is
the mean traffic and υ(T ) the traffic variance at timescale T .
To assess traffic Gaussianity for all traces in our dataset we
used the linear correlation coefficient [22] defined by

γ(x, y) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
, (2)

where x is the inverse of the normal cumulative distribution
function of the sample, and y is the ordered sample, i.e.,
A(T ). A γ ≥ 0.9 supports the hypothesis that the underlying
distribution is normal, which corresponds to a Kolmogorov-
Smirnov test for normality at significance 0.05 [21].

Fig. 1 shows the CDF of γ for all traces in our dataset
at different timescales. For T = 1s, around 84% of all traces
are at least “fairly Gaussian”, i.e., γ > 0.9. Location A is a
24-hour measurement and around 50% of its traces have γ <
0.9, from which most measured overnight when less hosts are
active in the network, resulting in a lower traffic aggregate and,
consequently, lower Gaussian fit. Around 90% of traces from
the other 5 locations have γ ≥ 0.9. At locations with larger
aggregates, such as D, (almost) all the traces have γ ≥ 0.9.
Note that the only significant difference at T = 100ms is for
traces from C. In [2] we proved that the Gaussian fit persists at
timescales from 1ms to 30s. At very small timescales, however,
T approximates the packets transmission intervals, resulting
in a binary-like behavior (have or not packet), which is not
Gaussian. But also at very large T , few bins might average
traffic from nearby bursts, resulting in a much higher rate than
the trace average rate, which ultimately disturbs Gaussian fit.

We also demonstrate that for high-speed links it is safer
to relate Gaussian fit to average rate than to the number of
simultaneously active hosts, as previously suggested in [20],
[21]. Fig. 2 compares the γ for each trace from location A at
T = 1s, with the respective trace average rate and average
number of simultaneously active hosts per second. Traces
from 23:00 to 00:15 have a good Gaussian fit even though
the number of active hosts remains roughly the same as for
the non-Gaussian traces in the overnight. The average rate of
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Fig. 1. CDF of the gaussianity fit γ for all traces in our dataset.
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the Gaussian traces is, however, much higher than the one
of the other traces. That is because the behavior of very few
hosts, using a handful of applications, can significantly affect
Gaussian fit, as we proved in the follow-up work [3].

III. MEASUREMENT-BASED LINK DIMENSIONING

In this section we describe the developed link dimensioning
approaches and present results of their quantitative assessment.

A. sFlow-based Approach

Sampled packets provide a partial view of the actual traffic
in a link. Our developed approaches compensate for the
missing information when estimating the statistics needed
by the Eq. (1). Average rate ρ can be easily estimated by
multiplying the measured traffic rate from sampled packets by
the sampling rate. Estimating traffic variance υ(T ), however,
is not straightforward due to additional variance introduced
by the sampling process, which might lead to undesired
results [4]. In [8] we developed approaches to estimate υ(T )
from sampled data obtained using one of the three sampling
methods: Bernoulli or n-in-N , which are defined in [23], or the
specific sampling method implemented by the widely available
sFlow [24]. We validated these proposed approaches with the
traces from our dataset sampled at various rates. The sampling
algorithms implemented by us are available in [9].

B. NetFlow/IPFIX-based Approaches

Flow data, such as NetFlow [25] or IPFIX [26] flows
(or equivalents such as J-Flow [27]) give an aggregate view
of the actual traffic. With flow data we miss information
on individual packets that are essential for calculating υ(T )
needed by Eq. (1). For example, we know duration and number
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of packets and bytes of a flow. We do not know, however,
the size and time of individual packets and how packets are
distributed throughout the flow duration. To overcome this
problem we developed two approaches based on NetFlow v5,
i.e., flows defined with the 5-tuple key: source and destina-
tion IP addresses, source and destination ports and transport
protocol. NetFlow v5 is widely available in network devices
and we can obtain the same flow data from newer versions of
NetFlow or from IPFIX-based probes.

In [5] we developed a pure flow-based link dimensioning ap-
proach that solely uses flow data to estimate required capacity.
Under the optimistic assumption that packets are of constant
size and uniformly distributed within their respective flows,
this approach builds a flow-level time series from the flow
data. Traffic variance is then calculated from this time series
and finally applied to Eq. (1). This straightforward approach
is able to accurately estimate required capacity from flows
mostly at second timescales but not at millisecond timescales.
The algorithm that implements the creation of the flow-level
time series is available in [10].

In [6] we developed a flow-based approach able to accu-
rately estimate required capacity at millisecond timescales.
This is a hybrid approach that combines flow data with
mathematical models that model the behavior of individual
packets within flows. The accuracy at very small timescales
of this approach comes at the cost of requiring occasional
and short packet captures for parameters tuning. However,
we showed that the tuned parameters remain valid for very
long periods (up to months), making the hybrid approach
measurement-wise lightweight as compared to the packet-
based approach from [15].

C. Quantitative Assessment
In this section we present a summary of the results from the

PhD thesis [1] on the validation of the proposed approaches.
For the following experiments we converted the packet traces
from our dataset into sampled packets and flows. We sampled
all original traces using sFlow method with a rate 1:10, and
we also converted all original traces into flows (NetFlow v5)
using YAF [28] with active and inactive timeouts set to 60s and
20s resp. In the following, CsF low refers to estimations using
the sFlow-based approach, CpureF low refers to the pure flow-
based approach, and Chybrid refers to the hybrid flow-based
approach. In the dimensioning formula we always set ε = 0.01
and T from 1ms to 1s. These values also comply with previous
works [16], [17]. In [1] we present results with variations on
the parameters of sampling methods, flows creation and the
dimensioning formula.

We validated the proposed approaches against an empiri-
cally defined ground-truth Cemp(T, ε), which is the (1 − ε)-
quantile of the empirical CDF of the aggregated data rate
calculated from the packet trace. That is, Cemp(T, ε) is the
minimum capacity such that the fraction of time intervals of
size T in which rate is higher than this capacity is exactly ε:

Cemp(T, ε) := min {C : #{Ai(T ) | Ai(T ) > CT}/n ≤ ε} ,
(3)

where A1(T ), . . . , An(T ) are the n empirical traffic aggre-
gates on timescale T , and ε is the bandwidth exceedance
probability. Fig. 3 shows the data rate time series at various T
for an example trace from our dataset, and the estimations
of required capacity using the different approaches. This
figure clearly shows that at very small T the pure flow-
based approach is inaccurate. From this figure it also becomes
clear how the mathematical models supported the hybrid flow-
based approach on estimations at smaller T . The sFlow-based
approach did not underestimate required capacity at any T for
this example trace. At large T all approaches succeeded in
estimating required capacity as compared to Cemp.

To verify the accuracy of the estimated required capacity
for the whole dataset, we calculate for each trace the fraction
of measured intervals in which the traffic aggregate Ai(T )
exceeds C(T, ε):

ε̂ := #{Ai(T ) | Ai(T ) > C(T, ε)T}/n . (4)

Note that ε̂ ≤ ε is equivalent to C(T, ε) ≥ Cemp(T, ε).
Fig. 4 shows the average and standard deviation (error bars)

of ε̂ for all traces per location in our dataset. The dashed line
at ε̂ = 0.01 in the plots of this figure represent the optimal
situation, in which required capacity was neither underesti-
mated nor excessively overestimated. From the plots in this
figure, it is clear how the sFlow-based approach (Fig. 4a)
is more stable than the other two flow-based approaches
through timescales ranging from 1ms to 1s. Although using
sampled packets as input, these are still more granular data
than flows. Once again the difference between the two flow-
based approaches is very clear from the obtained results at
different values of T . While for the pure flow-based approach
(Fig. 4b) estimations of required capacity at smaller T result
in high underestimation (i.e., ε̂ > ε), the estimations from the
hybrid flow-based approach (Fig. 4c) result in very low (if any)
underestimation. The traffic variance at larger T depends more
on flow dynamics than on packet dynamics. This way, results
for Chybrid are very similar to those for CpureF low at T = 1s
(note the different scale of y-axis in plots of Fig. 4b and 4c).
On having NetFlow-like data, one can use the simpler pure
flow-based approach for link dimensioning at larger T while
the more complex hybrid approach at smaller T .

From ε̂ we can pinpoint cases of underestimation of required
capacity. However, when ε̂ is too low, e.g., location A at 1ms
in Fig. 4c, it might be that the link dimensioning approach
excessively overestimated the actual required capacity. To
quantify a possible excessive overestimation of the required
capacity, we calculate the relative error, in percentage, between
the estimated required capacity C(T, ε) – using any of the
proposed approaches – and Cemp(T, ε). The relative error RE
is, therefore, given by

RE =
C(T, ε)− Cemp(T, ε)

Cemp(T, ε)
· 100% . (5)

Fig. 5 shows the obtained RE for all traces per location
in our dataset for estimations of required capacity at T = 1s.
Once again it is clear how the sFlow-based approach (Fig. 5a)
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Fig. 3. Estimation of required capacity for each of the proposed approaches, at different T , using a sample traffic trace from our dataset. At any of the
considered values of T , this sample trace has γ > 0.9 (i.e., the traffic is sufficiently Gaussian).
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Fig. 4. Average and standard deviation (error bars) of ε̂ for all traces in our dataset (Table I) at various T for each proposed approach for link dimensioning.
Notice the different scale of the y-axis for the three plots.
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Fig. 5. RE for all traces in our dataset using each of the proposed link dimensioning approaches at T = 1s; ε set to 0.01.

gives more stable results. With this approach, for most traces
−15% ≤ RE ≤ 15%. Also for the pure flow-based approach
(Fig. 5b), most traces are within the same RE limits but traces
from A and C. The worst results on RE observed for both
sFlow-based and pure flow-based approaches in Fig. 5a and 5b,
respectively, are mainly due to the smaller traffic aggregates of
traces from locations A and C. For the sFlow-based approach,
the smaller the traffic aggregate, the smaller the amount of
sampled data from which the estimation of required capacity
is calculated. This means that for better estimations for such
traces using the sFlow-based approach, one must sample traffic
with higher sampling rates than 1:10 (e.g., 1:5). For the pure
flow-based approach, the excessive under and overestimation
can be eased off by reducing the values of timeouts in the flow
metering/exporting process (i.e., active and inactive timeouts).
As demonstrated by us in [1], [5], although demanding more

measurement effort, shorter timeouts help the approach to
better reconstruct short-term traffic fluctuations, ultimately
yielding more accurate estimations even at T < 1s. Once again
one can see in Fig. 5c that the hybrid flow-based approach
has a similar performance than the pure flow-based one at
larger T . Cases of excessive overestimation in the hybrid
approach might happen when, e.g., the model’s parameters
are fitted using traces with non-Gaussian traffic. Gaussianity
is an important requirement for all three proposed approaches,
which is actually inherited from the dimensioning formula
we use. In the hybrid approach, however, once the model’s
parameters are fitted using a non-Gaussian trace, the estimation
of required capacity for all consecutive traces is compromised.
The fact that locations A and C have many non-Gaussian
traces (Fig. 1) explains the wider range of RE for these two
locations in Fig. 5.
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IV. OPENFLOW-BASED APPROACH

Motivated by the increasing interest from industry and
academia on OpenFlow [29], as the third contribution of this
thesis we investigated the feasibility of using measurement
data from OpenFlow for link dimensioning . Since its earliest
specifications, OpenFlow allows for measuring traffic in a
NetFlow/IPFIX fashion, i.e., flow level. In this section we
describe our proposed approach that uses OpenFlow to retrieve
flow data measured at the switch, and we show results of
the quality assessment of the measured data from current
OpenFlow implementations.

In [7] we propose an OpenFlow-based approach that runs
on top of the OpenFlow controller to retrieve flow data from
the OpenFlow switch. Since we defined OpenFlow flows as
the same of NetFlow/IPFIX, we do not propose new ways
to calculate statistics needed by Eq. (1). Instead, we propose
to use OpenFlow flows as input to one of the flow-based
approaches from Section III-B. Our OpenFlow-based approach
implements a mix of passive and active operations and it
solely uses messages defined within the OpenFlow protocol to
retrieve flow data (e.g., duration and packet/bytes counters).
The passive portion of the approach asks the OpenFlow
switch to report statistics of terminated flows, due to timeout
expiration, using flow removed messages. The received data
is stored until a new estimation is to be calculated. To ensure
that all measured data for the current period is considered
when estimating required capacity, the active portion of our
approach uses stats request messages to “force” the switch to
report on currently active flows.

Although definitions of OpenFlow [29] allow for our pro-
posed approach to work, we have identified several pitfalls
on current OpenFlow implementations that affect the quality
of measured data. In [1] we present results from experiments
using a virtual and a physical OpenFlow-enabled network. We
implemented the proposed approach on top of Ryu OpenFlow
controller [30] using OpenFlow version 1.3 (implementation
available in [11]), and we ran experiments to assess the
quality of measured data in: (a) a virtual setup running Open
vSwitch 2.1.2 (OVS) [31], likely the most popular OpenFlow
implementation; and (b) a physical setup using Pica8 P3592
OpenFlow switch, running PicOS 2.3, which is based on
OVS. In both cases we observed serious inaccuracies on the
measured data that actually invalidate its use by applications
that rely on flow data, including link dimensioning.

For instance, in one of our experiments we sent three
different flow 20 times (i.e., many experiment runs) through
the OpenFlow switch and retrieved the accounted number of
packets of each run. Fig. 6 shows the relative different between
the number of sent and measured packets by OVS in the
20 experiment runs. In this figure, if the relative difference
is zero, OVS correctly measured the number of packets. If
it is negative, OVS measured less packets, and if positive
more packets than actually sent. Although the number of
forwarded packets by the switch was correct in all runs, as
observed in the sink machine to which packets were routed,
OVS surprisingly reported more or less measured packets than
the actual number of sent packets. For the case of PicOS this
problem is even more serious. Besides inaccurate number of
measured bytes, PicOS does not implement an actual packet
counter. Instead, it reports the total of measured bytes divided
by a constant 100 as being the number of measured bytes. This
ultimately yields completely unrealistic numbers, preventing
the measured data to be used by any application. Note that
results in Fig. 6 reported results of OpenFlow measurements
for a single flow. As expected, when submitting OVS and
PicOS to much higher traffic aggregates, consisting of several
thousands of flows, inaccuracies become even worse. Our
findings led us to conclude that these inaccuracies mostly
result from implementation decisions and from the low priority
given to measurement operations at the switch.

V. SUMMARY

In the future Internet link dimensioning will support fair
share and allocation of link resources. In this thesis we devel-
oped link dimensioning approaches that are (almost) as easy-
to-use as SNMP-based rules of thumb for over-provisioning,
and (almost) as accurate as packet-based approaches.

In this thesis we performed an extensive study on the
Gaussian character of current network traffic, from which we
conclude that the dimensioning formula from Eq. (1) [15] can
still be applied to today’s traffic. We also demonstrate that
it is safer to relate Gaussianity assumption to the measured
traffic rates than to the number of active hosts in a network,
as suggested by previous works. In addition, we show that
the behavior of few hosts can compromise Gaussianity fit
of an aggregate comprising traffic of several thousands of
hosts. We developed and validated three fully operational
link dimensioning approaches. These approaches are able to
estimate required capacity at timescales as low as 1ms from
measurement data obtained via sFlow and NetFlow/IPFIX. It
is important to mention that both sFlow and NetFlow/IPFIX
are largely found nowadays at network operators infrastructure
and, hence, our proposed approaches are ready to use. We
have also proposed to use OpenFlow to retrieve flow-level
measurement data from switches for link dimensioning pur-
poses. We demonstrate, however, that current implementations
of OpenFlow provide measurements of poor quality that, as
for now, prevent their use for link dimensioning.
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