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Abstract. We investigate reachability (or equivalently, safety) for timed sys-
tems modelled as Timed Automata (TA) under notions of “robustness”, i.e.,
when the clocks of the TA may drift by small amounts. Our contributions are
two-fold: (1) We first consider the model of clock-drift introduced by Puri [1]
and subsequently studied in other works [2, 3, 4]. We show that the standard
zone-based forward reachability analysis performed by tools such as UPPAAL
is in fact exact for TA with closed guards, invariants, and targets, when test-
ing robust safety of timed systems having an arbitrary, but finite lifetime. (2)
Next, we consider a more realistic model of drifting clocks that takes into ac-
count the regular resynchronization performed in most practical systems. We
then show that the standard reachability analysis of tools like UPPAAL again
suffices to test for robust safety in this model of clock-drift, for TA with closed
guards, invariants, and targets, but now without any restrictions on system
life-time.

1 Introduction

Real-time systems, which have strict timing requirements, have emerged as an
enabling technology for several important application domains such as air traffic
control, telecommunications, and medicine, to name a few. Such systems are
becoming increasingly pervasive, and hence rigorous methods and techniques
to ensure their correct functioning are of utmost importance. Timed Automata
(TA) [5] have been extensively studied as a formalism for modelling real-time
systems. TA extend ω-automata by augmenting them with “clock” variables
based on a dense-time model, which quantitatively capture the behaviour of
the system with time. TA model checkers such as UPPAAL [10] and KRONOS
[7] are now available and have been successfully used in several industrial case
studies, such as [8].

A key result for the decidability properties of TA is the region-automaton
construction [5], which partitions the inherently infinite state space of the TA
into finitely many equivalence classes or “regions”. The number of such regions
is, however, exponential in the number of clocks, and the region construction
is therefore not suited in practice for model checking TA when the number
of clocks is large. Most available tools for model checking TA (such as UP-
PAAL) instead use on-the-fly algorithms that dynamically search through the
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state space of the TA, which is partitioned into “zones” [10]. Associated data
structures such as Difference Bound Matrices (DBMs) [10] are used to represent
zones in TA-based verification. Reachability analysis forms the core of such veri-
fication tools [9] and is implemented by a Forward Reachability Analysis (FRA)
algorithm that computes the set of successors of a zone, with termination being
enforced by zone-widening using k-normalization [10].

However, such analyses, whether region- or zone-based, assume that the
clocks of the TA are perfectly synchronous, which is not the case in practice,
where the clocks could drift by small amounts. It is shown in [1] that the usual
region-based analysis is not correct w.r.t. reachability when considering pertur-
bations in the clocks, in the sense that an unsafe state, reported as unreachable
for perfect clocks, might well be reachable by iterating often enough through a
cycle in the TA, even when the clocks drift by infinitesimally small amounts,
and such a TA is therefore not “robustly safe”. This insight leads to the defi-
nition of robust reachability, where a reachability property is considered to be
“robustly (in-)valid” iff it does not change its validity for some small relative
drift between clocks.

“Robust” reachability analysis [1, 2] therefore computes the set of states
that are reachable for every (i.e., even the slightest) drift, reporting the TA
as not being robustly safe iff that enlarged reach-set contains an unsafe state
(where the guards and invariants of the TA, and the unsafe target state, are
all assumed to be closed). Robust reach-set computation in [1, 2] is based on
searching the strongly connected components of the region-graph, thus suffering
from the exponential size of the region-graph in the number of clocks. Zone-
based algorithms that compute this reach-set more efficiently are presented
in [3, 4]. For a given TA with maximum clock-drift parameterized by ε > 0,
with the corresponding reachable state-space being Reachε, the algorithms in
[1, 2, 3] compute the set ∩ε>0Reachε and test it for empty intersection with the
(closed) target. It is shown in [1] that ∩ε>0Reachε has an empty intersection
with the closed target state iff there exists some ε > 0 such that the intersection
of Reachε with the (closed) target state is again empty. The algorithms in all
these works however alternate between forward and backward analysis, and
thus induce a performance overhead compared to the standard FRA algorithm
used within tools like UPPAAL. All the above works (except [4]) assume that
the guards, invariants, and targets of the TA are closed. Furthermore, all of
them assume that each cycle of the TA is a progress cycle, wherein every clock
is reset at-least once per cycle. The unsafe states that become reachable with
drifting clocks (but which are unreachable with perfect clocks) are added to such
robust reach-sets only by iterating an unbounded number of times through the
(progress) cycles of the TA, thereby requiring that the life-time of the systems
be infinite. Moreover, the model of clock-drift considered in these works is one
of unbounded relative drift between the clocks, which does not take into account
the regular resynchronization of clocks that is performed in practical real-time
systems. This paper addresses these two issues, with two main contributions:
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1. We first consider the model of clock-drift introduced by Puri [1] and stud-
ied subsequently by others [2, 3, 4]. We show that, under the assumption
of closed guards, invariants, and targets, the standard zone-based FRA of
TA performed by tools such as UPPAAL is indeed exact when testing for
robust safety of timed systems having an arbitrary, but finite life-time. We
test here whether the TA can robustly avoid the target arbitrarily long, in
the following sense: for any given number i of iterations of the transition re-
lation, there is εi > 0 such that Reachεi

i has an empty intersection with the
target state, where Reachεi

i is the reachable state space after i iterations of
the transition relation under maximum perturbation εi of the clocks. Note
that εi may depend on the number i of executed iterations, with εi decreas-
ing (not necessarily strictly) with i, and potentially tending to 0 as i tends
to ∞. Thus, robust safety under our notion does not imply the existence of
a homogeneous ε > 0 that is independent of the number of iterations and
such that Reachε has an empty intersection with the target state (which is
the notion considered in previous works [1, 2, 3, 4]). However, our notion of
robust safety implies avoidance of the target state by some strictly positive
value of the perturbation for any arbitrary, but finite number of iterations.
This is applicable to all systems having a finite life-time.

2. Next, we introduce a more realistic model of clock-drift that takes into ac-
count the regular resynchronization performed in practical real-time systems
(such as bit-stuffing in communication protocols), which results in a bounded
relative clock-drift. Under the assumption of closed guards, invariants, and
targets, we show that the standard zone-based FRA of TA is again exact
when testing for robust safety of such timed systems with clock resynchro-
nization. In this case, a certification of robust safety imposes no restriction
on the life-time of the system — it implies avoidance of the (closed) target by
all 0 < ε < 1 (where the ε now parameterizes the maximum relative bounded
clock-drift subject to periodic resynchronization) independent of the number
of iterations.

The rest of the paper is organized as follows: Section 2 briefly reviews TA
definitions and semantics, along with our assumptions. It also presents the stan-
dard algorithm for zone-based FRA. Section 3 describes the robustness problem
for TA in the context of the model of clock-drift considered by Puri and others,
and shows the exactness of the standard zone-based FRA algorithm w.r.t robust
safety for systems having a finite life-time. Section 4 then introduces our model
of bounded clock-drift that accounts for regular clock resynchronization, and
shows the exactness of the standard zone-based FRA algorithm w.r.t robust
safety, but now without any restrictions on the life-time of the system. Section
5 concludes the paper and sketches future research directions.
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2 Timed Automata (TA)

Given a finite set C of clocks, a clock valuation over C is a map v : C → R≥0

that assigns a non-negative real value to each clock in C. If n is the number of
clocks, a clock valuation is basically a point in Rn

≥0, which we henceforth denote
by u,v etc.

Definition 1. A zone over a set of clocks C is a system of constraints defined
by the grammar g ::= x ◃ d | x − y ◃ d | g ∧ g, where x, y ∈ C, d ∈ N, and
◃ ∈ {<,≤, >,≥}. The set of zones over C is denoted Z(C).

A closed zone is one in which ◃ ∈ {≤,≥}, and we denote the set of closed
zones over C by Zc(C). A zone with no bounds on clock differences (i.e., with
no constraint of the form x − y ◃ d) is said to be diagonal-free, and we denote
the corresponding set of zones by Zd(C). The set Zcd(C) denotes zones that
are both closed and diagonal-free. The set ZcdU(C) denotes the set of closed,
diagonal-free zones having no lower bounds on the clocks.

Definition 2. A TA is a tuple A = (L, C, (l0,0), T, Inv), with

– a finite set L of locations and a finite set C of clocks, with |C| = n.
– An initial location l0 ∈ L together with the initial clock-valuation 0 where

all clocks are set to 0 1

– a set T ⊆ L × Zcd(C) × 2C × L of possible transitions between locations.
A transition t between two locations (l, l′) is denoted l

t→ l′, and involves a
guard G(t) ∈ Zcd(C) and a reset set Rest ⊆ C.

– Inv : L→ ZcdU(C) assigns invariants to locations

In the sequel, we will denote by k the clock ceiling of the TA A under investi-
gation, which is the largest constant among the constraints of A (including the
predicate defining the unsafe state). Note that we assume that the guards of
the automaton are closed and diagonal-free zones. Invariants in addition have
only upper-bounds on clocks. Diagonal constraints of the form x − y ◃ d thus
are not part of the TA syntax, but are of relevance, since they occur during the
course of forward reachability analysis as a result of the time-passage operation
defined as follows:

Definition 3. For a clock valuation x, its time-passage is
timepass(x) = {x + d | d > 0}, where x + d denotes the addition of a strictly
positive scalar d to each component of x. This is canonically lifted to clock-zones
Z as timepass(Z) =

⋃
x∈Z timepass(x).

Definition 4. ⌊x⌋k denotes the k-region containing x, which is the equivalence
class induced by the k-region-equivalence relation ≈k. For two clock valuations
x and y, x ≈k y iff

1 We assume without loss of generality that all clocks are initially set to 0.
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∀i ≤ n :

⎛

⎝
(xi > k) ∧ (yi > k)
∨ ((int(xi) = int(yi)) ∧ (fr(xi) = 0⇔ fr(yi) = 0)∧
∀j ≤ n : (fr(xi) ≤ fr(xj)⇔ fr(yi) ≤ fr(yj)))

⎞

⎠

Here, for a clock valuation x ∈ Rn
≥0, xi denotes its i-th component, i.e., the

value of the i-th clock, and int(xi) and fr(xi) respectively denote the integer
and fractional parts of xi.

Definition 5. [11] A k-bounded zone (k-zone) has no constant exceeding k
among its constraints. For a zone Z, its k-normalization, denoted normk(Z), is
the smallest k-bounded zone containing Z.

If Z is a k-zone, normk(Z) = Z. k is taken to be the largest constant ap-
pearing in the constraints (including the unsafe state) of the TA.

Definition 6. Reach ⊆ L×(C → R≥0) is the reach-set of the TA A, consisting
of an infinite set of (concrete) states of the TA of the form (l,x), where l ∈ L and
x ∈ Rn

≥0. It is defined inductively as follows, with Reachi denoting the reach-set
under i ∈ N steps, starting from the initial state (l0,0) and alternating between
time-passage and discrete-location transitions:2

– Reach0 = {(l0,0)}.

– if i even Succ(Reachi) =
{

(l,x)
∣∣∣∣
∃u ∈ Inv(l) : (l,u) ∈ Reachi

∧ x ∈ timepass(u) ∩ Inv(l)

}

– if i odd Succ(Reachi) =

⎧
⎨

⎩(l,x)

∣∣∣∣∣∣

∃t ∈ T, l′ ∈ L,u ∈ Inv(l′) ∩G(t) :
l′

t→ l ∧ (l′,u) ∈ Reachi

∧ x ∈ Inv(l) ∩Rest(u)

⎫
⎬

⎭,

where Rest(u)(c) = u(c) iff c ̸∈ Rest, else Rest(u)(c) = 0.

– ∀i ≥ 0, Reachi+1 = Reachi ∪ Succ(Reachi).
– Reach =

⋃
i∈N Reachi.

Reach is computed in tools like UPPAAL by the following zone-based for-
ward reachability algorithm. Given a timed automaton A with the target (l, B),
it decides whether Reach ∩ (l, B) ̸= ∅. Reachable state sets are represented by
lists ⟨(l1, Z1), . . . , (lm, Zm)⟩ of location-zone pairs. Let Ri denote the (symbolic)
reachable state-space at the i-th (i ≥ 0) iteration.

1. Start with the state-set R0 = {(l0,0)}, or equivalently, in DBM form,
R0 = l0 × {

∧
x∈C x − x0 ≤ 0)}, where x0 ̸∈ C is a pseudo-clock used to

represent the constant 0.
2. For i ≥ 0, compute the symbolic successors of Ri, denoted Post(Ri), sepa-

rately for even and odd values of i, as follows:

– If i even, Post(Ri) = {(l, Z) | ∃(l, Z ′) ∈ Ri

: Z = normk(timepass(Z ′)) ∧ Inv(l)}
2 To simplify the proofs, we use even- and odd-numbered steps to distinguish between time-
passage (of possibly zero duration) and transitions between discrete locations.
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– If i odd, Post(Ri) = {(l, Z) | ∃(l′, Z ′) ∈ Ri, t ∈ T : l′
t→ l

∧ Z = Rest(Z ′ ∧G(t)) ∧ Inv(l)}

3. Build Ri+1 = Ri · Post(Ri), where · denotes conditional concatenation that
suppresses subsumed zones, i.e., removes (l, Z) if there is another (l, Z ′) with
Z implying Z ′.

4. Repeat steps (2) and (3) until Ri+1 = Ri. Denote the last set Ri thus com-
puted as R. Termination is guaranteed by the use of k-normalization, as there
are only finitely many different k-zones such that only subsumed zones arise
eventually.

5. Test whether Z ∧B is satisfiable for some (l, Z) ∈ R. If so then report “(l, B)
is reachable”, otherwise report “(l, B) is un-reachable”.

It has been shown that this algorithm is sound and complete w.r.t. reachability
[10] in the sense that Reach ∩ (l, B) = ∅ iff R ∩ (l, B) = ∅.

3 Robustness w.r.t. Clock-Drift

We have hitherto considered perfectly synchronous clocks. We now consider
drifting clocks that could occur in practice, as introduced in [1] and studied
subsequently by others [2, 3, 4]. This phenomenon is modelled by introducing
a parameter ε > 0 that characterizes the relative drift between the clocks. The
slopes of the clocks are assumed to be within the range

[
1

1+ε , 1 + ε
]
. This is

equivalent to a relative drift in the range
[
( 1
1+ε )

2, (1 + ε)2
]

between the clocks.
We could alternatively consider the slopes to be in the range [1− ε, 1 + ε]. The
behaviour of both models w.r.t. infinitesimally small values of ε is identical,
only that in our case, the slope of a clock never becomes negative no matter
how large ε is. We then have a modification of the time-passage operation as
follows:

Definition 7. For a clock valuation x, its time-passage under perturbation of ε
is: timepassε(x) =

{
x + d · e

∣∣∣d > 0, e ∈
[

1
1+ε , 1 + ε

]n}
.

For a Zone Z, timepassε(Z) =
⋃

x∈Z timepassε(x)

While this model restricts the slopes of the clocks based on the value of pa-
rameter ε, the actual relative drift between the clocks increases without bound
with increasing delay d > 0. The reachable state space also gets enlarged. For a
given perturbation of ε, the corresponding perturbed reach-set Reachε is defined
inductively, similar to the non-perturbed case, by accounting for drifting clocks
through the replacement of the deterministic timepass() by an appropriate
non-deterministic timepassε() for steps corresponding to time-passage.

We now consider the effect of clock-drift on deciding whether some location-
zone pair (l, B) is reachable. As an example (cf. Fig. 1), consider a timed au-
tomaton A, consisting of a single location l0, two clocks x, y, the invariant of l0
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being x ≤ 2, and a self-looping transition t consisting of a guard x = 2?, with
the associated resets x := 0, y := 0. Let the unsafe state of A be characterized
by (l0, B) = (l0, y > 2). Assuming perfect clocks, the state-space of A is given
by Reach = (l0, Z), where Z ≡ (x ≤ 2 ∧ y = x), and A is clearly safe, as
Reach∩ (l0, B) = ∅. For drift characterized by a given ε > 0, the corresponding
state space is Reachε = (l0, Zε), where Zε ≡ x ≤ 2 ∧ x

(1+ε)2 ≤ y ≤ x(1 + ε)2.
Thus, ∀ε > 0 : Reachε ∩ (l0, B) ̸= ∅ and A is therefore not “robustly” safe. The
automaton along with the associated state-space for each case is illustrated in
Fig. 1.

x = 2? / x := 0
y := 0

t

x ≤ 2

y := 0
x := 0

l0

(a) Z ≡ y = x ∧ x ≤ 2
l0y

2

1

(0, 0) 1 2 x

(b) Zε ≡ x
(1+ε)2 ≤ y ≤ x(1 + ε)2 ∧ x ≤ 2

Fig. 1 A timed automaton A along with its state-spaces (a) without drift: (l0, Z), (b) for a
drift of ε : (l0, Zε).

Related work on robust reachability of TA [1, 2, 3] compute the set ∩ε>0Reachε.
For this example, ∩ε>0Reachε = Reach. This is because, for a zone Z,
∩ε>0 timepassε(Z) = timepass(cl(Z)), where cl(Z) is the closure of Z, ob-
tained by relaxing each strict inequality of Z to the corresponding non-strict
one. In the present case, Z ≡ 0 is closed, as is (Z ∪ timepass(Z)) ∩ Inv(l0) ≡
y = x∧x ≤ 2, so ∩ε>0Reachε ∩ (l0, B) = ∅. Hence, if open target states were
allowed, the algorithms in [1, 2, 3] would all report this automaton as being
robustly safe, while even the slightest perturbation would actually make the
unsafe state reachable. However, if B ≡ y ≥ 2, we see that the automaton of
Fig. 1 is unsafe even with perfect clocks, while for B ≡ y ≥ 3, the automaton
is now safe even for drifting clocks, for all 0 < ε <

√
1.5− 1.

We thus observe that closed constraints give consistent results while testing
the automaton of Fig. 1 for safety, both with perfect clocks and under drift.
Note also that this automaton has a single progress cycle, which additionally
resets all clocks simultaneously in a single transition. The remit of this paper is
to formulate conditions under which tests on TA for robust safety give identical
results for both perfect and drifting clocks. We define for this purpose a grid-
point and its associated neighbourhood as follows:

Definition 8. Grid denotes the set-of all grid-points in Rn
≥0, i.e.,

Grid = {xg ∈ Rn
≥0 | ∀1 ≤ i ≤ n : fract(xgi) = 0}. For x ∈ Rn

≥0,
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grid(x) = {xg ∈ Grid | dist(x,xg) < 1}, where
dist(x,xg) = max1≤i≤n|xi − xgi|. The subset of Grid that contains only those
grid-points bounded by k is denoted k −Grid.

Thus, ∀xkg ∈ k − Grid: ⌊xkg⌋k = xkg. We will henceforth denote points in
Grid by the suffix g (xg etc.) and points in k−Grid by the suffix kg (xkg etc.).

Definition 9. For ug ∈ Grid, we define its neighbourhood
Nk(ug) =

⋂
ε>0 ⌊timepassε(ug)⌋k. For a zone Z, its neighbourhood is

defined as: Nk(Z) =
⋃

ug∈Z∩Grid Nk(ug)

Nk(ug) is the union of all neighbouring k-regions of ug, where a k-region r
is said to neighbour ug iff a point in r is reachable by time-passage from ug for
every drift, i.e., ∀ε > 0 : timepassε(ug) ∩ r ̸= ∅. Thus Nk(ug) is the result of
adding to ug all k-regions of Hausdorff distance 0 in temporally non-backward
directions.

It must be understood here that the neighbourhood is defined only for
grid-points3. It then follows that for any zone Z, Nk(Z) is idempotent, i.e.,
Nk(Nk(Z)) = Nk(Z), and that for a zone Z that has no closed diagonal bor-
ders, Nk(Z) contains exactly the same grid-points as normk(timepass(Z)), and
thus Nk(Z) = normk(timepass(Z)) for such a zone. Also, ∀ug /∈ k − Grid :
Nk(ug) = normk(timepass(ug)). The following lemmas establish some useful
properties of the neighbourhood operator.

Lemma 1. ∀x ∈ Rn
≥0, ∀ug ∈ Grid :

x ∈ Nk(ug)⇔ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ timepassε(ug)

The proof is immediate from the definition of Nk(ug).

Lemma 2. For any ug ∈ Grid, Nk(ug) is given by:

Nk(ug) = normk

{
ug + d +

n∑

i=1

ai · ei | d > 0, ai ∈ [0, 1)

}
,

where ei is the i-th unit vector.

Here ug+d denotes the addition of d to each component of ug. The proof follows
from Lemma 1 and the definition of ⌊x⌋k for x ∈ Rn

≥0 . This means that for any
zone Z, Nk(Z) is obtained as follows: First apply the standard unperturbed
time-passage operator on Z, and then widen the diagonal constraints which
are non-strict inequalities of the resulting conjunctive system by 1, to the next
higher strict inequalities, i.e., x− y ≤ c is widened to x− y < c + 1, followed by
standard k-normalization.

3 By considering only closed guards and invariants for the automaton, we ensure that all the
zones we encounter during FRA contain at least one grid-point.
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Lemma 3. Given any (diagonal-free) k-zone Z, x ∈ Rn
≥0, ug ∈ Grid,

x ∈ Nk(ug) ∩ Z ⇔ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ timepassε(ug) ∩ Z

The proof follows from Lemma (1) and the following property of any diagonal-
free k-zone B [11]:

Property 1. ∀x, ∀y ∈ ⌊x⌋k : x ∈ B ⇔ y ∈ B.

Lemma 4. For any two closed zones Z1 and Z2,

Z1 ∩Nk(Z2) = ∅ ⇔ Z1 ∩ normk(timepass(Z2)) = ∅

The proof of “⇒” is immediate, as Nk(Z2) ⊇ normk(timepass(Z2)). The proof
of “⇐” is also obvious if Nk(Z2) = normk(timepass(Z2)).
When Nk(Z2) ⊃ normk(timepass(Z2)), we prove “⇐” as follows:
Z1, Z2 (and thus timepass(Z2), except for its “bottom”) are closed. For
Nk(Z2) ⊃ normk(timepass(Z2)), it must be the case that Z2 is a k-zone and so
normk(timepass(Z2)) = timepass(Z2) is also closed (except for its “bottom”).
Thus, in order for Z1 to have an empty intersection with normk(timepass(Z2)),
the two must be separated by a (max. norm) distance of at least 1. It also fol-
lows that the only additions to normk(timepass(Z2)) to form Nk(Z2) are the
open diagonal borders (obtained by relaxing the diagonal constraints of Z2 by
1). These borders thus added being open, can at most touch, but not intersect
Z1, which entails our result.

Lemma 5. For any closed k-zone Z, for any ug ∈ Grid, any v ∈ Rn
≥0

v ∈ Z ∩Nk(ug)⇒ ∃vg ∈ (grid(v) ∩ Z ∩ normk(timepass(ug)))

The proof follows as a consequence of Lemma 4 and the definition of grid(v).
This means that any closed guard (Z, referring to Lemma 5) that is enabled by
a point (v) obtained by time-passage from a grid-point (ug) under the smallest
of drifts (and thus included into that point’s (ug’s) neighbourhood) is also
enabled by a different grid-point (vg) obtained by time-passage (without drift)
from that grid-point (ug).

Lemma 6. For any closed, diagonal-free k-zone Z, any x,u ∈ Rn
≥0,

u ∈ Z ∧ ∀ε > 0 : (⌊x⌋k ∩ timepassε(u) ∩ Z) ̸= ∅
⇒ ∃ug ∈ grid(u) ∩ Z ∧ x ∈ Nk(ug) ∩ Z

The proof is immediate from Lemmas 3 and 5, and the definition of grid(u).

Definition 10. Let R∗
i be the reach-set at the i-th iteration, computed by

modifying the time-passage steps of the standard FRA algorithm as follows:
the normk(timepass()) operator is replaced by its neighbourhood Nk(). R∗

i is
termed the corresponding robust reach-set.
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Let R∗ be the robust reach-set that is ultimately computed by the FRA
algorithm by using Nk() instead of normk(timepass()), while computing the
time-passage successors of zones 4, and R be the reach-set that is computed by
the standard zone-based FRA (cf. Definition 6).
From Lemma 4, we get R∗ = {(l, Z ∪ (Nk(Z) ∧ Inv(l))) | (l, Z) ∈ R}, thereby
resulting in the following corollary:

Corollary 1. For any closed zone B and any l ∈ L,
R∗ ∩ (l, B) = ∅ ⇔ R ∩ (l, B) = ∅.

We now establish useful properties of the sets R∗
i through the following lem-

mas.

Lemma 7. Given any i ∈ N, any l ∈ L, and any x ∈ Rn
≥0,

(l,x) |= R∗
i ⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k : (l,y) ∈ Reachεi

Here, by (l,x) |= R∗
i , we mean that there exists a zone Z ∈ R∗

i such that x ∈ Z.
This lemma shows that the set R∗

i collects the regions that can be “touched”
in the sense of some (but not necessarily all) points within being reachable for
every perturbation. The proof is by induction over the number i of iterations,
separately for even and odd values of i, using Lemma 3, Property 1, and the
definitions of R∗

i and Reachεi .

Lemma 8. For any l ∈ L, any diagonal-free k-zone B, any i ∈ N,
R∗

i ∩ (l, B) ̸= ∅ ⇒ ∀ε > 0 : Reachεi ∩ (l, B) ̸= ∅. 5

This lemma implies that at any iteration depth i, if the set R∗
i intersects

with a target state, then the corresponding perturbed reach-set under even the
smallest of perturbations likewise intersects with the target state. The proof
follows from Lemma 7 and Property 1.

Lemma 9. For any even i, l ∈ L, ug ∈ Grid ∩ Inv(l), v ∈ Rn
≥0,

(l,ug) |= R∗
i ∧ ∃l′ ∈ L ∃t ∈ T : l

t→ l′ ∧ v ∈ Nk(ug) ∩ Inv(l) ∩G(t)
⇒ ∃vg ∈ normk(timepass(ug)) ∩ grid(v) ∩ Inv(l) ∩G(t) :

∃wg ∈ (Inv(l′) ∩Rest(vg) : (l′,wg) |= R∗
i+2

The proof is immediate from Lemma 5 and the definition of R∗
i . Here we

assume, in addition to the guards and invariants being closed and diagonal-free,
the following condition of admissible target locations, which ensures consistency
between the invariants of a location and the guards of the transitions entering
and leaving that location:
For any locations l and l′, and any transition t with l

t→ l′:
Inv(l) ∩G(t) ̸= ∅ ∧ Inv(l′) ∩G(t) ̸= ∅.
4 Termination is guaranteed for such an algorithm by the use of k-normalization in the
computation of the neighbourhood Nk() of zones encountered during the FRA.
5 Here R∗

i ∩ (l, B) ̸= ∅ denotes Z ∧B being satisfiable for some (l, Z) ∈ R∗
i .
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Lemma 10. For any even i, any l ∈ L, any x ∈ Rn
≥0,

∀ug ∈ Grid ∩ Inv(l) : (l,ug) |= R∗
i , x /∈ Nk(ug) ∩ Inv(l)

⇒ ∃εi > 0 ∀y ∈ ⌊x⌋k , ∀u ∈ Inv(l) : (l,u) ∈ Reachεi
i :

y /∈ timepassεi(u) ∩ Inv(l)

The proof follows from Lemma 6 and Lemma 9, by induction over even i. A
consequence is that the following converse of Lemma 7 also holds:

Lemma 11. Given any i ∈ N, any l ∈ L, and any x ∈ Rn
≥0,

(l,x) |̸= R∗
i ⇒ ∃εi > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Reachεi

i

The proof is by induction over the number i of iterations, separately for even
and odd values of i, using Lemmas 3 and 10, Property 1, and the definitions of
R∗

i and Reachεi
i .

Lemma 12. For any l ∈ L, i ∈ N, any diagonal-free k-zone B,

R∗
i ∩ (l, B) = ∅ ⇒ ∃εi > 0 : Reachεi

i ∩ (l, B) = ∅.

The above lemma implies that at any iteration depth i, the set R∗
i does not

intersect with a target state iff there exists a strictly positive value of the per-
turbation, such that the corresponding perturbed reach-set at that iteration
depth likewise avoids the target state. The proof follows from Lemma 11 and
Property 1. The following corollary is then a direct consequence of Lemmas 8
and 12.

Corollary 2. Given any l ∈ L, any diagonal-free k-zone B,
R∗ ∩ (l, B) = ∅ ⇔ ∀i ∈ N ∃εi > 0 : Reachεi

i ∩ (l, B) = ∅

Corollaries 1 and 2 lead us to the following theorem, which is a main result
of this paper.

Theorem 1. Let R be the final reach-set computed by the standard zone-based
FRA, for a TA with closed and diagonal-free guards and invariants. Then for
any closed and diagonal-free k-zone B and any l ∈ L, R ∩ (l, B) = ∅ ⇔ ∀i ∈
N ∃εi > 0 : Reachεi

i ∩ (l, B) = ∅

It follows from this theorem that the standard zone-based FRA used in tools
like UPPAAL is exact (sound and complete) while testing TA with closed guards
and invariants for robust safety against closed targets.

The “⇐” part of Theorem 1 states that a closed target is reported as reach-
able by standard zone-based FRA only if it is also reachable in a finite number
of iterations of the transition relation of the TA, under even the slightest of
perturbations. This result is intuitively obvious, because even the smallest per-
turbed reach-set is a strict superset of its non-perturbed version. The “⇒” part
of Theorem 1 states that a closed target is reported as unreachable by zone-
based FRA only if for any given number of iterations i of the transition relation,
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there exists a strictly positive value of the perturbation εi that the automaton
can tolerate and yet remains safe, in the sense that the corresponding perturbed
reach-set Reachεi

i has an empty intersection with the (closed) target state. It
must be noted here that this does not mean the existence of a homogeneous
ε > 0 independent of the number of iterations, for which the unsafe state can
be avoided, which is the notion considered in related works [1, 2, 3, 4]. Rather,
as mentioned in the introduction, the magnitude of the tolerated perturbation
εi could (but not necessarily) decrease with the number i of iterations, with εi

potentially tending to 0 as i tends to ∞6. However, so long as we execute an
arbitrary, but finite number of iterations, we are guaranteed a positive value of
the tolerable perturbation for robust safety.

The analyses in [1, 2, 3, 4], on the other hand, add states that can be reached
in any (unbounded) number of iterations through the (progress) cycles of the
automaton7, for even the slightest perturbation. Therefore, a state (l,x) is con-
sidered to be robustly unreachable in our sense (i.e., not included in R∗), but
reachable in the sense of the works in [1, 2, 3, 4] iff limε→0 min{i ∈ N | (l,x) ∈
Reachεi } =∞.

4 Robustness w.r.t. Imperfect Synchronization

In the previous section, we considered a model of drifting clocks where the rela-
tive drift between the clocks increases without bound with the passage of time,
although the clock-slopes are themselves bounded according to the parameter
ε. This is, however, rarely the case in practice, where the clocks, though subject
to drift, are regularly resynchronized by diverse means, ranging from bit-stuffing
in communication protocols to high-level clock synchronisation schemes. A pa-
rameter ∆ characterizes the post-synchronization-gap and a parameter µ the
longest possible gap between synchronizations. If the slopes of the clocks (w.r.t
absolute time) are in the range

[
1

1+θ , 1 + θ
]

between synchronizations, such a
resynchronization enforces a uniform bound given by

ε = max

(
∆+ µ

(
1

1 + θ

)2

,∆+ µ(1 + θ)2
)

= ∆+ µ(1 + θ)2

6 For closed TA in which each cycle has at-least one transition that resets all clocks simul-
taneously, the robust reach-sets computed by the algorithms in [2, 3, 4] coincide with the
standard reach-set computed by UPPAAL, as seen in automaton of Fig. 1. Thus, a certifi-
cate of safety by standard UPPAAL for such TA w.r.t. closed targets implies a robust safety
margin independent of iteration depth.
7 We make no assumption on the cycles of the automaton.
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Fig. 2 Periodic resynchronization resulting in a bound ε on relative drift between clocks

on the relative drift between the clocks, irrespective of the extent of time-
passage. The phenomenon is illustrated for two clocks x and y in Fig. 2.
Throughout this section, we assume 0 < ε < 1.

We incorporate such a resynchronization into TA by associating a drift-offset
δ ∈ [−ε, ε]n for each clock valuation x ∈ Rn

≥0. This drift-offset keeps track of
the extent to which the individual clocks in x have deviated from an implicit
reference clock maintained by the synchronization scheme. The states of a TA
in this semantics are thus tuples (l,x, δ) ∈ L×Rn

≥0× [−ε, ε]n. As the deviation
δ is controlled by the synchronization scheme such that it always remains below
ε, the (perturbed) time-passage under synchronization is as follows:

Definition 11. Given any x ∈ Rn
≥0, any δ ∈ [−ε, ε]n,

timepassεsync(x, δ) = {(x′, δ′) | δ′ ∈ [−ε, ε]n ∧ ∃d > 0 : x′ = x− δ + d + δ′}

A run of a perturbed TA subject to clock synchronization with accuracy ε
is a sequence ⟨(l0,x0, δ0), (l1,x1, δ1), . . .⟩ of states such that

1. l0 is the initial location and x0 = δ0 = 0,
2. For even i, li+1 = li, xi+1 ∈ Inv(li)
∧ (xi+1, δi+1) ∈ {(xi, δi)} ∪ timepassεsync(xi, δi) 8

3. For odd i, ∃ti ∈ T : li
ti→ li+1 : xi ∈ Inv(li) ∩G(ti),

xi+1 ∈ Inv(li+1) ∩Resti(xi), δi+1 = Resti(δi).

Due to memorizing the current deviation δ and adjusting it consistently to the
constraint that the overall accuracy is better than ε, this semantics is subtly
more constrained than the —superficially similar— semantics permitting an
arbitrarily directed ε-deviation upon every time passage.

SReachε is the corresponding perturbed reach-set, defined inductively as
follows, with SReachεi denoting the perturbed reach-set in i ∈ N steps, starting

8 By abuse of notation, the subscripts i here denote the sequence of tuples in a run, and not
individual vector components.
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from the initial state (l0,0,0) and alternating between (perturbed) time-passage
and (exact) discrete-location transitions:

– SReachε0 ≡ {(l0,0,0)}
– For i even, Succ(SReachεi ) = {(l,x, δ) | x ∈ Inv(l)
∧ ∃x′ ∈ Inv(l), ∃δ′ ∈ [−ε, ε]n : (l′,x′, δ′) ∈ SReachεi
∧ (x, δ) ∈ timepassεsync(x′, δ′)}

– For i odd, Succ(SReachεi ) = {(l,x, δ) | ∃t ∈ T, l′ ∈ L : l′
t→ l,

∃x′ ∈ Inv(l′) ∩G(t) ∃δ′ ∈ [−ε, ε]n : (l′,x′, δ′) ∈ SReachεi :
∧ x ∈ Inv(l) ∩Rest(x′) ∧ δ = Rest(δ′)}

– ∀i ≥ 0, SReachεi+1 = SReachεi ∪ Succ(SReachεi )
– SReachε =

⋃
i∈N SReachεi

As before, we assume that all guards and invariants are closed and diagonal-free.
Let Reach denote the reach-set obtained by considering perfectly synchronous
clocks (ε = 0), where Reachi denotes the reach-set at step i, as defined previ-
ously (cf. Definition 6). We establish the relationship between the sets SReachε

and Reach through the following lemmas.

Lemma 13. For any i ∈ N, l ∈ L, x ∈ Rn
≥0, δ ∈ [−ε, ε]n,

(l,x, δ) ∈ SReachεi ⇒ ∃xg ∈ grid(x) : (l,xg) ∈ Reachi

The proof is by induction over i, from the definitions of SReachεi and Reachi.
The following corollary is an immediate consequence.

Corollary 3. For any i ∈ N, it holds that:

sups∈SReachε
i

dist(s, Reachi) < 1 ,

where for s = (l,x, δ) ∈ SReachεi , dist(s, Reachi) = inf(l,x′)∈Reachi
dist(x,x′).

Corollary 3 intuitively means that irrespective of the iteration depth i, the
perturbed reach-set SReachεi stays “close-enough” to the standard reach-set
Reachi, in the sense that even the “farthest” point in the perturbed reach-set
is less than unit distance away from the standard reach-set.

Lemma 14. For a TA with only closed and diagonal-free guards and invariants,
and any closed target location-zone pair of the form (l, B):

Reach ∩ (l, B) = ∅ ⇔ ∀0 < ε < 1 : SReachε ∩ (l, B) = ∅ ,

where SReachε ∩ (l, B) = ∅ denotes ∀(l,x, δ) ∈ SReachε : x /∈ B.

The proof of “⇐” is obvious as ∀ε > 0 : SReachε ⊃ Reach, in the following
sense: ∀(l,x) ∈ Reach : (l,x,0) ∈ SReachε. The proof of “⇒” follows from
Corollary 3, in conjuction with the fact that B is a closed zone, as are all the
guards and invariants of the TA, and 0 < ε < 1. This lemma, together with the
soundness and completeness result for standard zone-based FRA [10], leads us
to the following theorem, which is the second main result of this paper:
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Theorem 2. For a TA with only closed and diagonal-free guards and invari-
ants, any location l, and any closed, diagonal-free k-zone B :

R ∩ (l, B) = ∅ ⇔ ∀0 < ε < 1 : SReachε ∩ (l, B) = ∅ ,

where R is the symbolic reachable state-space that is ultimately computed by the
standard zone-based FRA.

Theorem 2 thus establishes the exactness of standard zone-based forward
analysis using a tool like UPPAAL for TA with closed guards and invariants,
when testing for robust safety against closed targets, with drifting clocks subject
to periodic resynchronizations that enforce accuracy better than 1. A certifica-
tion of robust safety in this case implies that the target state could be avoided
by all values of the perturbation ε that are strictly less than 1, independent of
the depth of iteration, unlike the case for unbounded relative clock-drift that
was considered in the previous section.

Theorem 2 may also be proven using the neighbourhood construction for
grid-points, as was previously done for Theorem 1.

5 Conclusion

We have investigated reachability (and thus, safety) of TA subject to drifting
clocks – a phenomenon that occurs in practical implementations of timed sys-
tems. We first considered the model of clock-drift introduced in [1] and studied
in [2, 3, 4], and analyzed the reachability for TA with closed guards, invariants,
and targets, but without the assumption of progress cycles, as was made in
[1, 2, 3, 4]. We showed the exactness of the standard zone-based FRA of UP-
PAAL for such TA, under a notion of robustness weaker than that in [1, 2, 3, 4],
in the sense that we do not add states that require an unbounded number of
iterations in order to be reached, under infinitesimally small clock-drift (cf.
Theorem 1). Our notion is applicable to all systems having a finite life-time,
where for any particular projected life-time, an appropriate worst-case clock
drift enforcing behavior indistinguishable from the ideal can be chosen. For
long life-times, the permissible clock drift may become extremely small. As
technical realizations in many systems (like, e.g., bit-stuffing in communication
protocols or the central-master synchronization incorporated in GPS-controlled
systems) address this problem by regular clock resynchronization, thus bound-
ing the relative drift within an set of clocks even over arbitrarily long life-times,
we have also modelled and analyzed such synchronization schemes. We have
shown that the standard zone-based analysis of UPPAAL is again exact while
testing such models for robust safety, but now with the assertion of a uniform
strictly positive robustness margin of 1, independent of system life-time.
Note that our definition of TA admits only diagonal-free constraints for the
guards, invariants, and targets. This is because TA with diagonal constraints
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of the form x − y ◃ c have been shown to be incompatible with forward reach-
ability analysis that employs standard k-normalization for termination, and a
modified normalization that takes into account the diagonal constraints of the
TA is in fact necessary for dealing with such cases [11, 10]. However, the tech-
niques of this paper extend quite naturally to TA with diagonal constraints and
a suitably modified normalization operation. An extension of these techniques
to Probabilistic TA [12] (TA with discrete probability distributions annotating
transitions between locations) also appears straight-forward.
We finally wish to mention the following alternate notions of robustness for
TA: [13] imposes a topological closure on timed traces, which has been shown
in [14] to affect digitization of TA. [15] considers robust model-checking of LTL
properties, while [16] considers robustness analysis via channel machines.
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